Optimizing the Incorporation Modes of TiO2 in TiO2-Al2O3 Composites for Enhancing Hydrodesulfurization Performance of Corresponding NiMoP-Supported Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Properties of the Synthesized Supports
2.2. MSI of the Synthesized Catalysts
2.3. Morphologies of the Sulfided Catalysts
2.4. Covalent States of the Sulfided Catalysts
2.5. Catalytic Performance Evaluation
3. Materials and Methods
3.1. Materials
3.2. Synthesis of TiO2-Al2O3 Composite Oxide Supports
3.3. Preparation of NiMoP-Supported Catalysts
3.4. Characterization of the Materials
3.5. Catalytic Performance Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; He, P.; Li, Z.; Meng, S.; Li, Y.; Chang, L.-Y.; Liu, L.; Wen, X.; Klein, B.A.; Michaelis, V.K.; et al. Environmentally Benign Methane-Regulated Catalytic Desulfurization. Appl. Catal. B Environ. 2022, 312, 121436. [Google Scholar] [CrossRef]
- Ali, I.; Saleh, T.A. Molybdenum Boron Based Catalysts Loaded on MnO Alumina Support for Hydrodesulfurization of Dibenzothiophene. Inorg. Chem. Commun. 2022, 138, 109237. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G.; Mei, J.; Xiao, C.; Hu, D.; Wang, A.; Song, Y.; Ni, Y.; Jiang, G.; Duan, A. The Influence of Pore Structure and Acidity on the Hydrodesulfurization of Dibenzothiophene over NiMo-Supported Catalysts. ACS Omega 2020, 5, 15576–15585. [Google Scholar] [CrossRef]
- Saleh, T.A. Global Trends in Technologies and Nanomaterials for Removal of Sulfur Organic Compounds: Clean Energy and Green Environment. J. Mol. Liq. 2022, 359, 119340. [Google Scholar] [CrossRef]
- Jiang, B.; Zhu, T.; Song, H.; Li, F. Hydrodeoxygenation and Hydrodesulfurization over Fe Promoted Ni2P/SBA-15 Catalyst. J. Alloys Compd. 2019, 806, 254–262. [Google Scholar] [CrossRef]
- Nikulshin, P.A.; Ishutenko, D.I.; Mozhaev, A.A.; Maslakov, K.I.; Pimerzin, A.A. Effects of Composition and Morphology of Active Phase of CoMo/Al2O3 Catalysts Prepared Using Co2Mo10–Heteropolyacid and Chelating Agents on Their Catalytic Properties in HDS and HYD Reactions. J. Catal. 2014, 312, 152–169. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, A.; Zhang, Y.; Zhang, C.; Chen, Z.; Liu, L.; Zhou, Y.; Wei, Q.; Tao, X. Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over NiMo Supported on Ga-Modified Y Zeolites Catalysts. J. Catal. 2019, 374, 345–359. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, L.; Liu, L.; Chen, Z.; Zhou, A.; Zhang, Y.; He, X.; Shi, F.; Zhao, Z. Synthesis of Novel NiMo Catalysts Supported on Highly Ordered TiO2-Al2O3 Composites and Their Superior Catalytic Performance for 4,6-Dimethyldibenzothiophene Hydrodesulfurization. Appl. Catal. B Environ. 2020, 268, 118428. [Google Scholar] [CrossRef]
- Topsøe, H.; Clausen, B.S. Importance of Co-Mo-S Type Structures in Hydrodesulfurization. Catal. Rev. 1984, 26, 395–420. [Google Scholar] [CrossRef]
- Badoga, S.; Sharma, R.V.; Dalai, A.K.; Adjaye, J. Synthesis and Characterization of Mesoporous Aluminas with Different Pore Sizes: Application in NiMo Supported Catalyst for Hydrotreating of Heavy Gas Oil. Appl. Catal. A Gen. 2015, 489, 86–97. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.M.; Liu, Y.X.; Yan, Z.F. Impact of γ-Alumina Pore Structure on Structure and Performance of Ni–Mo/γ-Al2O3 Catalyst for 4,6-Dimethyldibenzothiophene Desulfurization. Microporous Mesoporous Mater. 2021, 310, 110637. [Google Scholar] [CrossRef]
- Xia, B.; Cao, L.; Luo, K.; Zhao, L.; Wang, X.; Gao, J.; Xu, C. Effects of the Active Phase of CoMo/γ-Al2O3 Catalysts Modified Using Cerium and Phosphorus on the HDS Performance for FCC Gasoline. Energy Fuels 2019, 33, 4462–4473. [Google Scholar] [CrossRef]
- López-Benítez, A.; Berhault, G.; Guevara-Lara, A. NiMo Catalysts Supported on Mn-Al2O3 for Dibenzothiophene Hydrodesulfurization Application. Appl. Catal. B Environ. 2017, 213, 28–41. [Google Scholar] [CrossRef]
- Li, X.; Chai, Y.; Liu, B.; Liu, H.; Li, J.; Zhao, R.; Liu, C. Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over CoMo Catalysts Supported on γ-Alumina with Different Morphology. Ind. Eng. Chem. Res. 2014, 53, 9665–9673. [Google Scholar] [CrossRef]
- Naboulsi, I.; Lebeau, B.; Aponte, C.F.L.; Brunet, S.; Mallet, M.; Michelin, L.; Bonne, M.; Carteret, C.; Blin, J.-L. Selective Direct Desulfurization Way (DDS) with CoMoS Supported over Mesostructured Titania for the Deep Hydrodesulfurization of 4,6-Dimethydibenzothiophene. Appl. Catal. A Gen. 2018, 563, 91–97. [Google Scholar] [CrossRef]
- Roy, T.; Rousseau, J.; Daudin, A.; Pirngruber, G.; Lebeau, B.; Blin, J.-L.; Brunet, S. Deep Hydrodesulfurization of 4,6-Dimethydibenzothiophene over CoMoS/TiO2 Catalysts: Impact of the TiO2 Treatment. Catal. Today 2021, 377, 17–25. [Google Scholar] [CrossRef]
- Arrouvel, C.; Breysse, M.; Toulhoat, H.; Raybaud, P. A Density Functional Theory Comparison of Anatase (TiO2)- and γ-Al2O3-Supported MoS2 Catalysts. J. Catal. 2005, 232, 161–178. [Google Scholar] [CrossRef]
- Santes, V.; Herbert, J.; Cortez, M.T.; Zárate, R.; Díaz, L.; Swamy, P.N.; Aouine, M.; Vrinat, M. Catalytic Hydrotreating of Heavy Gasoil FCC Feed on Alumina–Titania-Supported NiMo Catalysts. Appl. Catal. A Gen. 2005, 281, 121–128. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, Y.; Wei, Q.; Liu, X.; Zhang, P.; Xu, Z.; Yu, Z.; Wang, X.; Liu, H.; Dai, X.; et al. Synthesis of Mesoporous TiO2-Al2O3 Composites Supported NiW Hydrotreating Catalysts and Their Superior Catalytic Performance for Heavy Oil Hydrodenitrogenation. Fuel 2022, 319, 123802. [Google Scholar] [CrossRef]
- Zhang, P.; Mu, F.; Zhou, Y.; Long, Y.; Wei, Q.; Liu, X.; You, Q.; Shan, Y.; Zhou, W. Synthesis of Highly Ordered TiO2-Al2O3 and Catalytic Performance of Its Supported NiMo for HDS of 4, 6-Dimethyldibenzothiophene. Catal. Today 2020, 423, 112716. [Google Scholar] [CrossRef]
- Ferdous, D.; Bakhshi, N.N.; Dalai, A.K.; Adjaye, J. Synthesis, Characterization and Performance of NiMo Catalysts Supported on Titania Modified Alumina for the Hydroprocessing of Different Gas Oils Derived from Athabasca Bitumen. Appl. Catal. B Environ. 2007, 72, 118–128. [Google Scholar] [CrossRef]
- Thompson, P.; Cox, D.E.; Hastings, J.B. Rietveld Refinement of Debye–Scherrer Synchrotron X-Ray Data from Al2O3. J. Appl. Crystallogr. 1987, 20, 79–83. [Google Scholar] [CrossRef]
- Bezrodna, T.; Puchkovska, G.; Shymanovska, V.; Baran, J.; Ratajczak, H. IR-Analysis of H-Bonded H2O on the Pure TiO2 Surface. J. Mol. Struct. 2004, 700, 175–181. [Google Scholar] [CrossRef]
- Song, H.; Dai, M.; Guo, Y.-T.; Zhang, Y.-J. Preparation of Composite TiO2–Al2O3 Supported Nickel Phosphide Hydrotreating Catalysts and Catalytic Activity for Hydrodesulfurization of Dibenzothiophene. Fuel Process. Technol. 2012, 96, 228–236. [Google Scholar] [CrossRef]
- Tarte, P. Infra-Red Spectra of Inorganic Aluminates and Characteristic Vibrational Frequencies of AlO4 Tetrahedra and AlO6 Octahedra. Spectrochim. Acta Part A Mol. Spectrosc. 1967, 23, 2127–2143. [Google Scholar] [CrossRef]
- Tursiloadi, S.; Imai, H.; Hirashima, H. Preparation and Characterization of Mesoporous Titania–Alumina Ceramic by Modified Sol–Gel Method. J. Non-Cryst. Solids 2004, 350, 271–276. [Google Scholar] [CrossRef]
- Badoga, S.; Sharma, R.V.; Dalai, A.K.; Adjaye, J. Hydrotreating of Heavy Gas Oil on Mesoporous Mixed Metal Oxides (M–Al2O3, M = TiO2, ZrO2, SnO2) Supported NiMo Catalysts: Influence of Surface Acidity. Ind. Eng. Chem. Res. 2014, 53, 18729–18739. [Google Scholar] [CrossRef]
- Khaleel, A. Titanium-Doped Alumina for Catalytic Dehydration of Methanol to Dimethyl Ether at Relatively Low Temperatures. Fuel 2011, 90, 2422–2427. [Google Scholar] [CrossRef]
- Wang, J.; Dong, L.; Hu, Y.; Zheng, G.; Hu, Z.; Chen, Y. Dispersion of NiO Supported on γ-Al2O3 and TiO2/γ-Al2O3 Supports. J. Solid State Chem. 2001, 157, 274–282. [Google Scholar] [CrossRef]
- Yang, M.; Men, Y.; Li, S.; Chen, G. Enhancement of Catalytic Activity over TiO2-Modified Al2O3 and ZnO–Cr2O3 Composite Catalyst for Hydrogen Production via Dimethyl Ether Steam Reforming. Appl. Catal. A Gen. 2012, 433–434, 26–34. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Jiang, F.; Chu, Y.; Nie, H. Effect of Surface Characteristics of Different Alumina on Metal–Support Interaction and Hydrodesulfurization Activity. Fuel 2009, 88, 1281–1285. [Google Scholar] [CrossRef]
- Morterra, C.; Magnacca, G. A Case Study: Surface Chemistry and Surface Structure of Catalytic Aluminas, as Studied by Vibrational Spectroscopy of Adsorbed Species. Catal. Today 1996, 27, 497–532. [Google Scholar] [CrossRef]
- José Velasco, M.; Rubio, F.; Rubio, J.; Oteo, J.L. DSC and FT-IR Analysis of the Drying Process of Titanium Alkoxide Derived Precipitates. Thermochim. Acta 1999, 326, 91–97. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Nie, H. Tailoring the Surface Characteristic of Alumina for Preparation of Highly Active NiMo/Al2O3 Hydrodesulfurization Catalyst. Microporous Mesoporous Mater. 2014, 188, 30–36. [Google Scholar] [CrossRef]
- Etacheri, V.; Seery, M.K.; Hinder, S.J.; Pillai, S.C. Oxygen Rich Titania: A Dopant Free, High Temperature Stable, and Visible-Light Active Anatase Photocatalyst. Adv. Funct. Mater. 2011, 21, 3744–3752. [Google Scholar] [CrossRef]
- Kusior, A.; Banas, J.; Trenczek-Zajac, A.; Zubrzycka, P.; Micek-Ilnicka, A.; Radecka, M. Structural Properties of TiO2 Nanomaterials. J. Mol. Struct. 2018, 1157, 327–336. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Boerio-Goates, J.; Woodfield, B.F. High Purity Anatase TiO2 Nanocrystals: Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry. J. Am. Chem. Soc. 2005, 127, 8659–8666. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.M.; Grange, P. Characterization and Reactivity of V2O5-WO3 Supported on TiO2-SO42− Catalyst for the SCR Reaction. Appl. Catal. B Environ. 2001, 32, 123–131. [Google Scholar] [CrossRef]
- Figueiredo, F.C.A.; Jordão, E.; Carvalho, W.A. Adipic Ester Hydrogenation Catalyzed by Platinum Supported in Alumina, Titania and Pillared Clays. Appl. Catal. A Gen. 2008, 351, 259–266. [Google Scholar] [CrossRef]
- Núñez, S.; Escobar, J.; Vázquez, A.; Reyes, J.A.D.L.; Hernández-Barrera, M. 4,6-Dimethyl-Dibenzothiophene Conversion over Al2O3–TiO2-Supported Noble Metal Catalysts. Mater. Chem. Phys. 2011, 126, 237–247. [Google Scholar] [CrossRef]
- Ramírez, J.; Gutiérrez-Alejandre, A. Characterization and Hydrodesulfurization Activity of W-Based Catalysts Supported on Al2O3–TiO2 Mixed Oxides. J. Catal. 1997, 170, 108–122. [Google Scholar] [CrossRef]
- Karatzas, X.; Jansson, K.; González, A.; Dawody, J.; Pettersson, L.J. Autothermal Reforming of Low-Sulfur Diesel over Bimetallic RhPt Supported on Al2O3, CeO2–ZrO2, SiO2 and TiO2. Appl. Catal. B Environ. 2011, 106, 476–487. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Wu, X.; Cao, L.; Jiang, P.; Yu, Q.; Ma, Y. Effects of SiO2 Modification on the Hydrothermal Stability of the V2O5/WO3–TiO2 NH3-SCR Catalyst: TiO2 Structure and Vanadia Species. Catal. Sci. Technol. 2019, 9, 3711–3720. [Google Scholar] [CrossRef]
- Galtayries, A.; Wisniewski, S.; Grimblot, J. Formation of Thin Oxide and Sulphide Films on Polycrystalline Molybdenum Foils: Characterization by XPS and Surface Potential Variations. J. Electron. Spectrosc. Relat. Phenom. 1997, 87, 31–44. [Google Scholar] [CrossRef]
- Lai, W.; Song, W.; Pang, L.; Wu, Z.; Zheng, N.; Li, J.; Zheng, J.; Yi, X.; Fang, W. The Effect of Starch Addition on Combustion Synthesis of NiMo–Al2O3 Catalysts for Hydrodesulfurization. J. Catal. 2013, 303, 80–91. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, M.; Zhang, Q.; Wei, Q.; Ding, S.; Zhou, Y. Synthesis of NiMo Catalysts Supported on Gallium-Containing Mesoporous Y Zeolites with Different Gallium Contents and Their High Activities in the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. ACS Catal. 2017, 7, 7665–7679. [Google Scholar] [CrossRef]
- Castillo-Villalón, P.; Ramírez, J.; Cuevas, R.; Vázquez, P.; Castañeda, R. Influence of the Support on the Catalytic Performance of Mo, CoMo, and NiMo Catalysts Supported on Al2O3 and TiO2 during the HDS of Thiophene, Dibenzothiophene, or 4,6-Dimethyldibenzothiophene. Catal. Today 2016, 259, 140–149. [Google Scholar] [CrossRef]
- García-Martínez, J.C.; Castillo-Araiza, C.O.; De Los Reyes Heredia, J.A.; Trejo, E.; Montesinos, A. Kinetics of HDS and of the Inhibitory Effect of Quinoline on HDS of 4,6-DMDBT over a Ni–Mo–P/Al2O3 Catalyst: Part I. Chem. Eng. J. 2012, 210, 53–62. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Jiang, F.; Chu, Y.; Nie, H. The Relation between Morphology of (Co)MoS2 Phases and Selective Hydrodesulfurization for CoMo Catalysts. Catal. Today 2010, 149, 35–39. [Google Scholar] [CrossRef]
- Berger, T.; Sterrer, M.; Diwald, O.; Knözinger, E.; Panayotov, D.; Thompson, T.L.; Yates, J.T. Light-Induced Charge Separation in Anatase TiO2 Particles. J. Phys. Chem. B 2005, 109, 6061–6068. [Google Scholar] [CrossRef]
- Castillo-Villalón, P.; Ramírez, J. Spectroscopic Study of the Electronic Interactions in Ru/TiO2 HDS Catalysts. J. Catal. 2009, 268, 39–48. [Google Scholar] [CrossRef]
- Chen, W.; Maugé, F.; Van Gestel, J.; Nie, H.; Li, D.; Long, X. Effect of Modification of the Alumina Acidity on the Properties of Supported Mo and CoMo Sulfide Catalysts. J. Catal. 2013, 304, 47–62. [Google Scholar] [CrossRef]
- Nikulshin, P.A.; Salnikov, V.A.; Mozhaev, A.V.; Minaev, P.P.; Kogan, V.M.; Pimerzin, A.A. Relationship between Active Phase Morphology and Catalytic Properties of the Carbon–Alumina-Supported Co(Ni)Mo Catalysts in HDS and HYD Reactions. J. Catal. 2014, 309, 386–396. [Google Scholar] [CrossRef]
- Ninh, T.K.T.; Massin, L.; Laurenti, D.; Vrinat, M. A New Approach in the Evaluation of the Support Effect for NiMo Hydrodesulfurization Catalysts. Appl. Catal. A Gen. 2011, 407, 29–39. [Google Scholar] [CrossRef]
- Badoga, S.; Mouli, K.C.; Soni, K.K.; Dalai, A.K.; Adjaye, J. Beneficial Influence of EDTA on the Structure and Catalytic Properties of Sulfided NiMo/SBA-15 Catalysts for Hydrotreating of Light Gas Oil. Appl. Catal. B Environ. 2012, 125, 67–84. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Z.; Zheng, P.; Chen, Z.; Duan, A.; Xu, C.; Jiao, J.; Zhang, H.; Cao, Z.; Ge, B. Synthesis of NiMo Catalysts Supported on Mesoporous Al2O3 with Different Crystal Forms and Superior Catalytic Performance for the Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. J. Catal. 2016, 344, 680–691. [Google Scholar] [CrossRef]
- Muñoz-López, J.A.; Toledo, J.A.; Escobar, J.; López-Salinas, E. Preparation of Alumina–Titania Nanofibers by a pH-Swing Method. Catal. Today 2008, 133–135, 113–119. [Google Scholar] [CrossRef]
- Obeso–Estrella, R.; Pawelec, B.; Mota, N.; Flores, L.; Melgoza, J.M.Q.; Yocupicio–Gaxiola, R.I.; Zepeda, T.A. Elucidating the Mechanisms of Titanium–Induced Morphological and Structural Changes in Catalysts on Mesoporous Al2O3–TiOx Mixed Oxides: Effect of Non–Stoichiometric TiOx Phase. Microporous Mesoporous Mater. 2022, 339, 111991. [Google Scholar] [CrossRef]
- Vaiano, V.; Iervolino, G.; Sannino, D.; Rizzo, L.; Sarno, G.; Farina, A. Enhanced Photocatalytic Oxidation of Arsenite to Arsenate in Water Solutions by a New Catalyst Based on MoOx Supported on TiO2. Appl. Catal. B Environ. 2014, 160–161, 247–253. [Google Scholar] [CrossRef]
- Dominguez Garcia, E.; Chen, J.; Oliviero, E.; Oliviero, L.; Maugé, F. New Insight into the Support Effect on HDS Catalysts: Evidence for the Role of Mo-Support Interaction on the MoS2 Slab Morphology. Appl. Catal. B Environ. 2020, 260, 117975. [Google Scholar] [CrossRef]
- Gao, D.; Duan, A.; Zhang, X.; Zhao, Z.; E, H.; Li, J.; Wang, H. Synthesis of NiMo Catalysts Supported on Mesoporous Al-SBA-15 with Different Morphologies and Their Catalytic Performance of DBT HDS. Appl. Catal. B Environ. 2015, 165, 269–284. [Google Scholar] [CrossRef]
Sample | SBET, m2·g−1 | Vp, cm3·g−1 | Dave, nm | Al2O3, wt% | TiO2, wt% |
---|---|---|---|---|---|
Al2O3 | 240 | 0.68 | 8.47 | 100 | 0 |
TA-I | 220 | 0.58 | 8.16 | 88.96 | 11.04 |
TA-CP | 224 | 0.61 | 8.02 | 89.31 | 10.69 |
TA-HT | 240 | 0.66 | 9.39 | 89.24 | 10.76 |
Catalysts | CAT-A | CAT-I | CAT-CP | CAT-HT |
---|---|---|---|---|
Average slab length, nm | 3.88 | 3.56 | 3.03 | 3.42 |
Average stacking number | 1.6 | 1.6 | 1.4 | 1.7 |
DMo | 0.26 | 0.27 | 0.33 | 0.29 |
Samples | Sulfidation Degree of Mo, % | Proportion of NiMoS, % |
---|---|---|
CAT-A | 65.68 | 32.46 |
CAT-I | 62.75 | 39.77 |
CAT-CP | 70.08 | 38.92 |
CAT-HT | 68.89 | 34.39 |
Catalysts | CAT-A | CAT-I | CAT-CP | CAT-HT |
---|---|---|---|---|
AHYD (mol·kg−1·h−1) | 0.45 | 0.42 | 0.48 | 0.46 |
ADDS (mol·kg−1·h−1) | 0.05 | 0.06 | 0.06 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, R.; Yang, Q.; Zeng, S.; Bao, J.; Nie, H.; Yang, C.; Jia, Y.; Hu, A.; Dai, Q. Optimizing the Incorporation Modes of TiO2 in TiO2-Al2O3 Composites for Enhancing Hydrodesulfurization Performance of Corresponding NiMoP-Supported Catalysts. Catalysts 2024, 14, 287. https://doi.org/10.3390/catal14050287
Hou R, Yang Q, Zeng S, Bao J, Nie H, Yang C, Jia Y, Hu A, Dai Q. Optimizing the Incorporation Modes of TiO2 in TiO2-Al2O3 Composites for Enhancing Hydrodesulfurization Performance of Corresponding NiMoP-Supported Catalysts. Catalysts. 2024; 14(5):287. https://doi.org/10.3390/catal14050287
Chicago/Turabian StyleHou, Ranran, Qinghe Yang, Shuangqin Zeng, Jun Bao, Hong Nie, Chuangchuang Yang, Yanzi Jia, Anpeng Hu, and Qiaoling Dai. 2024. "Optimizing the Incorporation Modes of TiO2 in TiO2-Al2O3 Composites for Enhancing Hydrodesulfurization Performance of Corresponding NiMoP-Supported Catalysts" Catalysts 14, no. 5: 287. https://doi.org/10.3390/catal14050287
APA StyleHou, R., Yang, Q., Zeng, S., Bao, J., Nie, H., Yang, C., Jia, Y., Hu, A., & Dai, Q. (2024). Optimizing the Incorporation Modes of TiO2 in TiO2-Al2O3 Composites for Enhancing Hydrodesulfurization Performance of Corresponding NiMoP-Supported Catalysts. Catalysts, 14(5), 287. https://doi.org/10.3390/catal14050287