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Abstract: Crystal violet (CV) is an organic chloride salt and a triphenylmethane dye commonly used
in the textile processing industry, also being used as a disinfectant and a biomedical stain. Although
CV is widely used, it is carcinogenic to humans and is retained by industrial-produced effluent for an
extended period. The different types of metal oxide (MOx) have impressive photocatalytic properties,
allowing them to be utilized for pollutant degradation. The role of the photocatalyst is to facilitate
oxidation and reduction processes by trapping light energy. In this study, we investigated different
types of metal oxides, such as titanium dioxide (TiO2), zinc oxide (ZnO), zirconium dioxide (ZrO2),
iron (III) oxide (Fe2O3), copper (II) oxide (CuO), copper (I) oxide (Cu2O), and niobium pentoxide
(Nb2O5) for the CV decomposition reaction at ambient conditions. For characterization, BET and
Raman spectroscopy were applied, providing findings showing that the surface area of the anatase
TiO2 and ZnO were 5 m2/g and 12.1 m2/g, respectively. The activity tests over TiO2 and ZnO
catalysts revealed that up to ~98% of the dye could be decomposed under UV irradiation in <2 h. The
decomposition of CV is directly influenced by various factors, such as the types of MOx, the band
gap–water splitting relationship, and the recombination rate of electron holes.

Keywords: band gap; crystal violet; heterogenous catalyst; photocatalysis; recombination rate;
water splitting

1. Introduction

Crystal violet (CV), also known as methyl violet 10B, hexamethyl pararosaniline
chloride, or Gentian violet, is an aniline-derived dye that has been extensively used as a
disinfectant, a biomedical stain, a pH indicator, and in the textile industry as a dye [1,2].
Despite CV’s usefulness, the dye acts as a mitotic poison, a potent carcinogen, and a potent
clastogen that promotes tumor growth in some species of fish, confirming its negative
harmful impacts on the environment and human health [3]. For instance, CV exhibits an
oral toxicity level (LD50) of 1.2 g/kg for mice and 1.0 g/kg for rats [4]. For humans, CV
can cause skin irritation, digestive tract irritation, and, in extreme cases, respiratory and
kidney failure [3]. Considering the extensive applications of CV in daily life and its use for
industrial purposes, CV cannot simply be substituted. Considering its toxic behavior, it is
necessary for it to undergo degradation processes to convert it into less harmful compounds,
such as CO2 and H2O, prior to disposal [5].

Different catalytic methods have been explored as a means of degrading dyes from
industrial wastewater. In the recent past, ozonation of the dye compound has proved to be
an effective strategy for achieving decomposition [6,7]. The molecular ozone can react with
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produced hydroxyl radicals for the decomposition of chromophoric dyes into colorless
entities. To improve the effects of the ozonation process, the use of activated carbon coupled
with iron allows for enhanced catalytic activity due to activated carbon’s high activity [8].
The ozonation reaction, however, holds several disadvantages, such as the toxicity of the
ozone, as well as its high production cost and low utilization, thus increasing the need for
more effective alternative methods. Biological methods of dye degradation, such as the use
of cyanobacteria, have been explored, but they have yielded inconsistent and inefficient
results in terms of their ability to degrade organic dyes [9].

Homogeneous and heterogeneous photocatalysis is widely popular due to its ef-
fectiveness, environmental friendliness, and ability to control the pollution of biological
contaminants [10–12]. A homogeneous approach features a molecular or inorganic com-
pound as the catalyst that is dissolved in the dye solution [13–15]. Since the catalyst is
uniformly dispersed, the number of collisions between reactants and catalyst is at the
maximum, which leads to fast reaction speeds and provides a good conversion rate per
molecule of the catalyst. The major drawback in homogenous catalysis is the separation
of the catalyst, which requires a strenuous and expensive process. This can be overcome
via the heterogeneous catalysis approach, which involves using the catalyst and reactant
in different phases (i.e., liquid–solid phase), and the reactant is adsorbed on the active
surface of the catalyst. The advantages of heterogeneous catalysis include the reusability
of catalysts with minimal loss and the low toxicity of catalysts [16,17]. Unlike other water
treatment techniques, such as disinfection, filtration, and sedimentation, heterogeneous
photocatalysis completely eliminates the contaminants rather than transforming them from
one phase to another [18,19]. In the recent past, different types of metal oxide (MOx) have
emerged as cost-effective heterogeneous photocatalysts due to their reusability potential
and wide applicability. Previous studies involving metal oxides have focused on doping
and intercalating them with other materials, such as graphite, to improve their photocat-
alytic ability to decompose organic dyes [20,21]. The use of metal oxides on their own,
however, to the authors’ knowledge, has not been studied extensively for photocatalysis,
especially with various types of MOx, and it is believed that this approach is an effective
heterogeneous catalysis method for the degradation of dye chemicals, including CV.

In the present work, the effect of different types of MOx (TiO2, ZnO, ZrO2, Fe2O3,
CuO, Cu2O, and Nb2O5) as photocatalysts for CV degradation is studied. Heterogeneous
catalysts such as TiO2 and ZnO are known for their uses in several other applications in
photocatalysis, as they are used for air and water purification, as disinfectants, as solar cells,
and as photoluminescent devices [22,23]. It is worthwhile to note that the tested catalysts
cover a broad range of band gaps (i.e., 1.7 eV to 5.0 eV) that are directly and indirectly related
to the catalytic performance [24]. Screening of the broad range of catalysts was performed
to evaluate the effect of changes in band gap energies required for the propagation of the
redox reactions required to degrade organic dyes such as CV. Furthermore, the activity
results have been related to important scientific factors such as band gap, water splitting,
and recombination rate. Additionally, the catalysts were subjected to required physical
property characterizations.

2. Results and Discussion
2.1. Catalytic Activity

A calibration plot with varying CV concentrations was obtained as a reference (Figure 1a).
The line of best fit was utilized to find the equation that best correlates the absorbance to the
concentration of the CV. As shown in Figure 1b,c, TiO2 and ZnO successfully decomposed
the CV, while other metal oxides, such as CuO, Cu2O, ZrO, Nb2O5, and Fe2O3, showed
no catalytic performance (Figure 1d). TiO2 and ZnO showed 95% and 98% CV conversion,
respectively, within 2 h (Figure 1e). C. Shaoo et al. studied photocatalytic activity for CV
decomposition over bulk TiO2 and Ag+-doped TiO2 to understand the effect of Ag+ on
catalytic performance [25]. Although the Ag+-doped TiO2 showed the advantage of easy
separation compared to the TiO2, the conversion of CV over two catalysts was similar:
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for the TiO2, it was ~97% within ~2 h, and for the Ag+-doped TiO2, it was ~99% within
~2 h. Recently, M.G. Sanakousar et al. investigated the decomposition of CV over ZnO and
Cd-ZnO (mol% of Cd = 0.5~2.0%) catalysts and reported a high efficiency of bulk ZnO
and Cd (0.5%)-ZnO (~92% CV conversion at 120 min), while ≥1.0% Cd reportedly leads
to comparatively lower photocatalytic activity (80~85% CV conversion) [26]. The authors
claimed that increasing electron hole recombination rates and multiple charge carriers’
trapping phenomena cause a decrease in catalytic performance. For comparison purposes,
dye chemicals’ decomposition over ZnO and TiO2 have also been reported [27,28]. D. R.
Shinde et al. studied the photocatalytic degradation of CV, basic blue (BB), and methyl red
(MR) under solar irradiation over ZnO, TiO2, and SnO2 and reported that ZnO showed the
highest photocatalytic activity, followed by TiO2 and SnO2 [27]. The specific surface area of
ZnO (~12 m2/g) was higher than that of TiO2 (~5 m2/g), which, coupled with the greater
quantum efficiency of ZnO compared to TiO2, explains its higher overall photocatalytic
performance. The difference between the results for the stock 10−5 M CV solution and
for after the addition of the respective catalysts (TiO2 or ZnO) and UV light irradiation
source indicates that a larger number of moles were adsorbed following the prestir step of
the experimental protocol for the TiO2 sample compared to the ZnO sample (Figure 1b,c).
The CV decomposition results depicted in Figure 1d are well matched to the reported
ones, as highlighted in Table 1. Figure 1f shows the visual decolorization of CV during the
reaction with the TiO2 catalyst. The intensity of the CV color (purple) faded with increasing
reaction time.
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Figure 1. (a) Calibration curve with varied CV concentrations and absorbance spectra at 10 min
intervals for selected metal oxides. (b) UV–visible spectra of CV solution from stock concentration
(10−5 M) with no irradiation to after the addition of TiO2 and UV light during the progression of the
reaction over 120 min indicated by different colored spectra for each 10-min interval. (c) UV–visible
spectra of CV solution from stock concentration (10−5 M) with no irradiation to after the addition
of ZnO and UV light during the progression of the reaction over 120 min indicated by different
colored spectra for each 10-min interval. (d) Change in concentration of CV dye solution over tested
metal oxides. (e) Conversion of CV during the reaction’s progression, and (f) visualization of CV
decomposition over time. Reaction conditions: 25 mg of TiO2 and 50 mL of 10−5 M CV solution
under UV irradiation (365 nm).



Catalysts 2024, 14, 377 4 of 14

Table 1. Catalytic performance comparison with previous works for the degradation of common
organic dyes (i.e., CV, MB) under light irradiation.

Catalyst Energy
Source

Band Gap
(eV) Dye

Initial Dye
Concentration

(ppm)

Irradiation
Time (min)

Conversion
(%) Ref.

TiO2 UV 3.2 CV 20 105 >97 [25]

Ag+/TiO2 UV -- CV 20 105 >99 [25]

TiO2 UV 3.2 CV 40 105 >88 [25]

Ag+/TiO2 UV -- CV 60 105 >56 [25]

ZnO UV 3.31 MB 40 40 67 [29]

GO/ZnO UV 3.22 MB 40 40 89 [29]

ZnO Visible 2.81 CV 5 240 82 [30]

ZnO/GO Visible 2.71 CV 5 240 99 [30]

CuO UV 1.29 MB 6120 120 50 [31]

CuO-ZnO UV 1.23 MB 6120 120 94 [31]

TiO2 UV 3.2 CV 4 120 95 Present study

ZnO UV 3.2 CV 4 120 98 Present study

2.2. MOx Catalyst Choice Rationale for Dye Chemical Decomposition
2.2.1. Effect of Band Gap Energies on CV Decomposition

As shown in Figure 1d, the different MOx (M = Zn, Ti, Cu, Zr, Nb, and Fe) catalysts
show different CV decomposition catalytic performances. To understand the relationship
between dye chemical decomposition and the types of MOx catalysts, several parameters
(i.e., specific surface area, band gap, and water splitting energy gap) should be considered.
MOx can be classified into three major types: semiconductors, conductors, and insulators.
Semiconductors are increasingly useful materials for heterogeneous photocatalysis. Recent
studies involving semiconductors are focused on narrowing the band gap, which is the
energy difference between the valence band (VB) and the conduction band (CB) of the metal
oxide, through changes in their physical structure [16,32]. Band gap is a vital parameter
in determining the applicability of a semiconductor in a specific photocatalytic reaction
because different photocatalytic reactions require specific band gap energies, including
the reaction with CV [33]. Providing sufficient energy to the metal oxide allows for the
formation of electron–hole (e−CB—electron in the CB, h+VB—hole in the VB) pairs, which
effectively increase the rate of dye chemical decomposition. The overall reaction can be
modeled as follows: h+VB + dye (CV) → CV radical → CV decomposition . The required
energy for overcoming the band gaps can be obtained from light, such as visible and UV
light: E (eV) = hc

λ (nm)
, where E is photon energy, h is Planck’s constant, c is the speed of

light, and λ is the wavelength of the supplied light.
Figure 2 shows the band gap energies of various metal oxides based on potentials.

Since a 365 nm UV light, which is equivalent to 3.4 eV, was used in this research, it is
hypothesized that a MOx with >3.4 eV should show little or no catalytic activity due to
its higher band gap energy compared to the applied energy. TiO2 and ZnO both have a
band gap energy of 3.2 eV, with the range also being covered in the water splitting energy
gap range, allowing for degradation to occur under the supplied UV irradiation source. As
such, it is also true that visible light (400–700 nm; 1.77–3.1 eV) does not provide sufficient
energy for the working catalysts, as the minimum working band gap of the TiO2 and ZnO
catalysts is 3.2 eV. As shown in Figure 1d, Nb2O5 (3.5 eV) and ZrO2 (5.0 eV) showed no CV
decomposition, which is well matched to the band gap vs. dye chemical decomposition
relationship. In the cases of Fe2O3 (2.1 eV), CuO (1.7 eV), and Cu2O (2.2 eV), however,
the relationship cannot explain the lack of CV decomposition over the catalysts, although
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their band gap energies are much lower than 3.4 eV. To explain the results, the relationship
between band gap and CV decomposition, along with another parameter known as the
water splitting energy gap, should be considered.
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2.2.2. Importance of Water Splitting Reaction

Among several key parameters, the potential energy of water splitting or hydroxyl (OH−)
or hydroxyl radical (OH•) generation is an important aspect of dye degradation [34–36]. The
water splitting reaction begins with the excitation of the electrons on the MOx through
photons emitted by UV irradiation. The resulting electron hole on the MOx becomes an
active site [37,38]. The ionization of the water occurs when water interacts with the electron
hole in the VB and ionizes into a proton (H+) and an OH• [38] The formation of the OH• is
especially crucial for dye decomposition, as it is a strong oxidizing agent. Simultaneously,
superoxide (O•−

2 ) is formed when oxygen gas interacts with the electron in the CB. This O•−
2

will then become protonated to form a hydroperoxyl radical (HOO•) which will further
dissolve into OH• [38]. Consequently, the chemical decomposition of the dye occurs by its
interaction with OH•, producing CO2, H2O, and other intermediates [34,38]. The dye can
also interact with the electron hole in the VB and the electron in the CB to form oxidation
and reduction products as well [38]. The water splitting energy gap (0–1.23 eV) range must
be within the band edges of the selected MOx, allowing the catalyst surface to interact with
and facilitate the reaction.

The water splitting reaction is directly influenced by the recombination of electron–
hole pairs that are generated due to the absorption of photons [39]. In recombination,
electrons release the energy absorbed from photons and return from the CB to the VB, thus
recombining and filling the electron hole generated during photocatalysis. Photocatalysts
suffer from low efficiency due to serious charge-carrier recombination [39]. Thus, to
drive efficient water splitting, charge separation in catalyst particles must proceed within
the timescales of photoexcited carrier recombination [39]. As shown in Figure 2, Fe2O3,
CuO, and Cu2O are each outside of the water splitting range, resulting in their lack of
photocatalytic activity [Figure 1d]. Based on the band gap and water splitting parameters
of MOx, it is indicated that only TiO2 and ZnO could enable the decomposition of the CV
dye with great efficiency.

2.3. Material Characterization

Raman spectroscopy has been applied to understand molecular structures, oxidation
states, and the phases of metal oxide catalysts [40–43]. Figure 3a,b shows the Raman spectra
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of TiO2 and ZnO, the most effective catalysts for CV decomposition among the tested types
of MOx, with the peaks indicating the Raman-active modes of each catalyst, respectively.
In Figure 3a, strong (s) and weak (w) intensity peaks at 144 (s), 200 (w), 398 (s), 518 (s), and
642 (s) cm−1 are assigned to the Eg, Eg, B1g, A1g/B1g and Eg modes, respectively [44,45].
Based on the peak positions and relative peak intensity, it is confirmed that the tested TiO2
contains the anatase phase [45–48]. In the case of ZnO, there are peaks at 102 (s), 333 (w),
439 (s), 586 (w), and 667 (w), which are assigned to the E2(LO), E2(LO)-E2(H), E2(H), E1(LO),
and E2(LO)-E2(H) modes of Zincite, respectively [49–52]. The specific interactions present
at each peak are summarized in Table 2. The Raman spectra of TiO2 and ZnO are like
previous studies’ results [44,49,53,54].
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Table 2. Raman shifts and the specific types of interaction.

Raman Shift
(cm−1)

Raman Active Mode
TiO2

Raman Shift
(cm−1)

Raman Active Mode
ZnO

44 Eg—(symmetric
stretching vibration) 102 E2L—(nonpolar,

low-intensity mode)

200 Eg—(symmetric
stretching vibration) 333 3E2L − E2H

398 B1g—(symmetric
stretching mode) 439 E2H—(nonpolar,

high-intensity mode)

518
A1g—(anti-

symmetric bending
vibration of O-Ti-O)

586
E1 (LO)—(polar,

longitudinal optical
mode)

642 Eg—(symmetric
stretching vibration) 667 2(E2H − E2L)

XRD analysis of the working bulk catalysts (TiO2 and ZnO) was conducted for the
confirmation of the material, and SEM-EDX analysis was performed for the determination
of the surface morphology of the material. Based on the identified miller indices in the
experimental XRD patterns shown in Figure 4a,b, the presence of indices in the (101), (004),
(200), (105), (211), and (204) planes indicated that the highly crystalline TiO2 specimen was
identified as anatase (Tetragonal, I41/amd) [55]. The ZnO sample, on the other hand, based
on the identified miller indices at the (100), (002), (101), (102), (110), and (103) planes, was
identified as Zincite (Hexagonal, P63mc) [56]. SEM-EDX analysis was used to determine
the surface morphology of the samples, confirming that the particles sizes of the bulk
material were <200 nm, as indicated by the SEM images in Figure 5a,b. The EDX analysis
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indicated the elemental compositions of the catalysts, with the signals pertaining to TiO2
and ZnO, respectively, and a single carbon (C) peak appeared due to the use of carbon tape
to fasten the samples during measurement.
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It has been reported that the specific surface area (SSA) of a catalyst is another parame-
ter that can affect the photocatalytic property of dyes’ chemical decomposition [57,58]. The
SSA of TiO2 and ZnO was obtained via N2 adsorption–desorption methods to ascertain
the effect of SSA on the chemical decomposition of dyes. The SSA of ZnO (12.1 m2/g) was
higher than that of TiO2 (5 m2/g), and this physical parameter could relate to the higher
catalytic activity over ZnO compared to TiO2. The high SSA of ZnO means it adsorbs
high amounts of CV chemicals, thus leading to an increase in the overall speed of CV
degradation over time.

2.4. Reaction Kinetics

A kinetic study was performed to determine the applicable rate constant for the work-
ing catalysts. A common model used to represent the kinetics of organic dye degradation
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is the Langmuir–Hinshelwood model [37]. The rate law equation and the corresponding
integrated rate law are shown in Equations (1) and (2), respectively.

r =
dC
dt

=
kKC

1 + KC
≈ kKC (1)

ln(
Co

C
) = kKt = kapp.t (2)

where K is the adsorption equilibrium constant, k is the rate constant of the reaction, C is
the CV concentration, and t is the reaction time. Since low concentrations of CV (highly
diluted with water) were used in this study, it should be assumed that KC is much lower
than 1 (KC << 1). The first-order rate law is shown in Equation (1). To confirm that the
working catalysts follow the Langmuir–Hinshelwood model, concentration (C), ln (C), and
1/C as a function of reaction time, which correspond to zero-, first-, and second-order
reactions, respectively, were investigated. As shown in Figure 6a,b, the ln (C) vs. time
shows a linear line, indicating the first-order kinetics [59]. The rate constant (kapp), slope of
the first-order plot of the ZnO (0.036 min−1) was higher than that of TiO2 (0.028 min−1).
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2.5. Proposed Mechanism

Although the reaction mechanism of CV degradation has not been thoroughly investi-
gated, a series of photocatalytic and photosensitization processes can be used to describe
its degradation [60]. The formed oxygen species from the water splitting reaction (OH•,
O•−

2 and HOO•) reacts with the electron–hole pairs on the photocatalyst, as well as the
provided energy source, as can be seen in Equations (3)–(11) [29,37,38,60–62]. These reac-
tions are necessary to produce reactive oxygen species (ROS), as well as a reaction with
the chemisorbed CV dye for its degradation [60–62]. Photosensitized processes such as
the reaction of the chemisorbed CV species with the provided energy on the surface of the
photocatalyst can yield CV molecules in the excited state (CV*) [60]. The degradation of
the dye can then proceed following the reaction of the CV* molecule with the electron–hole
pairs and oxygen species [29,37,38,60–62]. Common radical scavengers such as ethylene
diamine tetraacetic acid (EDTA-2Na; H+ scavenger), isopropyl alcohol (IPA; OH• scav-
enger), and para benzoquinone (p-BQ; O•−

2 scavenger) have been used in prior studies
for the confirmation of the reaction mechanism [29]. The purpose of the scavengers is to
“capture” the free intermediate radicals (H+, OH• and O•−

2 ) and indicate the role of the
respective radicals depending on the change in activity due to their absence. Although
the authors were unable to fully screen the mechanism of the reaction, we sought prior
experimental instances from the literature in which radical scavengers were used to confirm
our proposed mechanism of CV dye degradation by TiO2 and ZnO. The formation of a
hydroperoxyl radical (HOO•) from O•−

2 is not a favored intermediate formation pathway,
as proven by radical scavenger tests conducted in prior studies, since scavengers that
capture H+ and OH• radicals seem to have the highest loss in degradation capability when
using a MOx catalyst [29,61,62]. Although the generated O•−

2 radicals may have some effect
on activity, they are considered to be less reactive than H+ and OH•, and therefore, they
have been seen to reduce the rate of photocatalytic degradation only slightly [29,61,62].
The combination of these processes leads to the effective degradation of the dye pollutants,
as shown by Equations (3)–(11) [33].

Photocatalytic Process:

MOx + hv → MOx
(
e−CB + h+

VB
)

(3)

h+
VB + OH− → OH• (4)

e−CB + O2 → O•−
2 (5)

O•−
2 + H+ → HOO• (6)

OH•+ CV → products (7)

Photosensitization Process:

CV + hv → CV∗ (8)

CV∗ + MOx → CV•+ + MOx
(
e−CB

)
(9)

O•−
2 + e−CB + 2H+ → H2O2 (10)

CV•+ + O•−
2 → product (11)

3. Experimental Section
3.1. Materials

A stock solution of 0.01 M CV (CAS# 548-62-9, ACS reagent, ≥90%, Sigma-Aldrich, St.
Louis, MO, USA) solution and deionized water (~20 mΩ/cm, Direct-Q3, Millipore Sigma,
Burlington, MA, USA) was used as a starting material to prepare CV solutions of different
concentrations (1 × 10−6 M, 1 × 10−5 M, 2 × 10−5 M, 5 × 10−5 M, and 1 × 10−4 M).
Titanium dioxide (TiO2, nanoparticle, ≥99% purity, 4.26 g/mL at 25 ◦C), zinc oxide (ZnO,
particle size: <5 µm, ≥99% purity), zirconium dioxide (ZrO2, particle size: 5 µm, 99%
purity, 5.89 g/mL at 25 ◦C), iron (III) oxide (Fe2O3, particle size: <5 µm, ≥96% purity),
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copper (II) oxide (CuO, 99.99% purity), copper (I) oxide (Cu2O, particle size: ≤7 µm, 97%
purity, 6 g/mL at 25 ◦C), and niobium pentoxide (Nb2O5, 99.99% purity, 4.47 g/mL at
25 ◦C) were all obtained from Sigma-Aldrich and used without further treatment for the
decomposition of CV solutions.

3.2. Characterization

The specific surface area (SSA) was obtained by a combination of N2 adsorption and
desorption isotherms using a Micromeritics ASAP 1010 instrument (Norcross, GA, USA).
Prior to their analysis, each catalyst was degassed at 300 ◦C for 4 h under a vacuum for the
removal of any possible impurities, moisture, and volatiles. The SSA was then calculated
using a multipoint BET technique and recorded on the Quantachrome NovaWin©1994–2007
v10.0 software (Quantachrome Instruments, Boynton Beach, FL, USA). Raman spectra
of the samples were obtained using a Horiba Xplora Plus Raman Microscope (Horiba
Instruments Inc., Piscataway, NJ, USA) with a 532 nm laser source under ambient conditions.
Raman spectra were collected in the 100 to 2000 cm−1 Raman shift regions. The operating
parameters, with an acquisition time of 10 s and 10 scans, were kept constant throughout.
XRD patterns were collected using a D8 Advance Bruker in reflection mode equipped with
a Cu source (40 mV voltage and 40 mA current) and a 1D LYNXEYE detector. Powder
was loaded into a side loading holder and leveled with a glass cover slip. XRD patterns
were collected over a two-theta range of 10◦ to 100◦ with a step size set to 0.01◦. During
XRD pattern collection, specimens were rotated at a slow rpm to sample more powder and
improve powder averaging. Match 3! v3.0 software, with the crystallography open database
(COD), was utilized to identify all the phases. Energy-dispersive X-ray spectroscopy (EDX)
was performed on a Leo 1550 scanning electron microscope (SEM) (ZEISS, New York, NY,
USA), with data collected at a voltage of 20 kV loaded on a carbon tape sample holder. The
UV-vis spectra were collected during CV degradation with a Tecan Infinite 200 PRO UV–
visible spectrophotometer (TECAN, Morrisville, NC, USA) in the range of 230–1000 nm.
The catalyst–dye solutions were evaluated for their absorbance after being centrifuged to
minimize the presence of solid particles. An absorbance spectrum of 5 flash samples with a
2 nm step size was determined.

3.3. Activity Tests

For the CV decomposition reaction, 25 mg of metal oxide and 50 mL of CV solution
were added into a 100 mL beaker containing a magnetic stirring bar. The beaker was
transported to a UV cabinet (Mini UV Viewing cabinet, UVP, Inc., Upland, CA, USA,
95-0072-01, UVP C-10). Before exposing the CV solution with metal oxide to UV light,
pre-stirring was performed for 60 min in a darkroom environment (i.e., a light-isolated
environment with the UV light turned off) to ensure the homogenized mixing of catalysts
and reactants. Following the pre-stirring step, the UV lamp (Handheld UV Lamp, UVP.
LLC., 95-0005-05, UVGL-58) was turned on at the desired wavelength (i.e., 365 nm). During
the reaction, 2 mL of the solution was collected at 10 min intervals and centrifuged at
3200 rpm for 5 min to separate the catalyst from the mixture. After centrifugation, 100 µL of
the solution was extracted and put into three wells of a 96-well microplate (Corning™ Clear
Polystyrene 96-Well Microplates, Corning, Glendale, AZ, USA) for analysis inside a Tecan
UV Vis-spectrophotometer (Infinite Pro 200, TECAN, Morrisville, NC, USA). Absorbance
data were collected 5 times from wavelengths of 230 nm to 1000 nm with a 2 nm step size.
A schematic diagram of the reaction procedures and experimental conditions (i.e., time,
speed) is shown in Scheme 1.
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4. Conclusions

Different types of metal oxides, such as TiO2, ZnO, ZrO2, Fe2O3, CuO, Cu2O, and
Nb2O5, were evaluated for CV decomposition under UV irradiation conditions. Among
the samples, TiO2 and ZnO showed the highest catalytic performance, with 95% and 98%
CV conversion values, respectively. Based on the quantitative analysis, it was observed that
the reaction order is the first-order reaction, which follows the Langmuir–Hinshelwood
model. The obtained rate constants over the ZnO and TiO2 catalysts were 0.036 min−1 and
0.028 min−1, respectively. The higher SSA of ZnO compared to TiO2 could be related to the
higher CV decomposition rate. The obtained results showed that photocatalytic parameters
such as band gap, water splitting, specific surface area, and recombination rate control the
dye chemical decomposition rate. For instance, the band gap energy of metal oxides is the
driving factor in the dye chemical decomposition reaction. Furthermore, the band edges
should match the water splitting potentials. To improve catalytic performance, supported
metal oxide catalysts with high SSA values should be considered.
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