Lithium Polysulfide Catalytic Mechanism of AlN/InN Heterojunction by First-Principles Calculation
Abstract
:1. Introduction
2. Calculation Method
3. Results and Discussion
3.1. The Band Gap Structure of AlN, InN and AlN/InN Heterojunctions
3.2. Catalytic Mechanism of Li2Sn for AlN and InN
3.3. Catalytic Mechanism of Li2Sn for AlN/InN Hetrojunction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chung, S.H.; Manthiram, A. Current Status and Future Prospects of Metal-Sulfur Batteries. Adv. Mater. 2019, 31, 1901125. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Li, Y.; Gao, L.; Tao, H.C.; Zhang, L.L.; Zhong, S.K.; Li, X.F.; Yang, X.L. Confining ZnS/SnS2 Ultrathin Heterostructured Nanosheets in Hollow N-Doped Carbon Nanocubes as Novel Sulfur Host for Advanced Li-S Batteries. Small 2022, 18, e2107727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Xu, G.B.; Zhang, Q.; Li, X.; Yang, Y.; Yang, L.W.; Huang, J.Y.; Zhou, G.M. Mo-O-C Between MoS2 and Graphene Toward Accelerated Polysulfide Catalytic Conversion for Advanced Lithium-Sulfur Batteries. Adv. Sci. 2022, 9, e2201579. [Google Scholar] [CrossRef]
- Yang, X.F.; Luo, J.; Sun, X.L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195. [Google Scholar] [CrossRef] [PubMed]
- Li, T.T.; He, C.; Zhang, W.X. Rational design of porous carbon allotropes as anchoring materials for lithium sulfur batteries. J. Energy Chem. 2021, 52, 121–129. [Google Scholar] [CrossRef]
- Hou, T.Z.; Chen, X.; Peng, H.J.; Huang, J.Q.; Li, B.Q.; Zhang, Q.; Li, B. Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries. Small 2016, 12, 3283–3291. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Wang, J.; Liu, C.; Wang, H.; Yao, H.; Zheng, G.; Seh, Z.W.; Cai, Q.; Li, W.; Zhou, G. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203. [Google Scholar] [CrossRef]
- Chen, X.; Peng, H.J.; Zhang, R.; Hou, T.Z.; Huang, J.Q.; Li, B.; Zhang, Q. An Analogous Periodic Law for Strong Anchoring of Polysulfides on Polar Hosts in Lithium Sulfur Batteries: S- or Li-Binding on First-Row Transition-Metal Sulfides? ACS Energy Lett. 2017, 2, 795–801. [Google Scholar] [CrossRef]
- Wang, D.S.; Li, F.; Lian, R.Q.; Xu, J.; Kan, D.X.; Liu, Y.H.; Chen, G.; Gogotsi, Y.; Wei, Y.J. A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of Ti3C2T2 MXene in Lithium-Sulfur Batteries. ACS Nano 2019, 13, 11078–11086. [Google Scholar] [CrossRef]
- Wang, Z.K.; Li, Y.; Ji, H.Q.; Zhou, J.Q.; Qian, T.; Yan, C.L. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2022, 34, 2203699. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, W.; Xue, L.X.; Jiao, Y.; Lei, T.Y.; Chu, J.W.; Huang, J.W.; Gong, C.H.; Yan, C.Y.; Yan, Y.C.; et al. Adsorption-Catalysis Design in the Lithium-Sulfur Battery. Adv. Energy Mater. 2019, 10, 1903008. [Google Scholar] [CrossRef]
- Ng, S.F.; Lau, M.Y.L.; Ong, W.J. Lithium-Sulfur Battery Cathode Design: Tailoring Metal-Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion. Adv. Mater. 2021, 33, e2008654. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Deng, N.P.; Ju, J.G.; Wang, G.; Wei, L.Y.; Gao, H.J.; Cheng, B.W.; Kang, W.M. Flower-like heterostructured MoP-MoS2 hierarchical nanoreactor enabling effective anchoring for LiPS and enhanced kinetics for high performance Li-S batteries. J. Membr. Sci. 2022, 642, 120003. [Google Scholar] [CrossRef]
- Li, R.R.; He, J.; Lei, M.; Yang, M.H.; Li, C.L. High-density catalytic heterostructures strung by buried-in carbon tube network as monolithic holey host for endurable Li-S batteries. Chem. Eng. J. 2022, 446, 137294. [Google Scholar] [CrossRef]
- Ye, Z.Q.; Jiang, Y.; Yang, T.Y.; Li, L.; Wu, F.; Chen, R.J. Engineering Catalytic CoSe-ZnSe Heterojunctions Anchored on Graphene Aerogels for Bidirectional Sulfur Conversion Reactions. Adv. Sci. 2022, 9, e2103456. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gan, T.; Liao, Y.L.; Wu, F.G.; Lin, Z.P.; Ai, G. Synergistic Catalysis of MoS2-Ni3S2 Heterojunctions to Accelerate Polysulfide Conversion for High-performance Li-S battery. J. Alloy Compd. 2023, 960, 170546. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 1994, 64, 1687–1689. [Google Scholar] [CrossRef]
- Mishra, U.K.; Parikh, P.; Wu, Y.F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc. IEEE 2002, 90, 1022–1031. [Google Scholar] [CrossRef]
- Liu, C.; Hu, Z.; Wu, Q.; Wang, X.Z.; Chen, Y.; Sang, H.; Zhu, J.M.; Deng, S.Z.; Xu, N.S. Vapor-solid growth and characterization of aluminum nitride nanocones. J. Am. Chem. Soc. 2005, 127, 1318–1322. [Google Scholar] [CrossRef]
- Tansley, T.L.; Foley, C.P. Optical band gap of indium nitride. J. Appl. Phys. 1986, 59, 3241–3244. [Google Scholar] [CrossRef]
- Hua, X.Y.; Zheng, J.Y.; Han, X.; Hao, Z.B.; Luo, Y.; Sun, C.Z.; Han, Y.J.; Xiong, B.; Wang, J.; Li, H.T.; et al. Artificial optoelectronic synapse with nanolayered Ga/N/AlN periodic structure for neuromorphic computing. ACS Appl. Nano Mater. 2023, 6, 8461–8467. [Google Scholar] [CrossRef]
- Yan, X.X.; Jiang, Y.X.; Jin, Q.Q.; Yao, T.T.; Wang, W.Z.; Tao, A.; Gao, C.Y.; Li, X.; Chen, C.L.; Ye, H.Q.; et al. Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface. Nat. Commun. 2023, 14, 2788. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Batista, E.R.; Heyd, J.; Hennig, R.G.; Uberuaga, B.P.; Martin, R.L.; Scuseria, G.E.; Umrigar, C.J.; Wilkins, J.W. Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects. Phys. Rev. B 2006, 74, 121102. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187–1192. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Sanville, E.; Kenny, S.D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908. [Google Scholar] [CrossRef]
- Bacaksiz, C.; Sahin, H.; Ozaydin, H.D.; Horzum, S.; Senger, R.T.; Peeters, F.M. Hexageonal AlN: Dimensional-crossover-driven band-gap transition. Phys. Rev. B 2015, 91, 085430. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 2003, 94, 3675–3696. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S.; Hu, R.M.; Gu, J.A.; Cui, Y.L.S.; Li, B.; Chen, W.H.; Liu, C.T.; Shang, J.X.; Yang, S.B. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate Lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471. [Google Scholar] [CrossRef]
- Du, Z.Z.; Chen, X.J.; Hu, W.; Chuang, C.H.; Xie, S.; Hu, A.J.; Yan, W.S.; Kong, X.H.; Wu, X.J.; Ji, H.X.; et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985. [Google Scholar] [CrossRef]
- Qin, B.; Wang, Q.; Yao, W.Q.; Cai, Y.F.; Chen, Y.H.; Wang, P.C.; Zou, Y.C.; Zheng, X.H.; Cao, J.; Qi, J.L.; et al. Heterostructured Mn3O4-MnS mult-shelled hollow spheres for enhanced polysulfide regulation in lithium-sulfur batteries. Energy Environ. Mater. 2023, 6, e12475. [Google Scholar] [CrossRef]
- Zhou, T.H.; Lv, W.; Li, J.; Zhou, G.M.; Zhao, Y.; Fan, S.X.; Liu, B.L.; Li, B.H.; Kang, F.Y.; Yang, Q.H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703. [Google Scholar] [CrossRef]
- Xiong, W.M.; Lin, J.D.; Wang, H.Q.; Li, S.; Wang, J.H.; Mao, Y.X.; Zhan, X.; Wu, D.Y.; Zhang, L. Construction of strong built-in electric field in binary netal sulfide heteojunction to propel high-loading lithium-sulfur batteries. J. Energy Chem. 2023, 81, 492–501. [Google Scholar] [CrossRef]
LiPSs | AlN | InN | ||
---|---|---|---|---|
N | Al | N | In | |
Li2S | −0.0102 e | 0.0291 e | −0.1233 e | 0.0474 e |
Li2S2 | −0.0081 e | 0.0245 e | −0.1227 e | 0.0220 e |
Li2S4 | 0.0029 e | 0.0077 e | 0.1167 e | 0.0234 e |
Li2S6 | 0.0024 e | 0.0188 e | 0.1304 e | 0.0052 e |
Li2S8 | 0.0083 e | 0.0071 e | 0.1217 e | 0.0184 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, L.; Wang, J.; Lin, Z.; Dong, H.; Wu, F. Lithium Polysulfide Catalytic Mechanism of AlN/InN Heterojunction by First-Principles Calculation. Catalysts 2024, 14, 323. https://doi.org/10.3390/catal14050323
Ye L, Wang J, Lin Z, Dong H, Wu F. Lithium Polysulfide Catalytic Mechanism of AlN/InN Heterojunction by First-Principles Calculation. Catalysts. 2024; 14(5):323. https://doi.org/10.3390/catal14050323
Chicago/Turabian StyleYe, Lingfeng, Jin Wang, Zhiping Lin, Huafeng Dong, and Fugen Wu. 2024. "Lithium Polysulfide Catalytic Mechanism of AlN/InN Heterojunction by First-Principles Calculation" Catalysts 14, no. 5: 323. https://doi.org/10.3390/catal14050323
APA StyleYe, L., Wang, J., Lin, Z., Dong, H., & Wu, F. (2024). Lithium Polysulfide Catalytic Mechanism of AlN/InN Heterojunction by First-Principles Calculation. Catalysts, 14(5), 323. https://doi.org/10.3390/catal14050323