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Abstract: Using green synthetic methods, a manganese-cobalt oxyhydroxide (MnCo-OOH) nanocom-
posite for electrocatalysis was prepared. Electrocatalysts were examined using powder X-ray diffrac-
tion analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), and field-emission scanning
electron microscopy (FESEM). In an alkaline medium, cyclic voltammetry and chronoamperometric
analysis were applied to assess the electrocatalytic features of the MnCo-OOH nanocomposite. A
strong correlation existed between MnCo-OOH’s morphology, crystallinity, and electrochemical
activity. Upon examining the electrochemical characteristics, the as-deposited MnCo-OOH catalyst
demonstrated a significantly lower overpotential, achieving 75 mA·cm−2 OER current density at
370 mV, four times larger than 19.7 mA·cm−2 for CoOOH catalysts, signifying that the MnCo-OOH
catalyst exhibits a higher electrocatalytic OER features. In addition, the MnCo-OOH nanocompos-
ite demonstrated a high current density of 30 and 65 mA·cm−2 at 1.55 and 1.60 VRHE for 12 h in
1.0 M KOH aqueous electrolyte. As a result of this study, it was determined that the fabricated
MnCo-OOH nanocomposite would be an appropriate electrocatalyst in water electrolysis.

Keywords: cobalt oxyhydroxide; green synthesis; oxygen evolution reaction; electrocatalysts

1. Introduction

Globally, alternative energy sources as well as sustainable energy storage and con-
version have been highly active topics of research [1,2]. A major focus of research is
finding ways to reduce our dependence on fossil fuels and developing more efficient and
renewable energy sources [3,4]. For electronic devices and vehicles, molecular hydrogen is
proposed as a primary energy storage medium [1,5]. Moreover, the transportation sector
needs energy-efficient storage technologies and environmentally friendly charging systems.
Electrochemical water splitting limitations can be overcome by cheap and reliable electro-
chemical methods [6,7]. The thermodynamically unfavorable oxygen evolution reaction
(OER) is a key issue for electrochemical water splitting. Hence, it is highly imperative
to develop OER electrocatalysts with improved water oxidation kinetics and reduced
overpotential to enhance energy conversion.

As of yet, no electrocatalytic material has reached the equilibrium potential of
1.23 VRHE [8,9], which corresponds to the minimum reaction energy. Furthermore, noble
metal oxides (e.g., IrO2 and RuO2) are needed electrode materials for acidic environments
owing to their admirable electrochemical properties [10]. Commercially, electrocatalytic
water splitting is not feasible because of high prices and scarcity of electrocatalysts. As
a result, efficient, robust, and cost-effective non-noble metal electrochemical OER cata-
lysts are essential. Recently, nanostructured materials found on earth have gained atten-
tion for applications in catalysis, sensing, and energy conversion [11–17]. As a result,
bare metal oxide electrocatalytic performances toward OER were relatively low, with
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NiOx > CoOx > FeOx > MnOx [18]. Despite this, it appears that alloying influences, such as
the integration of multiple active alloy elements, can promote OER performance [19,20]. In
recent years, cobalt oxyhydroxide (CoOOH) has drawn the greatest attention as a heteroge-
neous catalyst among cobalt-containing materials [21]. There is a high electron transfer rate,
multiple surface active sites, a large number of phase reactions, and extensive presence on
the Katanga Copperbelt [22]. Further, CoOOH occurs naturally as a stable and multifunc-
tional material and has been engaged as a CO sensor [23], can serve as an electrode candi-
date for energy storage systems, and can be applied as a super-capacitor [24–26]. Recently,
researchers discovered that integrating a different transition metal into bimetallic CoOx
might enhance its intrinsic OER properties [27,28]. Several recent research reports have
shown that mixed metal oxides and hydroxides form CoFe [29], NiFe [30,31], NiFeCo [32],
and NiFeCoCe [33] electrocatalysts materials that can be used for electrocatalytic OER.
In particular, the incorporation of transition metal ions over cobalt oxides/hydroxides is
attractive to OER. Often, these transition metal ions are used in OER processes as catalysts
to increase efficiency and reduce energy consumption.

It is traditional to synthesize metal oxide nanoparticles by first reducing them with a
strong base, followed by a capping or reducing agent. It is sometimes necessary to dissolve
these capping agents in organic solvents. It is also likely to reduce unnecessary toxic
chemicals by using a green synthesis approach [34]. The green synthesis method uses plant-
derived metabolites to synthesize metal oxide nanoparticles [35]. As a result of coating
metal oxide nanoparticles with these metabolites, they are resistant to extensive aggregation
and produce tunable particle sizes and well-defined morphologies [36]. Since plants contain
diverse phytochemical profiles, the choice of plant species and their individual parts
determines NP morphology and particle size [37]. Thus, green synthesis provides a cost-
efficient and eco-friendly alternative to conventional nanoparticle synthesis. In addition,
manganese with cobalt hydroxide can have synergistic effects leading to enhanced activity
as a result of charge transfer between the metal and substrate.

Herein, we demonstrate manganese-doped cobalt oxyhydroxide catalysts using a
green synthesis method using alkanna root extract as an electrocatalyst in alkaline media,
followed by studies on electrocatalysis of OER reactions. Through FT-IR, XRD, N2 sorption,
and microscopic analysis, we determined the structural and textural features of the Mn-
incorporated CoOOH electrocatalysts. As a result, the Mn-promoted CoOOH electrodes
(surface area 75 m2/g) were significantly more efficient than Mn or CoOOH electrodes
and analogous to benchmark IrO2 electrodes in terms of their onset potential shifting
by 98 mV, small Tafel slope, and reduced charge transfer resistance. Due to their facile
synthesis, characteristic structure, and remarkable electrocatalytic features, these ternary-
based electrocatalysts could be used in industrialized water splitting.

2. Results and Discussion
2.1. Crystalline, Structural, and Surface Features of Mn-CoOOH

The manganese-incorporated CoOOH catalysts were obtained by green synthetic
approach with an alkanna plant root extract. Figure 1 reveals the different phases for
the development of crystalline manganese-incorporated CoOOH catalysts. The acquired
material was cleaned with DI water several times to eliminate the impurities. In the
final step, the resulting products were obtained by thermosetting processes to obtain the
formation of MnCo-OOH materials.

Figure 2a displays the powder diffraction patterns of MnCo-OOH materials compared
to CoOOH and Mn(OH)2. As displayed in Figure 2a, the CoOOH and MnCo-OOH catalysts
show the characteristic CoOOH trigonal PXRD pattern (PDF # 01-073-0497). The sharp
diffraction lines clearly indicate a relatively higher crystallinity for these products. For refer-
ence, the bare Mn(OH)2 catalysts showed the characteristic Mn(OH)2 hexagonal powdered
XRD pattern (PDF # 01-073-5018). Additionally, Figure 2a displays the diffraction patterns
of the MnCo-OOH electrodes that match the diffraction lines of CoOOH and Mn(OH)2
(PDF # 01-073-0497 and 01-073-5018, respectively). During the green synthetic process, no
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other XRD peaks were observed, suggesting there were no crystalline phases. Overall, the
results confirm that the synthetic process is successful in forming MnCo-OOH.
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Figure 1. Schematic depiction of the fabrication of MnCo-OOH electrocatalysts obtained with alkanna
plant root extract.

A comprehensive FTIR study was conducted on MnCo-OOH, CoOOH, and Mn(OH)2
samples, varying from 4000 to 400 cm−1, respectively. CoOOH materials exhibit a solid
peak (Figure 2b) due to stretching vibrations of hydrogen-bound O-H groups [38,39], υ
(O-H). There were two signals at (1613 cm−1 and 583 cm−1) in CoOOH that were related
to vibrations of the double and single bonds between Co and O, respectively [40]. The
FTIR spectrum of the Mn(OH)2 sample (Figure 2b) showed two strong peaks (612 and
502 cm−1) originating from the stretching vibrations of Mn-O and Mn-O-Mn bonds [41],
which indicate that MnO was formed. As Mn elements are introduced, vibrational modes
shifted marginally to the lower wavenumber region. There were two distinctive M-O
stretching vibration bands at 577 cm and 656 cm−1. Hydrogen bonds between hydroxides
of layers, interlayer water, and anions in the interlayer gap also contribute to this broad
feature of the hydroxyl band. In addition, there was a weak distinctive band at 1613 cm−1,
related to the HOH-bending frequencies of adsorbed water molecules. It was verified by
these FTIR results that MnCo-OOH catalysts can be produced effectively.

BET N2 sorption isotherms were used to regulate the pore size and specific area of
the nanomaterials. As shown in Figure 2c, MnCo-OOH and CoOOH, as well as Mn(OH)2
nanomaterials have different BET isotherms. The BET specific area values of Mn(OH)2,
CoOOH, and MnCo-OOH were evaluated to be 87.48, 104.19, and 75.84 m2/g, respectively.
Table 1 summarizes the BET results of fabricated materials. In accordance with IUPAC
classifications, the N2 sorption curves closely resemble type-IV isotherm hysteresis loops.
It was detected at a relative pressure of greater than 0.7 that hysteresis loops were distinct,
indicating capillary condensation of mesopores [42,43]. Based on BJHs, PSD curves were
calculated for each fabricated material (Figure 2d). The pore sizes of these samples were 3.0
to 10 nm. As shown in Table 1, all samples had similar textural parameters such as pore
volume, specific area, and diameter. The mesoporosity of the material can be attributed to
its thermal decomposition, which could lead to weight loss and volume shrinkage. This
characteristic of MnCo-OOH samples provides easy access for ions to electrode/electrolyte
interfaces, allowing surface redox reactions to occur.
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Figure 2. (a) The XRD patterns for pure CoOOH, Mn(OH)2, and MnCo-OOH catalysts shown
below are indexed using reference peaks; trigonal phase CoOOH (JCPDS # 01-073-0497), hexagonal
Mn(OH)2 (JCPDS # 01-073-1604), all the peaks are indexed via standard peaks, (b) FTIR patterns
of pure CoOOH, Mn(OH)2, and manganese incorporated CoOOH catalysts prepared by the green
synthetic approach using alkanna plant root extract, (c) N2 sorption isotherms, and (d), its agreeing
BJH desorption pore size distributions of CoOOH, Mn(OH)2, and MnCo-OOH catalyst.

Table 1. Textural properties of specific surface area, total pore volume, and the pore size of the MnO,
MnCo-OOH, and CoOOH catalysts derived from nitrogen adsorption and desorption data.

Materials Surface
Area (m2/g)

Pore
Size (nm)

Pore
Volume (cc/g)

Mn(OH)2 87.49 2.74 0.471

MnOCoO 75.84 1.60 0.337

CoO 104.20 1.96 0.484

The morphology and fine structure of CoOOH, Mn(OH)2, and MnCo-OOH catalysts
were evaluated using electron microscopy measurements (FESEM/HRTEM). Particularly,
the stepwise pyrolysis in the air is exposed to maintain nanoparticle structure. FESEM
images of the annealed in air CoOOH materials (Figure 3a,b) clearly show interconnected
nanoparticles. Figure 3b shows high-resolution images of CoOOH nanoflakes. Further, it
illustrates the morphology of assembled microblocks of nanoparticle aggregates with mean
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particle sizes ranging from 15 to 30 nm. As a comparison, Figure 3c,d shows that Mn(OH)2
nanoparticles had a flower-like morphology and spherical shapes. High magnification
SEM images (Figure 3d) clearly show that microplates of different sizes were stacked
together. There was no noticeable change in the morphology of nanoflake CoOOH films
after incorporating manganese (Figure 3e,f). According to Figure 3f, the incorporation of Mn
into CoOOH nanoparticles hampers the agglomeration of nanoparticles, resulting in smaller
particle sizes than bare CoOOH nanoparticles. Furthermore, we observed nanoflakes and
spherical nanoparticles that provided electrode materials with more reaction sites. Further
examination of the morphology of the CoOOH, Mn(OH)2, and MnCo-OOH NP catalysts
was performed using TEM. As can be seen in Figure 4a,b, CoOOH is largely composed of
hexagonal plates with smaller irregularly shaped particles. Figure 4c,d show that the bare
Mn(OH)2 consists largely of ultra-small nanoplate-like structures with numerous small
pores between the particles. Figure 4e,f illustrate that the MnCo-OOH composite material
consists of hexagonal plates that are fused together in nanoaggregates, forming continuous
networks. Additionally, the TEM image of MnCo-OOH clearly shows that the flakes have
multiple interconnected nanoparticles and, therefore, several pores between them.
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Figure 4. TEM analysis of CoOOH, Mn(OH)2, and Co-Mn-OOH samples. TEM photographs of
crystalline Co-OOH at different amplifications, (a,b) and Mn(OH)2 samples at different amplifica-
tions (c,d), and MnCo-OOH (e,f) samples obtained through a green synthetic approach via alkanna
tinctorial root extract.

Using energy-dispersive X-ray spectroscopy (EDAX), Mn loading in catalysts was
evaluated. A detailed examination of EDAX mapping revealed the attendance of Mn,
Co, and O components across the entire MnCo-OOH structure (Figure 5a–g). The EDAX
mapping of CoOOH materials showed a homogenous distribution of Mn, Co, and O
elements. Based on the EDAX analysis, MnCo-OOH catalysts consist of 7.61, 72.61, and
19.72 wt%, individually, for Mn, Co, and O elements (Figure 5g).
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2.2. Electrochemical Performance of MnCo-OOH for OER

In Figure 6, LSV in alkaline media was used to determine the electrocatalytic features
of OER materials. In a three-electrode system, Mn(OH)2, CoOOH, and MnCo-OOH-loaded
glassy carbon electrodes were engaged as working electrodes. Figure 6a illustrates the LSV
activities of bare CoOOH, bare Mn(OH)2, state-of-the-art IrO2, and MnCo-OOH electrodes
in 1.0 M KOH. The LSV showed that the as-prepared Co-based electrocatalysts exhibited
Co2+/Co3+ oxidation between 1.35 and 1.48 V vs. RHE [44,45]. Additionally, MnCo-OOH-
loaded electrodes were the best-optimized electrode candidates for OER, with enhanced
current density between 1.50 and 1.6 V compared to RHE electrodes. In electrocatalysis, the
onset potential can be roughly determined by measuring the x-coordinate of the point where
the two linear parts cross. Additionally, the MnCo-OOH catalyst’s OER onset potential
was shifted by about 90 mV to a more negative position than the bare CoOOH catalyst,
showing much faster OER kinetics. As seen in Figure 6b, the Tafel slope of MnCo-OOH
(99 mV dec−1) is suggestively lesser than those of IrO2 (115 mV dec−1), and CoOOH
(64 mV dec−1). Based on the smaller Tafel slope for MnCo-OOH compared to Mn(OH)2, it
is evident that the simultaneous influence of co-doped Mn and Co elements significantly
enhances the electrochemical kinetics of OER [46].

An ECSA was employed in order to examine the effect of Mn incorporation on the en-
hancement of Mn-CoOOH catalysts towards OER activity. The capacitive currents revealed
in Figure 6c of the obtained electrode materials demonstrate that the linear slope for the
attained catalysts, CoOOH and MnCo-OOH, is 44.05, and 64.4 mF cm−2, correspondingly.
Based on the results, MnCo-OOH catalysts have a larger ECSA compared to catalysts
without Mn incorporation, confirming that Mn generates more active sites. Among all
fabricated electrodes, MnCo-OOH catalysts have the best performance (Figure 6c). The
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OER features of electrocatalysts are enhanced with increased Mn loading in alkaline con-
ditions. An MnCo-OOH catalyst exhibits the best electrocatalysis performance among
the synthesized CoOOH, IrO2, and MnCo-OOH catalysts (Figure 6d), with a lower onset
potential and an overpotential of 259 mV.
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rate. (d) A comparison of catalyst OER properties and current properties at varied potentials.

To gain a better quantitative understanding of the OER process, we studied the kinetics
and charge transfer process using EIS. In Figure 7, Nyquist plots are shown for pure CoOOH
and MnCo-OOH electrodes at 1.48 V (vs. RHE), and impedance parameters are shown in
Table 2. In Figure 7a, the Nyquist plots best match Randle’s equivalent circuits. In Figure 7b,
the same data are also plotted in Bode format. It is confirmed that the RCT of the catalysts
examined corresponds to the lower frequency zone and its equivalent circuit. After Mn
was introduced into a CoOOH framework, R1 and R2 values decreased. As shown in
Table 2, the MnCo-OOH, CoOOH, and Mn(OH)2 R2 values are 8.32, 31.45, and 4154 Ω,
respectively. Most noticeably, the arc radius of the Nyquist curve of MnCo-OOH electrodes
is smaller than that of CoOOH electrodes. Accordingly, MnCo-OOH has smaller R2
values, indicating more significant electrochemical features, as described earlier. Similarly,
MnCo-OOH electrodes in Figure 7b show lower resistance than CoOOH electrodes in Bode
plots. MnCo-OOH has an excellent charge transfer capability, which contributes to the
electrode’s higher intrinsic OER properties. It has been demonstrated that ternary transition
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metal oxides are best formed using doping approaches, and that Mn’s synergetic effect on
CoOOH integration greatly enhances the performance of the OER electrocatalytic system.
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Table 2. EIS parameters were used to calculate equivalent circuits of impedance spectra in 1.0 M KOH
solutions. Rs = solution resistance, R1 = film resistance, R2 = charge-transfer resistance, Q1 = CPE of
electrode layer, Q2 signifies the double layer capacitance.

Samples Rs (ohm) Q1 (µF) R1 (ohm) Q2 (µF) R2 (ohm)

Mn(OH)2 10.96 17.63 27,365 42.24 4154

CoOOH 10.28 8842 126 16,520 31.45

MnCo-OOH 9.84 11,830 105 33,500 8.32

The durability of OER on MnCo-OOH was investigated using CA measurements
at 1.55 V vs. RHE in 1.0 M KOH. Additionally, CoOOH (Figure 8a) and MnCo-OOH
(Figure 8b) samples were also tested for 12 h under a nearly constant voltage of 1.55 VRHE
and 1.60 VRHE in alkaline mediums. During the electrochemical reaction, when a sufficient
voltage is applied, oxygen gas is produced at the electrode surface. The oxygen ions then
combine to form oxygen bubbles, which detach from the electrode and rise to the surface. In
particular, at 1.60 V compared to RHE, oxygen bubbles at the electrode surface are definitely
responsible for the fluctuations in current. According to the results, MnCo-OOH electrodes
maintain a nearly constant current density over a long period of time. In comparison
with other MnCo-OOH catalysts, CoOOH exhibited much lower CA currents and the
acquired results agree with the LSV curve (Figure 6a). After calcination, MnCo-OOH
electrodes create metal oxide networks that make them suitable for OER because they
can be transported easily, have high electronic conductivity, and can be transported in
mass [47]. Furthermore, MnCo-OOH electrodes show good durability and stability, with
no sign of degradation even after 12 h of operation. Ultimately, MnCo-OOH electrodes
prove to be a promising and cost-efficient choice for OER applications. In Table 3, we
compared the electrocatalytic properties of MnCo-OOH@GC with those of other catalysts
found in the literature. In particular, our catalyst exhibited a significantly higher OER
activity, achieving a lower overpotential and a higher current density. Due to its improved
OER features, MnCo-OOH@GC electrode materials offer great potential for energy storage
and conversion systems.
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electrocatalysts evaluated in 1.0 M KOH at 1.55 V vs. RHE and 1.60 V vs. RHE.

Table 3. Comparison of our catalyst MnCo-OOH electrochemical performance with those published
for Mn/Co-based catalysts in alkaline medium.

Anodic Catalysts Overpotential at
10 mA·cm−2, mV

Current Density, mA·cm−2

at 1.6 VRHE

Tafel Slope,
mV·dec−1

Electrolyte
Conc., M Ref.

5%Ni-Co@PG carbon 381 48 73 0.1 M KOH [48]

Cu–doped
Co(OH)2 nanosheets@GC 300 102 47 1.0 M KOH [49]

Ni-doped Co3O4@GC 380 - 63 1.0 M KOH [50]

Ni/Ni0.2Mo0.8N/MoO3@NF 318 75 100 1.0 M KOH [51]

Fe-CoOOH/G @GC 330 25 37 1.0 M KOH [52]

Fe0.33Co0.67OOH
PNSAs@CFC 266 - 30 1.0 M KOH [53]

Cu-CoOOH@CFP 234 - 79 1.0 M KOH [54]

FeV/m-Co3Se4@GC 280 63 41 1.0 M KOH [55]

Ce-doped
NiCo LDH@NF 236 - 44 1.0 M KOH [56]

WCoO-NP@GC 270 44 92 1.0 M KOH [57]

MnCo-OOH@GC 250 78 99 1.0 M KOH This work

PG—pyrolytic graphite carbon electrode; CFC—carbon fiber paper; NF—nickel foam; GC—glassy carbon.

3. Experimental Methods
3.1. Materials

Cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O, ≥98.0%), manganese dichloride
(MnCl2, ≥98.0%), and sodium hydroxide (NaOH, ≥85.8%) were acquired from Fisher Scien-
tific, Hampton, NH, USA. Potassium hydroxide (KOH, ≥84.5%) was obtained from Pan-
Raeac AppliChem, Darmstadt, Germany. All chemicals were used without any modification.

3.2. Preparation of Alkanna Tinctorial Root Extract

To remove impurities, alkanna dye root was washed several times with deionized (DI)
water. In total, 10 g of alkanna tinctorial root was heated in 100 mL of DI water at 60 ◦C for
3 h. The aqueous extract was filtered. The filtration was used as a reducing agent.
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3.3. Preparation of Co/Mn Oxide Nanoparticles Synthesis

A total of 100 mL of 0.02 M Co3(NO3)2·6H2O and 0.002 M MnCl2 were mixed with
20 mL of alkanna tinctorial root extract. Afterward, the reaction mixture was left to stir for
three hours. The pH was maintained at 10 by adding 1 M of NaOH. The reaction left to
continue stirring for 3 h. The nanoparticles were collected using a Buckner funnel. The
product was washed several times with DI water to remove impurities. Afterwards, the
acquired product was calcined at 200 ◦C for three hours. As control catalysts, CoOOH
and MnOOH samples were prepared using the same steps, but in the presence of Mn or
Co precursors.

3.4. Catalyst Characterization

The crystalline nature of the materials was evaluated with XRD on a Bruker D8-advance
diffractometer (λ = 1.5418 Å) (Bruker, Ettlingen, Germany). Using linear sweep voltam-
metry, chronoamperometry, and EIS, we measured the electrochemical characteristics of
the obtained materials using a three-electrode Pyrex glass cell with a computerized po-
tentiostat/galvanostat (Autolab, Bloomfield Hills, MI, USA, PGSTAT30). A Pt counter
electrode and an Ag/AgCl (3.0M KCl) reference electrode were employed, while glassy
carbon supported catalysts were engaged as working electrodes. As a reference electrode,
an Ag/AgCl (1 M KCl) reference electrode was used, which was modified according to
Nernst equation to obtain the reversible hydrogen electrode (RHE). OER was conducted at
25 ◦C with 1.0 M KOH at a sweep rate of 10 mVs−1. Using the electrode materials at fixed
potentials, CA characterization was performed in order to determine their durability.

4. Conclusions

We developed a simple green synthetic method for ternary manganese-integrated
CoOOH electrocatalysts. Further, the resulting MnCo-OOH catalyst displayed excellent
OER performance and reduced charge transfer resistance. MnCo-OOH composite elec-
trodes also demonstrated better conductivity, electrocatalytic activity, and stability than
CoOOH electrocatalysts and benchmark IrO2 electrocatalysts. The electrocatalytic proper-
ties of MnCo-OOH are attributed to its high electronic conductivity, allowing rapid reaction
reactants and product diffusion and interfacial electron transport. As a result of these re-
sults, we demonstrated the importance of green synthetic approaches in the preparation of
CoOOH-based electrocatalysts that demonstrate electrochemical activity for water splitting
in alkaline environments.
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