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The importance of catalysis is obvious and unquestionable, especially bearing in mind
that about 90% of all commercially produced chemical products involve catalysts at some
step of their manufacture [1]. The history of the catalysis study has been presented in many
fruitful review papers [1–7]. Considering the keywords “catalysis” and “history”, more
than one thousand papers could be found (e.g., 1300 in the Web of Science on 16 April
2024). Interestingly, the special aspects on the development of catalysis research have been
presented in respect not only to the different research fields of catalysis (e.g., organotextile
catalysis [8], heterogeneous catalysis [9,10], homogeneous catalysis [11,12], electrocataly-
sis [13], single-atom catalysis [14], phase transfer [15], solid hydrogen storage [16], plasma
catalysis [17], catalytic combustion [18], minerals [19], small molecules [20], transition
metals [21], computational study/machine learning [22,23], enzyme [24], polymeriza-
tion [25], water oxidation [26], photoredox catalysis [27,28], photocatalysis [29], artificial
photosynthesis [30], fluid catalytic cracking [31], gasoline automobile catalysis [32,33],
nanozymes [34], “the origin of life” [35], applied/industrial catalysis [1,36,37], etc.) and
particular catalysts (e.g., Ziegler–Natta catalysts [38]), but also to the specific countries
(e.g., Korea [39], Brazil [40–42], Portugal [43], Italy [44], and India [45]), companies (e.g.,
Ciba–Geigy [46], Roche [47], CF-industries [48], Dow Chemical Company [49], Eastman
Chemical Company [50], Leuna Factory [51], and Volkswagen [52]), world regions (Latin
America [53]), institutes and consortiums (e.g., Dalian Institute of Chemical Physics [54]
and CIRCC in Italy [55]), catalysis societies and their meetings (e.g., The Catalysis Society of
Japan (CATSJ) [56], The Swiss Industrial Biocatalysis Consortium (SIBC) [57], and “50 Years
of German Catalysis Meetings” [58]), and even the collaboration and friendships between
countries (Japan–China [59] and France–Venezuela [60]), etc.

Among various papers, the development of catalysis research in the field of organic
chemistry has been well documented [61], as shown by a significant increase in the number
of published papers (Figure 1). Many different aspects of organic chemistry have been dis-
cussed, including single-atom catalysis [62], hydrogenation [63], C-H functionalization [64],
enantioselective catalysis [65], methylation [66], nucleophilic phosphinocatalysis [67], chem-
istry of alkynes [12], isocyanide-based multicomponent reactions [28], aldol reaction [68],
Fischer–Tropsch (FT) synthesis [69,70] (and even the reactors [71]), microwave-assisted
synthesis [42], Diels–Alder reaction [72], Suzuki–Miyaura cross-couplings [73], synthesis
of nitrile [74], formose reaction [75], π-allylpalladium chemistry [76], palladium-based
catalysts [77–80], and nickel catalysts [79].

Obviously the studies on catalysis by famous scientists, including the works by
Lavlavel G. lonescu [81], Nikolai Zelinsky [82,83], Heinz Heinemann [84], Paul Sabatier [85],
Jean Baptiste Senderens [85], Mikhail Kucherov [86], William Crowell Bray [87], Slobodan
Anic [88], Luigi Casale [89], and Gilbert Stork [90,91], have also been acknowledged.

This Special Issue of Catalysts is dedicated to Professor Jiro Tsuji, who passed away on
1 April 2022. Jiro Tsuji was born on 11 May 1927, in Shiga, Japan. He received a Bachelor of
Science degree from Kyoto University, Japan, in 1951, a M.Sc. degree from Baylor University,
USA, in 1957, and a Ph.D. from Columbia University, USA, in 1960 under the supervision
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of Gilbert Stork. Tsuji returned to Japan in 1962 to work as a research associate at Toray
Industries, where he began his career in transition metal-catalyzed reactions. In 1974, he
moved to the Tokyo Institute of Technology and served as a professor until retirement age
of 60 in 1988. Thereafter, he was a professor at Okayama University of Science, Japan, from
1988 to 1996, and then at Kurashiki University of Science and the Arts from 1996 to 1999.
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tions and showed a general idea of developing and applying these reactions in organic 
synthesis. Among the well-known reactions are several types of Pd-catalyzed ones, such 
as (i) the substitution of allylic substrates based on the reaction of π-allyl palladium with 
carbon nucleophiles, discovered in 1965; (ii) reactions of allyl β-keto esters, resulting in 
allylation, olefin formation, and reduction; (iii) reactions of propargylic substrates; and 
(iv) the formation of methyl ketones from 1-olefins, based on the Wacker process of eth-
ylene. It is noteworthy that the olefin formation is used as the key step in the industrial 
synthesis of jasmonate [92]. Other reactions catalyzed by Pd, Ru, and Cu are carbonylation 
of olefins, dienes, acetylenes, and allyl compounds; decarbonylation of acid chloride and 
aldehydes; oxidative decomposition of catechol to muconic acid; etc.  

Professor Jiro Tsuji focused on the carbon–carbon bond-forming reaction from the 
very beginning of his research. According to Tsuji, the importance of organic synthesis 
was taught by professor Gilbert Stork (who he acknowledged in two review papers 
[90,91]) when he was in the doctoral program at Columbia University. 

The significance of the reactions found by Tsuji has been proven by their widespread 
adoption in academic and industrial laboratories. Consequently, it is not surprising that 
Tsuji has been honored with the Chemical Society of Japan Award in 1981, the Japanese 
Medal of Honor with Purple Ribbon in 1994, the Japan Academy Prize in 2004, and the 
Tetrahedron Prize in 2014. He received the title of honorary professor at Tokyo Institute 
of Technology on 21 July 2011.  

It must be underlined that two reactions were named after him, i.e., the Tsuji–Trost 
reaction and the Tsuji–Wilkinson decarbonylation reaction. The former (also called the 
Trost allylic alkylation or allylic alkylation) is a substitution reaction with a palladium 
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Professor Jiro Tsuji pioneered the discovery of many transition metal-catalyzed reac-
tions and showed a general idea of developing and applying these reactions in organic
synthesis. Among the well-known reactions are several types of Pd-catalyzed ones, such
as (i) the substitution of allylic substrates based on the reaction of π-allyl palladium with
carbon nucleophiles, discovered in 1965; (ii) reactions of allyl β-keto esters, resulting in
allylation, olefin formation, and reduction; (iii) reactions of propargylic substrates; and
(iv) the formation of methyl ketones from 1-olefins, based on the Wacker process of ethylene.
It is noteworthy that the olefin formation is used as the key step in the industrial synthesis
of jasmonate [92]. Other reactions catalyzed by Pd, Ru, and Cu are carbonylation of olefins,
dienes, acetylenes, and allyl compounds; decarbonylation of acid chloride and aldehydes;
oxidative decomposition of catechol to muconic acid; etc.

Professor Jiro Tsuji focused on the carbon–carbon bond-forming reaction from the
very beginning of his research. According to Tsuji, the importance of organic synthesis
was taught by professor Gilbert Stork (who he acknowledged in two review papers [90,91])
when he was in the doctoral program at Columbia University.

The significance of the reactions found by Tsuji has been proven by their widespread
adoption in academic and industrial laboratories. Consequently, it is not surprising that
Tsuji has been honored with the Chemical Society of Japan Award in 1981, the Japanese
Medal of Honor with Purple Ribbon in 1994, the Japan Academy Prize in 2004, and the
Tetrahedron Prize in 2014. He received the title of honorary professor at Tokyo Institute of
Technology on 21 July 2011.

It must be underlined that two reactions were named after him, i.e., the Tsuji–Trost
reaction and the Tsuji–Wilkinson decarbonylation reaction. The former (also called the Trost
allylic alkylation or allylic alkylation) is a substitution reaction with a palladium catalyst,
involving a substrate that contains a leaving group in an allylic position. This work (already
mentioned above) was first pioneered by professor Tsuji in 1965 [93] and, then, continued
by professor Barry Trost in 1973 with the introduction of phosphine ligands [94]. The latter
is a method for the decarbonylation of aldehydes and some acyl chlorides. The name has
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recognized professor Tsuji, whose team reported as first the use of RhCl(PPh3)3) catalyst
(Wilkinson) for these reactions.

The scientific achievements of professor Jiro Tsuji have resulted in more than 250 scien-
tific papers, cited in more than 8,000 works, and reaching almost 13,000 citations (according
to the Web of Science, on 23 April 2024). Obviously, the papers with the highest interests of
the scientific community present palladium catalysts in organic synthesis [95–101]. How-
ever, also other catalysts have been successfully applied, and the data reported have been
highly cited, including osmium tetroxide [102], metal complexes (e.g., rhodium, ruthenium,
molybdenum, nickel, palladium, cuprous, titanium, and aluminum [103–108]), and other
metals (copper [109,110], bismuth [111], and iron [110]).

This Special Issue of Catalysts, in memory of prof. Jiro Tsuji, was announced to ac-
knowledge the magnificent impact of his study on others. In total, eleven papers were
published, including three reviews, six research papers, and two communications. It
must be pointed out that six of them have been selected as feature papers. The review
papers focus on (i) the construction of structurally intriguing π-extended polycyclic het-
eroaromatics through catalytic coupling reactions [112]; (ii) the coupling reactions using
organoborates/Ni and RMgX/Cu reagents [113]; and (iii) the transition metal-catalyzed
ring-closing metathesis and coupling reactions [114].

The communications by Sieger et al. and Cusumano et al. present their findings on the
Rh-catalyzed addition reaction of nitrogen-containing heterocycles to internal allenes [115]
and the origins of enantioselectivity in the Pd-catalyzed decarboxylative allylic alkylation
of N-benzoyl lactams [116], respectively.

Among research papers, besides classical organic synthesis approaches, other so-called
“green” methods have also been discussed, i.e., using photocatalysis and electrochemistry.
The photocatalytic formation of (2S,3S)-S-[(Z)-aminovinyl]-3-methyl-D-cysteine (AviMe-
Cys) has been proposed by Kumashiro et al. [117]. In the case of electrochemistry, oxidative
cyclization of ortho-vinyl aniline has been proposed by Hu et al. [118].

The favorite topic of professor Tsuji, i.e., palladium catalysis, has been discussed by Bao
et al. [119], presenting a three-component cross-coupling reaction of 2-(trimethylsilyl)phenyl
trifluoromethanesulfonate, benzylic/allylic bromides, and 1,1-bis[(pinacolato)boryl]methane.
An interesting approach has been proposed by Ito et al. for the preparation of poly-
substituted 3-hydroxypyridines from amino acids, propargyl alcohols, and arylboronic
acids [120]. Ostrowska et al. proposed the synthetic protocol for palladacycle complexes
using a mild base and an environmentally desirable solvent [121]. Finally, the substitution
of secondary propargylic phosphates has been carried out by Kobayashi et al. with the use
of aryl-lithium-based copper reagents [122].

To conclude, the significant contribution of professor Jiro Tsuji in the fields of organic
chemistry and catalysis is unquestionable. It is thought that the research started by Tsuji
will inspire others further in the development of new, environmentally friendly synthesis
methods for world sustainability.

Finally, guest editors of this Special Issue thank all authors for their valuable contri-
butions, without which this Special Issue would not have been possible. Moreover, we
would like to express our sincerest thanks also to the editorial team of Catalysts for their
kind support, advice, and fast responses.

Acknowledgments: The fruitful comments from Yuichi Kobayashi (guest editor of this Special Issue)
are highly acknowledged.

Conflicts of Interest: The authors declare no conflicts of interest.
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