First Principles Study of O2 Dissociative Adsorption on Pt-Skin Pt3Cu(111) Surface
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. The Adsorption of O2
3.2. The Electronic Structure of Pt-Skin Pt3Cu(111) Surface
3.3. The Dissociation of O2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gumuslu, G.; Kondratyuk, P.; Boes, J.R.; Morreale, B.; Miller, J.B.; Kitchin, J.R.; Gellman, A.J. Correlation of Electronic Structure with Catalytic Activity: H2–D2 Exchange across CuxPd1–x Composition Space. ACS Catal. 2015, 5, 3137–3147. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Z.; Huang, W.; Zhou, S.; Hu, Z.; Wang, L. Ab Initio Investigation of the Adsorption and Dissociation of O2 on Cu-Skin Cu3Au (111) Surface. Catalysts 2022, 12, 1407. [Google Scholar]
- Wang, Q.; Mi, B.; Zhou, J.; Qin, Z.; Chen, Z.; Wang, H. Hollow-Structure Pt-Ni Nanoparticle Electrocatalysts for Oxygen Reduction Reaction. Molecules 2022, 27, 2524. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, J.; Yu, X. The adsorption, diffusion and dissociation of O2 on Pt-skin Pt3Ni (1 1 1): A density functional theory study. Chem. Phys. Lett. 2010, 499, 83–88. [Google Scholar] [CrossRef]
- Qiao, Y.; Xu, L.; Zhang, H.; Luo, H. O2 dissociative adsorption on the Cu-, Ag-, and W-doped Al (111) surfaces from DFT computation. Surf. Interface Anal. 2021, 53, 46–52. [Google Scholar] [CrossRef]
- Yu, Y.; Gu, H.; Wu, G.; Liu, X. Density functional theory study of dissociative adsorption of O2 on Pd-skin Pd3Cu (1 1 1) surface. Comput. Mater. Sci. 2024, 237, 112876. [Google Scholar]
- Liu, J.; Fan, X.; Sun, C.Q.; Zhu, W. DFT study on intermetallic Pd–Cu alloy with cover layer Pd as efficient catalyst for oxygen reduction reaction. Materials 2017, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Chen, S. Comparative study of oxygen reduction reaction mechanisms on the Pd (111) and Pt (111) surfaces in acid medium by DFT. J. Phys. Chem. C 2013, 117, 1342–1349. [Google Scholar] [CrossRef]
- Maatallah, M.; Guo, M.; Cherqaoui, D.; Jarid, A.; Liebman, J.F. Aluminium clusters for molecular hydrogen storage and the corresponding alanes as fuel alternatives: A structural and energetic analysis. Int. J. Hydrogen Energy 2013, 38, 5758–5767. [Google Scholar] [CrossRef]
- Mortensen, J.J.; Hansen, L.B.; Hammer, B.; Nørskov, J.K. Nitrogen adsorption and dissociation on Fe (111). J. Catal. 1999, 182, 479–488. [Google Scholar] [CrossRef]
- Liu, X.; Wang, A.; Wang, X.; Mou, C.Y.; Zhang, T. Au–Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem. Commun. 2008, 27, 3187–3189. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Wang, G. A first principles study of oxygen reduction reaction on a Pt (111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe). Phys. Chem. Chem. Phys. 2011, 13, 20178–20187. [Google Scholar] [CrossRef] [PubMed]
- Stacy, J.; Regmi, Y.N.; Leonard, B.; Fan, M. The recent progress and future of oxygen reduction reaction catalysis: A review. Renew. Sust. Energ. Rev. 2017, 69, 401–414. [Google Scholar] [CrossRef]
- Sadhasivam, T.; Dhanabalan, K.; Roh, S.H.; Kim, T.H.; Park, K.W.; Jung, S.; Kurkuri, M.D.; Jung, H.Y. A comprehensive review on unitized regenerative fuel cells: Crucial challenges and developments. Int. J. Hydrogen Energy 2017, 42, 4415–4433. [Google Scholar] [CrossRef]
- Wu, J.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Markovic, N.; Adzic, R. Kinetic analysis of oxygen reduction on Pt (111) in acid solutions: Intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B 2004, 108, 4127–4133. [Google Scholar] [CrossRef]
- Vesborg, P.C.; Jaramillo, T.F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. Rsc Adv. 2012, 2, 7933–7947. [Google Scholar] [CrossRef]
- Yasmin, S.; Cho, S.; Jeon, S. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance. Appl. Surf. Sci. 2018, 434, 905–912. [Google Scholar] [CrossRef]
- Wu, D.; Yuan, J.; Yang, B.; Chen, H. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer. Surf. Sci. 2018, 671, 36–42. [Google Scholar] [CrossRef]
- Matsui, H.; Shoji, A.; Chen, C.; Zhao, X.; Uruga, T.; Tada, M. Local structures and robust oxygen reduction performances of TiN-supported bimetallic Pt–Cu electrocatalysts for fuel cells. Catal. Sci. Technol. 2024, 14, 1501–1511. [Google Scholar] [CrossRef]
- Deng, Z.; Gong, Z.; Gong, M.; Wang, X. Multiscale Regulation of Ordered PtCu Intermetallic Electrocatalyst for Highly Durable Oxygen Reduction Reaction. Nano Lett. 2024, 24, 3994–4001. [Google Scholar] [CrossRef] [PubMed]
- Zysler, M.; Carbo-Argibay, E.; Ferreira, P.J.; Zitoun, D. Dealloyed Octahedral PtCu Nanoparticles as High-Efficiency Electrocatalysts for the Oxygen Reduction Reaction. ACS Appl. Nano Mater. 2022, 5, 11484–11493. [Google Scholar] [CrossRef]
- Xiao, Z.; Wu, H.; Zhong, H.; Abdelhafiz, A.; Zeng, J. De-alloyed PtCu/C catalysts with enhanced electrocatalytic performance for the oxygen reduction reaction. Nanoscale 2021, 13, 13896–13904. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1993, 49, 14251–14269. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter 1994, 50, 2665–2668. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Hendrik, J.; James, D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Sankarasubramanian, S.; Singh, N.; Mizuno, F.; Prakash, J. Ab initio investigation of the oxygen reduction reaction activity on noble metal (Pt, Au, Pd), Pt3M (M = Fe, Co, Ni, Cu) and Pd3M (M = Fe, Co, Ni, Cu) alloy surfaces, for LiO2 cells. J. Power Sources 2016, 319, 202–209. [Google Scholar] [CrossRef]
- Stamenković, V.; Schmidt, T.J.; Ross, P.N.; Marković, N.M. Surface Composition Effects in Electrocatalysis: Kinetics of Oxygen Reduction on Well-Defined Pt3Ni and Pt3Co Alloy Surfaces. J. Phys. Chem. B 2010, 106, 11970–11979. [Google Scholar] [CrossRef]
- Haile, A.S.; Yohannes, W.; Mekonnen, Y.S. Oxygen reduction reaction on Pt-skin Pt3V (111) fuel cell cathode: A density functional theory study. Rsc Adv. 2020, 10, 27346–27356. [Google Scholar] [CrossRef] [PubMed]
- Kattel, S.; Duan, Z.; Wang, G. Density functional theory study of an oxygen reduction reaction on a Pt3Ti alloy electrocatalyst. J. Phys. Chem. C 2013, 117, 7107–7113. [Google Scholar] [CrossRef]
- Häglund, J.; Guillermet, A.F.; Grimvall, G.; Körling, M. Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 1993, 48, 11685. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Balbuena, P.B. Pt surface segregation in bimetallic Pt3M alloys: A density functional theory study. Surf. Sci. 2008, 602, 107–113. [Google Scholar] [CrossRef]
- Pašti, I.A.; Gavrilov, N.M.; Mentus, S.V. DFT study of chlorine adsorption on bimetallic surfaces-Case study of Pd3M and Pt3M alloy surfaces. Electrochim. Acta 2014, 130, 453–463. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, Q.; Xiao, W.; Wang, J.; Wang, L. Design of highly efficient Ni-based water-electrolysis catalysts by a third transition metal addition into Ni3Mo. Intermetallics 2018, 94, 99–105. [Google Scholar] [CrossRef]
- Yu, Y.; Xiao, W.; Wang, J.; Wang, L. Understanding the surface segregation behavior of transition metals on Ni (111): A first-principles study. Phys. Chem. Chem. Phys. 2016, 18, 26616–26622. [Google Scholar] [CrossRef]
- Allinger, N.L.; Zhou, X.; Bergsma, J. Molecular mechanics parameters. J. Mol. Struct. 1994, 312, 69–83. [Google Scholar] [CrossRef]
- Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Yu, X. Density functional theory studies on the adsorption, diffusion and dissociation of O2 on Pt (111). Phys. Lett. A 2010, 374, 4713–4717. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Liao, S.; Li, B. DFT study of high performance Pt3Sn alloy catalyst in oxygen reduction reaction. Comput. Mater. Sci. 2018, 149, 107–114. [Google Scholar] [CrossRef]
- Dhouib, A.; Guesmi, H. DFT study of the M segregation on MAu alloys (M = Ni, Pd, Pt) in presence of adsorbed oxygen O and O2. Chem. Phys. Lett. 2012, 521, 98–103. [Google Scholar] [CrossRef]
- Ye, Q.; Zhou, F.; Liu, W. Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 2011, 40, 4244–4258. [Google Scholar] [CrossRef] [PubMed]
- Hammer, B.; Norskov, J.K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240. [Google Scholar] [CrossRef]
- Hammer, B.; Nørskov, J.K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220. [Google Scholar] [CrossRef]
- Kitchin, J.R.; Nørskov, J.K.; Barteau, M.A.; Chen, J. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801. [Google Scholar] [CrossRef]
- Kitchin, J.; Nørskov, J.K.; Barteau, M.; Chen, J. Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240–10246. [Google Scholar] [CrossRef]
- Mavrikakis, M.; Hammer, B.; Nørskov, J.K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, K.; Zhang, N.; Guo, S.; Huang, X. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Li, J.; Zhang, S.; Chen, S. High index surface-exposed and composition-graded PtCu3@ Pt3Cu@ Pt nanodendrites for high-performance oxygen reduction. Chin. J. Catal. 2021, 42, 1108–1116. [Google Scholar] [CrossRef]
Pt-skin Pt3Cu(111) | Pt (111) | ||||||
---|---|---|---|---|---|---|---|
Site | Eads | dO–O | Nchg | Site | Eads | dO–O | Nchg |
t-f-b1 | −0.45 | 1.39 | 0.55 | t-f-b | −0.62 | 1.40 | 0.56 |
t-f-b2 | −0.37 | 1.38 | 0.53 | t-h-b | −0.43 | 1.39 | 0.54 |
t-h-b | −0.15 | 1.37 | 0.52 | t-b-t | −0.61 | 1.36 | 0.47 |
t-b-t1 | −0.30 | 1.35 | 0.45 | ||||
t-b-t2 | −0.10 | 1.34 | 0.43 |
Surface | Pt–Pt Distance (Å) | Bader Charge (e) | d-Band Centre (eV) |
---|---|---|---|
Pt-skin Pt3Cu(111) | 2.74 | −0.077 | −2.11 |
Pt(111) | 2.81 | −0.051 | −1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Gu, H.; Fu, M.; Wang, Y.; Fan, X.; Zhang, M.; Wu, G. First Principles Study of O2 Dissociative Adsorption on Pt-Skin Pt3Cu(111) Surface. Catalysts 2024, 14, 382. https://doi.org/10.3390/catal14060382
Yu Y, Gu H, Fu M, Wang Y, Fan X, Zhang M, Wu G. First Principles Study of O2 Dissociative Adsorption on Pt-Skin Pt3Cu(111) Surface. Catalysts. 2024; 14(6):382. https://doi.org/10.3390/catal14060382
Chicago/Turabian StyleYu, Yanlin, Huaizhang Gu, Mingan Fu, Ying Wang, Xin Fan, Mingqu Zhang, and Guojiang Wu. 2024. "First Principles Study of O2 Dissociative Adsorption on Pt-Skin Pt3Cu(111) Surface" Catalysts 14, no. 6: 382. https://doi.org/10.3390/catal14060382
APA StyleYu, Y., Gu, H., Fu, M., Wang, Y., Fan, X., Zhang, M., & Wu, G. (2024). First Principles Study of O2 Dissociative Adsorption on Pt-Skin Pt3Cu(111) Surface. Catalysts, 14(6), 382. https://doi.org/10.3390/catal14060382