Advancements in Materials Science and Photocatalysts for Sustainable Development
Abstract
:1. Introduction
2. Photocatalytic Reduction of CO2
3. Photocatalytic Hydrogen Production
4. Wastewater Treatment
4.1. Dye Degradation
4.2. Drug Degradation
4.3. Other Water Pollutant Removal and Further Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Photocatalysis: Present, Past and Future. In Materials Research Foundations; Materials Research Forum LLC: Millersville, PA, USA, 2018; Volume 29, pp. 183–206. ISBN 978-1-945291-63-0.
- Demir, M.E.; Dincer, I. An Integrated Solar Energy, Wastewater Treatment and Desalination Plant for Hydrogen and Freshwater Production. Energy Convers. Manag. 2022, 267, 115894. [Google Scholar] [CrossRef]
- Vadivel, D.; Ferraro, F.; Merli, D.; Dondi, D. Carbon Dioxide Photoreduction in Prebiotic Environments. Photochem. Photobiol. Sci. 2022, 21, 863–878. [Google Scholar] [CrossRef]
- Pang, R.; Teramura, K.; Morishita, M.; Asakura, H.; Hosokawa, S.; Tanaka, T. Enhanced CO Evolution for Photocatalytic Conversion of CO2 by H2O over Ca Modified Ga2O3. Commun. Chem. 2020, 3, 137. [Google Scholar] [CrossRef]
- Hu, S.; Qiao, P.; Yi, X.; Lei, Y.; Hu, H.; Ye, J.; Wang, D. Selective Photocatalytic Reduction of CO2 to CO Mediated by Silver Single Atoms Anchored on Tubular Carbon Nitride. Angew. Chem. 2023, 135, e202304585. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, Y.-X.; Tu, X.; Liu, C. Nitrogen Doping of Indium Oxide for Enhanced Photocatalytic Reduction of CO2 to Methanol. Nano Energy 2022, 101, 107613. [Google Scholar] [CrossRef]
- Luévano-Hipólito, E.; Fabela-Cedillo, M.G.; Torres-Martínez, L.M. Novel Lead-Free Halide Perovskite KMgI3 for Photocatalytic Hydrogen Evolution (HER) and Carbon Dioxide Reduction Reaction (CO2RR). Mater. Lett. 2024, 361, 136066. [Google Scholar] [CrossRef]
- Yu, M.; Wang, J.; Li, G.; Zhang, S.; Zhong, Q. Construction of 3D/2D Indium Vanadate/Graphite Carbon Nitride with Nitrogen Defects Z-Scheme Heterojunction for Improving Photocatalytic Carbon Dioxide Reduction. J. Mater. Sci. Technol. 2023, 154, 129–139. [Google Scholar] [CrossRef]
- Zhai, M.; Zhang, Y.; Xu, J.; Lin, H.; Wang, J.; Wang, L. Nickel Hydroxide-Decorating Potassium-Doped Graphitic Carbon Nitride for Boosting Photocatalytic Carbon Dioxide Reduction. J. Colloid Interface Sci. 2023, 650, 1671–1678. [Google Scholar] [CrossRef]
- Cheng, Y.; Ji, W.; Hao, P.; Qi, X.; Wu, X.; Dou, X.; Bian, X.; Jiang, D.; Li, F.; Liu, X.; et al. A Fully Conjugated Covalent Organic Framework with Oxidative and Reductive Sites for Photocatalytic Carbon Dioxide Reduction with Water. Angew. Chem. Int. Ed. 2023, 62, e202308523. [Google Scholar] [CrossRef]
- Swadener, J.G. Strain Engineering of ZrO2@TiO2 Core@shell Nanoparticle Photocatalysts. Solar 2023, 3, 15–24. [Google Scholar] [CrossRef]
- Kuang, Y.; Shang, J.; Zhu, T. Photoactivated Graphene Oxide to Enhance Photocatalytic Reduction of CO2. ACS Appl. Mater. Interfaces 2020, 12, 3580–3591. [Google Scholar] [CrossRef] [PubMed]
- Speltini, A.; Gualco, F.; Maraschi, F.; Sturini, M.; Dondi, D.; Malavasi, L.; Profumo, A. Photocatalytic Hydrogen Evolution Assisted by Aqueous (Waste)Biomass under Simulated Solar Light: Oxidized g-C3N4 vs. P25 Titanium Dioxide. Int. J. Hydrogen Energy 2019, 44, 4072–4078. [Google Scholar] [CrossRef]
- Speltini, A.; Romani, L.; Dondi, D.; Malavasi, L.; Profumo, A. Carbon Nitride-Perovskite Composites: Evaluation and Optimization of Photocatalytic Hydrogen Evolution in Saccharides Aqueous Solution. Catalysts 2020, 10, 1259. [Google Scholar] [CrossRef]
- Lv, B.; Feng, X.; Lu, L.; Xia, L.; Yang, Y.; Wang, X.; Zou, X.; Wang, H.; Zhang, F. Facile Synthesis of G-C3N4/TiO2/CQDs/Au Z-Scheme Heterojunction Composites for Solar-Driven Efficient Photocatalytic Hydrogen. Diam. Relat. Mater. 2021, 111, 108212. [Google Scholar] [CrossRef]
- Wang, K.; Bielan, Z.; Endo-Kimura, M.; Janczarek, M.; Zhang, D.; Kowalski, D.; Zielińska-Jurek, A.; Markowska-Szczupak, A.; Ohtani, B.; Kowalska, E. On the Mechanism of Photocatalytic Reactions on CuxO@TiO2 Core–Shell Photocatalysts. J. Mater. Chem. A 2021, 9, 10135–10145. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, T.; Zhu, W.; Qin, L.; Kang, S.-Z.; Li, X. Enhanced Light Absorption and Electron Transfer in Dimensionally Matched Carbon Nitride/Porphyrin Nanohybrids for Photocatalytic Hydrogen Production. Fuel 2023, 338, 127394. [Google Scholar] [CrossRef]
- Chen, S.; Ren, T.; Zhou, Z.; Lu, K.; Huang, X.; Zhang, X. Insights into Mn Loaded Carbon-Silica-Membrane Based Catalytic Ozonation Process for Efficient Wastewater Treatment: Performance and Mechanism. Chem. Eng. J. 2023, 475, 145874. [Google Scholar] [CrossRef]
- Lee, K.-T.; Ho, K.-Y.; Chen, W.-H.; Kwon, E.E.; Lin, K.-Y.A.; Liou, S.-R. Construction and Demolition Waste as a High-Efficiency Advanced Process for Organic Pollutant Degradation in Fenton-like Reaction to Approach Circular Economy. Environ. Pollut. 2023, 335, 122246. [Google Scholar] [CrossRef]
- Sarvothaman, V.P.; Velisoju, V.K.; Subburaj, J.; Panithasan, M.S.; Kulkarni, S.R.; Castaño, P.; Turner, J.; Guida, P.; Roberts, W.L.; Nagarajan, S. Is Cavitation a Truly Sensible Choice for Intensifying Photocatalytic Oxidation Processes?—Implications on Phenol Degradation Using ZnO Photocatalysts. Ultrason. Sonochem. 2023, 99, 106548. [Google Scholar] [CrossRef]
- Javadi, A.; Nourizade, M.; Rahmani, M.; Eckert, K. Interaction of Catalyst Nanoparticles and Pollutant Molecules in Photocatalytic Wastewater Treatment: Novel Characterization via Dynamic Surface Properties. Chem. Eng. Sci. 2023, 269, 118459. [Google Scholar] [CrossRef]
- Sonune, A.; Ghate, R. Developments in Wastewater Treatment Methods. Desalination 2004, 167, 55–63. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, G.; Liu, Z.; Zhao, S.; Cao, D.; Li, C.; Liu, G. Nanoflower-like CdS and SnS2 Loaded TiO2 Nanotube Arrays for Photocatalytic Wastewater Treatment and Hydrogen Production. Ceram. Int. 2023, 49, 5893–5904. [Google Scholar] [CrossRef]
- Hu, Z.; Shen, Z.; Yu, J.C. Converting Carbohydrates to Carbon-Based Photocatalysts for Environmental Treatment. Environ. Sci. Technol. 2017, 51, 7076–7083. [Google Scholar] [CrossRef] [PubMed]
- Al-Zahrani, S.A.; Patil, M.B.; Mathad, S.N.; Patil, A.Y.; Otaibi, A.A.; Masood, N.; Mansour, D.; Khan, A.; Manikandan, A.; Syafri, E. Photocatalytic Degradation of Textile Orange 16 Reactive Dye by ZnO Nanoparticles Synthesized via Green Route Using Punica Granatum Leaf Extract. Crystals 2023, 13, 172. [Google Scholar] [CrossRef]
- Chellapandi, T.; Madhumitha, G.; Roopan, S.M.; Elamathi, M.; Leeladevi, K.; Nagarajan, E.R.; Vadivel, D.; Dondi, D. Construction of ZnO Nanoparticles on the Layered Aluminosilicate Montmorillonite K30 Nanocomposite and Its Enhanced Photocatalytic Removal Performance. Opt. Mater. 2023, 142, 114099. [Google Scholar] [CrossRef]
- Singh, A.; Giannakoudakis, D.; Arkas, M.; Triantafyllidis, K.; Nair, V. Composites of Lignin-Based Biochar with BiOCl for Photocatalytic Water Treatment: RSM Studies for Process Optimization. Nanomaterials 2023, 13, 735. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.R.D.; Mascarenhas, A.J.S.; Silva, L.A. Preparation and Evaluation of Composite with a Natural Red Clay and TiO2 for Dye Discoloration Assisted by Visible Light. Appl. Clay Sci. 2017, 135, 603–610. [Google Scholar] [CrossRef]
- Bustos-Guadarrama, S.; Nieto-Maldonado, A.; Flores-López, L.Z.; Espinoza-Gomez, H.; Alonso-Nuñez, G. Photocatalytic Degradation of Azo Dyes by Ultra-Small Green Synthesized Silver Nanoparticles. J. Taiwan Inst. Chem. Eng. 2023, 142, 104663. [Google Scholar] [CrossRef]
- Shang, L.; Li, W.; Wang, X.; Ma, L.; Li, L.; Duan, Q.; Li, Y. Preparation of Magnetic Fe3O4@PDA/CuS Core-Shell Nanocomposite as a Green Photocatalyst. Synth. Met. 2023, 292, 117230. [Google Scholar] [CrossRef]
- Liu, M.; Sheardy, A.; Pathiraja, G.; Tukur, F.; Jayapalan, A.; Wei, J. Tuning the Core-Shell Ratio in Nanostructured CuS@In2S3 Photocatalyst for Efficient Dye Degradation. Clean. Chem. Eng. 2023, 5, 100093. [Google Scholar] [CrossRef]
- Hojjati-Najafabadi, A.; Aygun, A.; Tiri, R.N.E.; Gulbagca, F.; Lounissaa, M.I.; Feng, P.; Karimi, F.; Sen, F. Bacillus Thuringiensis Based Ruthenium/Nickel Co-Doped Zinc as a Green Nanocatalyst: Enhanced Photocatalytic Activity, Mechanism, and Efficient H2 Production from Sodium Borohydride Methanolysis. Ind. Eng. Chem. Res. 2023, 62, 4655–4664. [Google Scholar] [CrossRef]
- Pastrana-Martínez, L.M.; Morales-Torres, S.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T. Graphene Photocatalysts. In Multifunctional Photocatalytic Materials for Energy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 79–101. ISBN 978-0-08-101977-1. [Google Scholar]
- Selvakumar, T.; Rajaram, M.; Natarajan, A.; Harikrishnan, L.; Alwar, K.; Rajaram, A. Highly Efficient Sulfur and Nitrogen Codoped Graphene Quantum Dots as a Metal-Free Green Photocatalyst for Photocatalysis and Fluorescent Ink Applications. ACS Omega 2022, 7, 12825–12834. [Google Scholar] [CrossRef] [PubMed]
- Raveena; Singh, M.P.; Sengar, M.; Kumari, P. Synthesis of Graphene Oxide/Porphyrin Nanocomposite for Photocatalytic Degradation of Crystal Violet Dye. ChemistrySelect 2023, 8, e202203272. [Google Scholar] [CrossRef]
- Speltini, A.; Sturini, M.; Maraschi, F.; Mandelli, E.; Vadivel, D.; Dondi, D.; Profumo, A. Preparation of Silica-Supported Carbon by Kraft Lignin Pyrolysis, and Its Use in Solid-Phase Extraction of Fluoroquinolones from Environmental Waters. Microchim. Acta 2016, 183, 2241–2249. [Google Scholar] [CrossRef]
- Dondi, D.; Zeffiro, A.; Speltini, A.; Tomasi, C.; Vadivel, D.; Buttafava, A. The Role of Inorganic Sulfur Compounds in the Pyrolysis of Kraft Lignin. J. Anal. Appl. Pyrolysis 2014, 107, 53–58. [Google Scholar] [CrossRef]
- Vadivel, D.; Speltini, A.; Zeffiro, A.; Bellani, V.; Pezzini, S.; Buttafava, A.; Dondi, D. Reactive Carbons from Kraft Lignin Pyrolysis: Stabilization of Peroxyl Radicals at Carbon/Silica Interface. J. Anal. Appl. Pyrolysis 2017, 128, 346–352. [Google Scholar] [CrossRef]
- Vadivel, D.; Malaichamy, I. Pyrolytic formation and photoactivity of reactive oxygen species in a SiO2/carbon nanocomposite from kraft lignin. F1000Research 2018, 7, 1574. [Google Scholar] [CrossRef] [PubMed]
- Mohamadpour, F.; Mohamadpour, F. Photodegradation of Six Selected Antipsychiatric Drugs; Carbamazepine, Sertraline, Amisulpride, Amitriptyline, Diazepam, and Alprazolam in Environment: Efficiency, Pathway, and Mechanism—A Review. Sustain. Environ. Res. 2024, 34, 8. [Google Scholar] [CrossRef]
- Tang, G.; Chen, Y.; Lin, S.; Li, X. The Photo- and Microbial Degradation Kinetics and Pathways of Sulfadoxine in Seawater Elucidated by Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry. Chemosphere 2024, 351, 141225. [Google Scholar] [CrossRef]
- Renu; Kaur, J.; Garg, T.; Aggarwal, D.; Kumar, V.; Tikoo, K.; Kaushik, A.; Singhal, S. Synthesis of Novel α-Cyclodextrin Conjugated ZnFe2O4-GO Nanocomposites for Electrochemical Detection of Hazardous Imidacloprid Insecticide and Enhanced Photodegradation of Levofloxacin Drug. J. Electroanal. Chem. 2024, 956, 118074. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, G.; Zheng, Q.; Tang, J.; Chen, Y.; Xu, W.; Zou, Y.; Chen, X. Occurrence and Risks of Antibiotics in the Laizhou Bay, China: Impacts of River Discharge. Ecotoxicol. Environ. Saf. 2012, 80, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Xu, W.; Zhang, R.; Tang, J.; Chen, Y.; Zhang, G. Occurrence and Distribution of Antibiotics in Coastal Water of the Bohai Bay, China: Impacts of River Discharge and Aquaculture Activities. Environ. Pollut. 2011, 159, 2913–2920. [Google Scholar] [CrossRef] [PubMed]
- Martínez Bueno, M.J.; Hernando, M.D.; Agüera, A.; Fernández-Alba, A.R. Application of Passive Sampling Devices for Screening of Micro-Pollutants in Marine Aquaculture Using LC–MS/MS. Talanta 2009, 77, 1518–1527. [Google Scholar] [CrossRef] [PubMed]
- Siddhardhan, E.V.; Surender, S.; Arumanayagam, T. Degradation of Tetracycline Drug in Aquatic Environment by Visible Light Active CuS/CdS Photocatalyst. Inorg. Chem. Commun. 2023, 147, 110244. [Google Scholar] [CrossRef]
- Vadivel, D.; Sturini, M.; Speltini, A.; Dondi, D. Tungsten Catalysts for Visible Light Driven Ofloxacin Photocatalytic Degradation and Hydrogen Production. Catalysts 2022, 12, 310. [Google Scholar] [CrossRef]
- Vadivel, D.; Branciforti, D.S.; Speltini, A.; Sturini, M.; Bellani, V.; Malaichamy, I.; Dondi, D. Pyrolytic Formation of TiO2/Carbon Nanocomposite from Kraft Lignin: Characterization and Photoactivities. Catalysts 2020, 10, 270. [Google Scholar] [CrossRef]
- Kumar, V.D.; Balaji, K.R.; Viswanatha, R.; Ambika, G.; Roopa, R.; Basavaraja, B.M.; Santosh, M.S. Visible light photodegradation of 2, 4-dichlorophenol using nanostructured NaBiS2: Kinetics, cytotoxicity, antimicrobial and electrochemical studies of the photocatalyst. Chemosphere 2022, 287, 132174. [Google Scholar] [CrossRef] [PubMed]
- Jamil, F.; Al-Muhtaseb, A.H.; Naushad, M.; Baawain, M.; Al-Mamun, A.; Saxena, S.K.; Viswanadham, N. Evaluation of Synthesized Green Carbon Catalyst from Waste Date Pits for Tertiary Butylation of Phenol. Arab. J. Chem. 2020, 13, 298–307. [Google Scholar] [CrossRef]
- De Moraes, N.P.; Torezin, F.A.; Jucá Dantas, G.V.; De Sousa, J.G.M.; Valim, R.B.; Da Silva Rocha, R.; Landers, R.; Da Silva, M.L.C.P.; Rodrigues, L.A. TiO2/Nb2O5/Carbon Xerogel Ternary Photocatalyst for Efficient Degradation of 4-Chlorophenol under Solar Light Irradiation. Ceram. Int. 2020, 46, 14505–14515. [Google Scholar] [CrossRef]
- De Moraes, N.P.; De Siervo, A.; Silva, T.O.; Da Silva Rocha, R.; Reddy, D.A.; Lianqing, Y.; De Vasconcelos Lanza, M.R.; Rodrigues, L.A. Kraft Lignin-Based Carbon Xerogel/Zinc Oxide Composite for 4-Chlorophenol Solar-Light Photocatalytic Degradation: Effect of pH, Salinity, and Simultaneous Cr(VI) Reduction. Environ. Sci. Pollut. Res. 2023, 30, 8280–8296. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, N.P.; Campos, T.M.B.; Thim, G.P.; De Siervo, A.; Lanza, M.R.D.V.; Rodrigues, L.A. Application of a New Lignin/Cellulose Carbon Xerogel/ZnO/Bi2O3/Bi° Composite Photocatalyst for the Degradation of Bisphenol-A under Sunlight. Chem. Phys. Impact 2023, 6, 100182. [Google Scholar] [CrossRef]
- Raut, S.U.; Bhagat, P.R. Sugarcane Bio-Refinery Products: An Efficient One Umbrella Approach for Synthesis of Biofuel and Value-Added Compounds Using Metal-Free Photo-Catalyst. Fuel 2021, 303, 121154. [Google Scholar] [CrossRef]
- Chen, L.; Hang, J.; Chen, B.; Kang, J.; Yan, Z.; Wang, Z.; Zhang, Y.; Chen, S.; Wang, Y.; Jin, Y.; et al. Photocatalytic Uranium Removal from Basic Effluent by Porphyrin-Ni COF as the Photocatalyst. Chem. Eng. J. 2023, 454, 140378. [Google Scholar] [CrossRef]
- Phuangburee, T.; Solonenko, D.; Plainpan, N.; Thamyongkit, P.; Zahn, D.R.T.; Unarunotai, S.; Tuntulani, T.; Leeladee, P. Surface Modification of Graphene Oxide via Noncovalent Functionalization with Porphyrins for Selective Photocatalytic Oxidation of Alcohols. New J. Chem. 2020, 44, 8264–8272. [Google Scholar] [CrossRef]
- Dondi, D.; Vadivel, D. Preparation of catalysts from renewable and waste materials. Catalysts 2020, 10, 662. [Google Scholar] [CrossRef]
- Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 2009, 38, 1999–2011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadivel, D.; Suryakumar, S.; Casella, C.; Speltini, A.; Dondi, D. Advancements in Materials Science and Photocatalysts for Sustainable Development. Catalysts 2024, 14, 378. https://doi.org/10.3390/catal14060378
Vadivel D, Suryakumar S, Casella C, Speltini A, Dondi D. Advancements in Materials Science and Photocatalysts for Sustainable Development. Catalysts. 2024; 14(6):378. https://doi.org/10.3390/catal14060378
Chicago/Turabian StyleVadivel, Dhanalakshmi, Swetha Suryakumar, Claudio Casella, Andrea Speltini, and Daniele Dondi. 2024. "Advancements in Materials Science and Photocatalysts for Sustainable Development" Catalysts 14, no. 6: 378. https://doi.org/10.3390/catal14060378
APA StyleVadivel, D., Suryakumar, S., Casella, C., Speltini, A., & Dondi, D. (2024). Advancements in Materials Science and Photocatalysts for Sustainable Development. Catalysts, 14(6), 378. https://doi.org/10.3390/catal14060378