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Constructed models and computational Method

The [110] plane of CrOs p (2 x 2) and [111] plane of ZrO2 (2 x 2) were
constructed for the CO: and CsHs adsorption simulations. The optimized
models were depicted in Table S1. Periodic density-functional theory (DFT)
calculations were performed using the Vienna Nonlinear Simulation Package
(VASP. 6.3.2) [1].Van der Waals interactions were described by using empirical
corrections in the Grimme scheme (DFT-D2). The energy convergence
threshold was set to 10 eV, and the geometric convergence criterion was set to
0.02 eV A-L. The K-points were set to 2 x 1 x 1 according to the Monkhorst-Pack

method.
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Figure S1. EDS-Mapping image of Zr in catalyst Crs%Zr2%-75.
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Figure S2. Selectivity of the synthesized samples of (a) Crs%-Z5, CrsxM2«-Z5
(M=La, Zr, Fe) and (b) Cr3%-ZS5-n (n= 0.5, 2, 6, 16) as well as Crs«xZr2%-25-6

(mass ratio of 6).
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Figure S3. Conversion of propane with catalysts Crs«-Z5, CrssZr2»-Z5 and

Crs%Zr2%-25-6 (reaction time: 180 min).
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Table S1. Model diagram of CO:z and CsHs adsorption over CrOs [110] and ZrO:
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Table S2. Adsorption energy of CO: and CsHs over CrOs [110] and ZrO: [111]

Model Energy (eV) Adsorption Energy (eV)
[110] CrOs -205.78 —
CrOs+CO -228.85 -0.09
CrOs+CsHs -262.85 -0.06
[111] ZrO2 -221.78 —
ZrO+CO: -244.90 -0.14
ZrO+CsHs -278.82 -0.03

NOTE: The adsorption energies of CO: and CsHs on molecular sieve supports
with surface-loaded metals ZrO: and CrOs were calculated by DFT. The
adsorption models of CO2 and CsHs on ZrO: and CrOs, respectively, were
established (Table S1). Table S2 shows the adsorption energies of each model,
and it can be concluded that: the adsorption energy of ZrO: for CO: is larger,

while that of CrO:s for CsHs is larger.
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