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Abstract: An approach towards incorporating varied degrees of steric profiles around the ligand’s
backbone, which were envisaged to alter the catalytic paths leading to targeted 1-C8/1-C6 olefin
products, were explored. Cr-pre-catalysts designed with PNP ligands comprising a fused aryl moiety
were delivered at a relatively higher C8 olefin selectivity (up to 74.6 wt% and C8/C6 of 3.4) when
the N-connection to the aromatic unit was placed at the 2-position. A relatively higher C6 olefin
selectivity (up to 33.7 wt% and C8/C6 of 1.9) was achieved with the PNP unit anchored at the 1- or
6-position. Based on detailed catalytic studies, we confirm the fact that by introducing a controlled
degree of bulkiness on the N-site through a judicious selection of the N-aryl moiety of different sizes,
the selectivity of the targeted olefin product could be tuned in a rational manner.

Keywords: octene; oligomerization; catalysis; chromium; ethylene

1. Introduction

Chromium catalysts constructed with phosphine donor ligands exhibiting low bite
angles have captivated researchers for decades due to their unparallel potential over other
ligand systems to carryout highly selective ethylene oligomerization under amenable
conditions [1–18].

By carefully choosing ligands with specific attributes, catalytic processes yielding
highly sought-after linear alpha-olefins (LAOs), particularly those with 6- and 8-carbon
atoms, have been successfully obtained in a selective manner [8–10]. In fact, the leading
LLDPE-manufactured units largely depend on the alpha olefin co-monomer feeds, which
are primarily accessed through a chromium-catalyzed ethylene oligomerization process.
The technology revolving around the Cr-PNP system has been extensively explored, gaining
prominence since the groundbreaking discovery of the first catalyst system of this kind by
Sasol several decades ago [3–6,11]. Subsequently, numerous studies have been conducted
to elucidate the impact of N-substituents on PNP ligands by introducing various func-
tional moieties to achieve enhanced olefin (1-octene) products and reactivity [8,13,14,19]. A
systematic approach in this pursuit involves the strategic functionalization of the N-site
of PNP ligands. We have recently demonstrated that by introducing a specific type of
bulky triptycene moiety as an N-substituent, exceptional alpha-selective Cr-systems can be
developed [20]. Furthermore, by regiospecifically introducing targeted functional groups,
such as -CF3 and -OMe, catalyst systems with remarkable activity and temperature toler-
ance can be generated [21,22]. During our research on Cr-catalysts supported by N-aryl
PNP ligands, we aimed to explore the influence of fused polyaromatic moieties and their
connectivity to the N-site. These factors were anticipated to affect the Cr-catalyzed ethylene
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oligomerization reaction pathways, leading to the desired olefin products. In pursuit of
this objective, we designed several innovative N-aryl PNP ligands (Figure 1) incorporating
N-anthracenyl, pyrenyl, naphthyl, chrysenyl, and fluorenyl functionalities. We assessed
their performances in Cr-catalyzed oligomerization reactions, and the catalytic outcomes of
these new systems were compared with those obtained using a well-established N-phenyl,
N-naphthyl, substituted PNP-Cr system under identical reaction conditions [14].
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Figure 1. Various N-aryl functionalized PNP ligands evaluated for selective ethylene oligomerization.

2. Results and Discussion

Treating amine precursors with chlorodiphenylphosphine in the presence of a triethy-
lamine base yielded PNP compounds 1–9 in moderate to good yields (refer to Section 3 for
experimental details). The 31P NMR spectrum of compounds 1 and 2 (depicted in Figure 2)
displayed intense peaks at 66.27 and 62.67 ppm, respectively, due to the P-atom of the
PNP ligands [11]. Similarly, novel ligands 3, 4, 7, and 9 also exhibited 31P signals (refer to
Figures S1–S3 and S5 in the Supplementary Materials) that were closely associated with
ligands 1 and 2 (refer to Table 1), confirming the formation of the desired PNP ligands. The
fluorenyl-functionalized ligand 8 displayed a slightly downfield-shifted 31P NMR signal at
57.73 ppm (Figure S4, Supplementary Materials). All new compounds underwent further
characterization via 1H and 13C NMR spectroscopic and elemental microanalysis studies
(see Section 3 for details), unequivocally confirming the formation of the desired structures.
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Table 1. 31P chemical shifts of the novel PNP ligands.

Ligand 31P NMR (ppm) Ligand 31P NMR (ppm)

1 66.27 7 63.60
2 62.67 8 57.73
3 68.52 9 62.43
4 64.21

To explore the influence of the steric profile defined by the selection of the PNP lig-
ands’ N-aryl moiety on the ethylene tetramerization performance and product selectivity,
particularly towards C6 and C8 olefins, our investigation commenced with pre-catalysts
based on 1 and 2/Cr(acac)3. A systematic investigation was conducted to determine the
impacts of the solvents, including cyclohexane (Cy), methylcyclohexane (MeCY), and
chlorobenzene (PhCl), while maintaining a reaction temperature of 45 ◦C, ethylene pres-
sure at 45 bar, and MMAO 3A as an activator. The results presented in Table 2 (entries
1–8) reveal that among all the solvents examined, chlorobenzene exhibited the best per-
formance in terms of productivity (1774 kg·gCr−1·h −1) using the ligand 2/Cr(acac)3
system (entry 6). Under identical reaction conditions, 1/Cr(acac)3 yielded a productivity
of 1479 kg·gCr−1·h−1 (entry 3). More importantly, both catalyst systems maintained high
productivity (>1000 kg·gCr−1·h−1) and C8 selectivity (≥68 wt%) for a reaction time of up
to 1 h (entries 7 and 8). Under these conditions, the 1/Cr(acac)3 system yielded a PE selec-
tivity of 1.5 wt% (vs. 1.7 wt% for a 10 min reaction time). A slightly higher PE selectivity
(1.4 wt% vs. 0.8 wt% for a 10 min reaction time) was observed for the 2/Cr(acac)3 system.
Moreover, a slightly higher selectivity towards C10+ isomers (5.1 and 3.5 wt% vs. 2.0 and
1.3 wt% for a 10 min reaction time) was observed using the 1/Cr(acac)3 and 2/Cr(acac)3
systems, respectively. Alternatively, the selectivity towards C6 isomers was suppressed
(when compared to the results obtained after a 10 min reaction time) by over 2 wt% for
both pre-catalyst systems. The catalytic reactions in aliphatic solvents yielded lower pro-
ductivity, typically in the range of 300–500 kg·gCr−1·h−1 for both systems (entries 1, 2, 4, 5),
along with a slight alteration in product selectivity, especially in the cyclohexane medium
where a slightly reduced C6 selectivity (21.5 wt%) and increased C8 or C10+ selectivity were
noted. On the other hand, in the methylcyclohexane solvent, a slightly higher PE selectivity
was observed (2.6 wt%, entry 2). A similar reactivity trend in the aliphatic solvent was
observed earlier for other N-aryl PNP-stabilized chromium pre-catalysts [21,22]. A detailed
analysis of the product profile presented in Table 2 revealed that, contrary to productivity,
1/Cr(acac)3 could achieve better C8 selectivity (72.1 wt% vs. 68.4 wt% for 2/Cr(acac)3 in
PhCl). Meanwhile, 2/Cr(acac)3 exhibited higher selectivity towards C6 olefins (29.5 wt%
vs. 24.2 wt% for 1/Cr(acac)3) in the PhCl solvent. These results suggest that the additional
steric bulkiness introduced in the pyrenyl-based ligand, 2, by fusing extra phenyl units at
the beta-position relative to the PNP moiety may relatively favor the reaction path involving
a metalla-cycloheptane intermediate (supported by addition studies using Cr-pre-catalysts
derived with alternative PNP ligands, vide infra), leading to a relatively higher forma-
tion of C6 olefins. Conversely, the Cr-system based on the less bulky ligand 1 relatively
favored the mechanistic path involving a metalla-cyclononane intermediate, resulting in an
enhanced formation of C8 olefins. These observations align with the theoretical findings
that investigate the correlation between transition state energies and the preferred catalytic
pathway in relation to the steric hindrance around the catalytic Cr-site [23].

Catalytic runs using 2/Cr(acac)3 at lower ethylene pressures of 10 and 30 bar was
evaluated in a chlorobenzene solvent. Based on the data presented in Table 3 (entries 1–3),
it could be inferred that as the pressure of the reaction vessel drops, the C8 selectivity
decreases dramatically (from 68.4 wt% @ 45 bar to 37.4 wt% @ 10 bar) while boosting C6
and PE selectivity up to 42.2 and 20.4 wt%, respectively. The C10+ products selectivity,
however, was found to drops to almost zero at a 10-bar ethylene pressure, although the
productivity (161 kg·gCr−1·h−1) under this condition was significantly low. These data
tend to indicate a relative shift in the catalytic path from tetramerization to trimerization in
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favor of a relative higher formation of C6 isomers, especially at 30 bar, along with other side
reactions, leading to the formation of an increased PE fraction. The variation in the reaction
temperature also exhibited an influence on the productivity and as well as on olefin and
PE selectivity (Table 4). At 60 ◦C, a notably higher C6 selectivity (38.1 wt% vs. 29.5 wt%
@ 45 ◦C) was obtained at the expense of C8 isomer selectivity, which was reduced from
68.4 wt% to 59.9 wt%. An alternative selectivity trend, however, was noted for a reaction
at 30 ◦C, where an improved C8 selectivity (70.9 wt%, entry 1) and reduced C6 selectivity
(24.5 wt%) was ascertained compared to that observed at 45 ◦C, even though the loss of
productivity (from 1774 kg·gCr−1·h−1 to 431 kg·gCr−1·h−1) was significantly high.

Table 2. Solvent-dependent ethylene tetramerization study using Cr(acac)3/1 or 2/MMAO-3A
system.

Entry Ligand Productivity
(kg·gCr

−1·h−1) b

Product Selectivity (wt%)

Solvent C6

1-C6
in C6
(%)

1-C6

C6
Cyclics

c
C8

1-C8
in C8
(%)

1-C8
1-C6 +
1-C8

C10+ PE

1 1 Cy 435 21.5 57.7 12.4 9.1 74.1 91.6 67.9 80.2 2.6 1.8
2 1 MeCY 290 23.9 61.1 14.6 9.3 71.8 88.1 63.3 77.9 1.7 2.6
3 1 PhCl 1479 24.2 57.4 13.9 10.3 72.1 95.6 68.9 82.8 2.0 1.7
4 2 Cy 450 25.1 64.5 16.2 8.9 71.7 90.2 64.7 80.9 1.6 1.5
5 2 MeCY 511 26.3 58.9 15.5 10.8 70.7 91.9 65.0 80.5 1.8 1.2
6 2 PhCl 1774 29.5 70.5 20.8 8.7 68.4 97.8 66.9 87.7 1.3 0.8

7 a 1 PhCl 1005 21.4 56.9 12.2 9.2 72.1 98.0 70.7 82.9 5.1 1.5
8 a 2 PhCl 1214 27.1 62.4 16.9 10.2 68.0 98.4 66.9 83.8 3.5 1.4

Conditions: Cr(acac)3 1 µmol, MMAO-3A 2 mmol (Al/Cr 2000), L/Cr = 1, total solution volume 100 mL, 45 ◦C,
45 bar, 10 min; a 60 min. b calculated from total yield of liquid (oligomers) and solid (PE). c methylcyclopentane
and methylenecyclopentane were identified as C6 cyclic products.

Table 3. Pressure-dependent ethylene tetramerization study using Cr(acac)3/2/MMAO-3A system.

Entry Productivity
(kg·gCr

−1·h−1) a

Product Selectivity (wt%)

Pressure
(Bar) C6

1-C6 in
C6 (%) 1-C6

C6
Cyclics

b
C8

1-C8 in
C8 (%) 1-C8

1-C6 +
1-C8

C10+ PE

1 10 161 42.2 91.8 38.7 3.5 37.4 96.2 36.0 74.7 0.0 20.4
2 30 1076 32.0 74.4 23.8 8.2 63.0 96.8 61.0 84.8 0.8 4.2
3 45 1774 29.5 70.5 20.8 8.7 68.4 97.8 66.9 87.7 1.3 0.8

Conditions: Cr(acac)3 1 µmol, L/Cr = 1, MMAO-3A 2 mmol (Al/Cr 2000), PhCl, total solution volume 100 mL,
45 ◦C, 10 min. a calculated from total yield of liquid (oligomers) and solid (PE). b methylcyclopentane and
methylenecyclopentane were identified as C6 cyclic products.

Table 4. Temperature-dependent ethylene tetramerization study using Cr(acac)3/2/MMAO-3A system.

Entry Productivity
(kg·gCr

−1·h−1) a

Product Selectivity (wt%)

Temperature
(◦C) C6

1-C6 in
C6 (%) 1-C6

C6
Cyclics

b
C8

1-C8 in
C8 (%) 1-C8

1-C6 +
1-C8

C10+ PE

1 30 431 24.5 62.7 15.4 9.1 70.9 94.6 67.1 82.4 2.0 2.6
2 45 1774 29.5 70.5 20.8 8.7 68.4 97.8 66.9 87.7 1.3 0.8
3 60 1206 38.1 79.1 30.1 8.0 59.9 97.0 58.1 88.2 0.4 1.5

Conditions: Cr(acac)3 1 µmol, L/Cr = 1, MMAO-3A 2 mmol (Al/Cr 2000), PhCl, total solution volume 100 mL,
45 bar, 10 min. a calculated from total yield of liquid (oligomers) and solid (PE). b methylcyclopentane and
methylenecyclopentane were identified as C6 cyclic products.

To provide a more comprehensive understanding of our findings (vide supra), ligands
3–9 were additionally assessed under identical reaction conditions, employing PhCl as
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the solvent. The data provided in Table 5 indicate that the previously reported Cr-pre-
catalyst based on ligand 5, lacking fused aromatic functionality at the β-positions, displayed
a C6 selectivity (22.8 wt%, entry 1) quite comparable to that of the 1/Cr(acac)3 system
(24.2 wt%, entry 4). Both systems also exhibited a similar C10+ olefin product selectivity
(2 wt%), even though 5/Cr(acac)3 showed a slightly higher C8 (74.1 wt% vs. 72.1 wt%
and lower PE (1.0 wt% vs. 1.7 wt%) selectivity. Likewise, a catalytic run utilizing the
newly introduced ligand 3-supported Cr-pre-catalyst, anticipated to possess a similar steric
profile (as 1 and 5) around the catalytic site (illustrated in Figure 3 with red highlights),
also demonstrated comparable C6 oligomer selectivity (22.2 wt%). Furthermore, all these
ligand-based pre-catalysts achieved over 72 wt% C8 olefin products while obtaining a
similar C10+ product selectivity (~2 wt%). In contrast, the chromium pre-catalysts formed
with ligand 6 exhibited a relative preference for the metallacycloheptane path, resulting in
an enhanced C6 olefin fraction (26.7 wt% vs. 24.2 wt% for 1/Cr(acac)3 and 22.2 wt% for
3/Cr(acac)3) at the expense of C8 selectivity (68.4 wt% vs. 72.1 wt% for 1/Cr(acac)3 and
74.6 wt% for 3/Cr(acac)3). The pre-catalyst 6/Cr(acac)3 also exhibited a slightly higher
PE selectivity (2.8 wt%, entry 2), even though the C10+ olefin product selectivity was
somewhat similar (~2 wt%). The observed trend supports the hypothesis of a nearby steric
environment surrounding the catalytic Cr-site, which is consistent with findings in the
ligand 2/Cr(acac)3 system (Figure 3, highlighted in blue).

Table 5. Ethylene tetramerization study using Cr(acac)3/L/MMAO-3A system in PhCl.

Entry Ligand Productivity
(kg·gCr

−1·h−1) a

Product Selectivity (wt%)

C6
1-C6 in
C6 (%) 1-C6

C6
Cyclics

b
C8

1-C8 in
C8 (%) 1-C8

1-C6 +
1-C8

C10+ PE

1 5 1323 22.8 61.5 14.0 8.8 74.1 96.8 71.7 85.8 2.0 1.0
2 6 702 26.7 69 18.4 8.3 68.4 96.9 66.3 84.7 2.1 2.8
3 3 1177 22.2 60.7 13.5 8.7 74.6 97.1 72.4 85.9 2.2 1.1
4 1 1479 24.2 57.3 13.9 10.3 72.1 95.6 68.9 82.8 2.0 1.7
5 2 1774 29.5 70.5 20.8 8.7 68.4 97.8 66.9 87.7 1.3 0.8
6 4 1452 30.4 74.9 22.8 7.6 67.6 98 66.2 89.0 1.0 0.9
7 7 1505 29.8 67.8 20.2 9.6 67.4 96.8 65.2 85.4 1.5 1.2
8 8 1309 25.3 75.6 19.1 6.2 72.5 99.0 71.8 90.9 0.9 1.3
9 9 1234 33.7 91.2 30.7 3.0 64.4 99.5 64.1 94.8 0.4 1.5

Conditions: Cr(acac)3 1 µmol, MMAO-3A 2 mmol (Al/Cr 2000), L/Cr = 1, total solution volume 100 mL, 45 ◦C,
45 bar, 10 min. a calculated from total yield of liquid (oligomers) and solid (PE). b methylcyclopentane and
methylenecyclopentane were identified as C6 cyclic products.

Indeed, this presumption receives can be further validated via the catalytic results
obtained with the Cr-systems supported by ligands 4, 7, and 9, revealing an approximate
30–33 wt% and 64–68 wt% selectivity towards C6 and C8 olefins, respectively. The PE
and C10+ selectivity were found roughly in the range of 0.4–1.5 wt% (entries 6, 7 and
9). The inherent steric profiles around the catalytic sites in all these ligand-supported
pre-catalysts are anticipated to resemble those in the ligand 2-based Cr-system (refer to
Figure 3, where the blue highlights indicate corresponding structural features). The highest
C6 selectivity observed in the 9/Cr(acac)3 (33.7 wt%) system underscores the impact of fine
tuning via the introduction of a -CH3 moiety at the second β-site in altering the preferred
reaction pathways.

Remarkably, the 9/(acac)3 systems also achieved outstanding total alpha selectivity
(~95 wt%, entry 9) while yielding a minimal fraction of C6-cyclic products (3 wt%). Surpris-
ingly, the chromium pre-catalyst constructed with ligand 8, featuring a fluorene moiety as
a N-substitution, demonstrated a preference for the formation of C8 products (72.5 wt%,
entry 8) over C6 (25.3 wt%) while exhibiting ~1 wt% PE and C10+ olefin selectivity, despite
having β-functionalization (Figure 3, highlighted in purple).
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Figure 3. Illustration of a common underlying basic substructure around PNP units in ligands 1, 3,
and 5 is schematically depicted (highlighted in red). Similarly, ligands 2, 4, 6, and 7 are expected to
showcase somewhat identical steric profiles around the PNP units, as illustrated in blue. In contrast,
ligands 8 and 9 were assumed to introduce a slightly altered steric environment.

This indicates the fact that the steric hindrance associated with the fluorenyl moiety
does not impede the catalytic reaction from proceeding via a metallacyclononane inter-
mediate. Nevertheless, the overall catalytic results clearly affirm that product selectivity,
especially towards 1-C8/1-C6 olefins (Figure 4), can be finely tuned by judiciously selecting
the ligand structure. Thus, a reaction mechanism favoring the metallacyclononane inter-
mediate could be facilitated using chromium pre-catalysts based on ligands 1, 3, 5, and 8,
while a mechanistic path relatively favoring the metallacycloheptane intermediate could be
promoted by employing ligand 2-, 4-, 6-, 7-, and 9-supported Cr-systems.
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3. Experimental Section
3.1. Ligand Preparation

Synthesis of PNP ligand (1) (Scheme 1). In a solution containing 2-aminoanthracene
(0.28 g, 1.45 mmol) and triethylamine (4.34 mmol) in 5 mL dichloromethane, Ph2PCl (0.64 g,
2.90 mmol) was gradually introduced at 0 ◦C. The mixture was stirred for 1 h and then
allowed to warm up to room temperature (r.t.). Stirring continued for an additional 14 h.
Volatile compounds were removed under reduced pressure, and the residue was extracted
with anhydrous THF (3 × 3 mL). After removing the THF solvent, the remaining solid
residue underwent trituration with anhydrous CH3CN (5 × 5 mL), followed by vacuum
drying at 65 ◦C to obtain the desired ligand in a moderate yield. (0.37 g, 49%). 1H-NMR
(CD2Cl2): 6.9 (bs, 1H, Ar-H), 7.0–8.3 ppm (m, 29H, Ar-H); 13C NMR (CD2Cl2): 107.34,
120.72, 120.78, 123.09, 124.03, 125.13, 125.42, 125.63, 126.12, 127.49, 128.10, 128.53, 128.64,
129.16, 131.32, 131.70, 132.43, 133.28, 139.13, 144.75 ppm; 31P NMR (CD2Cl2): δ 66.27 (s) ppm.
Anal. Calc. for C38H29NP2: H 5.20, C 81.27, N 2.49%. Found H 5.06, C 81.14, N 2.52%.
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Synthesis of PNP ligand (2) (Scheme 2). In a solution containing 1-aminopyrene
(0.35 g, 1.45 mmol) and triethylamine (4.34 mmol) in 5 mL dichloromethane, Ph2PCl (0.64 g,
2.91 mmol) was added slowly at 0 ◦C. The mixture was stirred for 1 h and then allowed
to warm up to room temperature (RT). Stirring continued for an additional 14 h. Volatile
compounds were removed under reduced pressure, and the residue was extracted with
anhydrous THF (3 × 2 mL). After removing the THF solvent, the remaining solid residue
underwent trituration with anhydrous CH3CN (5 × 4 mL), followed by vacuum drying
at 65 ◦C to obtain the desired ligand in a moderate to good yield. (0.55 g, 65%). 1H-NMR
(CD2Cl2): 7.1–8.2 ppm (m, 29H, Ar-pH); 13C NMR (CD2Cl2): 114.40, 118.97, 119.79, 123.71,
123.79, 124.23, 124.33, 124.81, 126.00, 126.10, 126.37, 127.58, 128.38, 128.51, 128.77, 131.21,
131.35, 132.12, 140.02, 146.37 ppm; 31P NMR (CD2Cl2): δ 66.27 (s) ppm. Anal. Calc. for
C40H29NP2: H 4.99, C 82.04, N 2.39%. Found H 4.86, C 82.14, N 2.29%.
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Synthesis of PNP ligand (4) (Scheme 4). In an 8 mL solution of dichloromethane 
containing 1-aminoanthracene (0.22 g, 1.13 mmol) and triethylamine (0.34 g, 3.4 mmol), 
Ph2PCl (0.49 g, 2.26 mmol) dissolved in 2 mL dichloromethane was slowly added at 0 °C. 
The reaction mixture was stirred at this temperature for 1 h and then allowed to warm up 
to room temperature (rt), followed by additional stirring for 12 h. After this time, the 
solvent was removed under reduced pressure, and the residue was extracted with 
anhydrous THF (3 × 5 mL). After removing the THF solvent, the remaining solid residue 
underwent trituration with dry CH3CN (3 × 4 mL), followed by vacuum drying at 40 °C 
for 6 h to yield the ligand 4 in a moderate yield. (0.29 g, 47%). 1H-NMR (CD2Cl2): 6.7–8.4 
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Synthesis of PNP ligand (3) (Scheme 3). In a solution containing 2-naphthylamine
(0.21 g, 1.50 mmol) and triethylamine (4.50 mmol) in 5 mL dichloromethane, Ph2PCl (0.66 g,
3.00 mmol) was slowly added at 0 ◦C. The mixture was stirred for 1 h and then allowed
to warm up to room temperature (RT). Stirring continued for an additional 14 h. Volatile
compounds were removed under reduced pressure, and the residue was extracted with
anhydrous THF (3 × 2 mL). After removing the THF solvent, the remaining solid residue
underwent trituration with anhydrous CH3CN (5 × 3 mL), followed by vacuum drying at
65 ◦C to obtain the desired ligand 3 in a moderate yield. (0.32 g, 42%). 1H-NMR (CD2Cl2):
6.95 (dd, 1H, Ar-H), 7.08 (bs, 1H, Ar-H), 7.3–8.5 ppm (m, 25H, Ar-H); 13C NMR (CD2Cl2):
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126.36, 127.26, 127.31, 127.42, 127.56, 127.63, 128.00, 128.22, 128.44, 128.53, 129.10, 131.06,
133.29, 139.22, 145.22 ppm; 31P NMR (CD2Cl2): δ 68.52 (s) ppm. Anal. Calc. for C34H27NP2:
H 5.32, C 79.83, N 2.74%. Found H 5.26, C 79.74, N 2.66%.
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Scheme 3. Synthetic scheme for the preparation of N-napthyl-substituted PNP ligand 3.

Synthesis of PNP ligand (4) (Scheme 4). In an 8 mL solution of dichloromethane
containing 1-aminoanthracene (0.22 g, 1.13 mmol) and triethylamine (0.34 g, 3.4 mmol),
Ph2PCl (0.49 g, 2.26 mmol) dissolved in 2 mL dichloromethane was slowly added at 0 ◦C.
The reaction mixture was stirred at this temperature for 1 h and then allowed to warm up to
room temperature (rt), followed by additional stirring for 12 h. After this time, the solvent
was removed under reduced pressure, and the residue was extracted with anhydrous
THF (3 × 5 mL). After removing the THF solvent, the remaining solid residue underwent
trituration with dry CH3CN (3 × 4 mL), followed by vacuum drying at 40 ◦C for 6 h to
yield the ligand 4 in a moderate yield. (0.29 g, 47%). 1H-NMR (CD2Cl2): 6.7–8.4 ppm
(m, 27H, Ar-pH); 13C NMR (CD2Cl2): 116.53, 124.29, 124.61, 124.99, 125.51, 126.13, 126.81,
127.54, 127.66, 128.04, 128.47, 128.52, 128.65, 129.07, 129.47, 131.24, 131.66, 132.74, 133.72,
139.70, 145.21 ppm; 31P NMR (CD2Cl2): δ 68.52 (s) ppm. Anal. Calc. for C38H29NP2: H 5.20,
C 81.27, N 2.49%. Found H 5.09, C 81.11, N 2.36%.
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Synthesis of PNP ligand (9) (Scheme 5). In an 8 mL solution of dichloromethane con-
taining 2-methyl-1-naphthylamine (0.18 g, 1.13 mmol) and triethylamine (0.34 g, 3.4 mmol),
Ph2PCl (0.49 g, 2.26 mmol) dissolved in 2 mL dichloromethane was slowly added at 0 ◦C.
The reaction mixture was stirred at this temperature for 1 h and then allowed to warm
up to room temperature (r.t.), followed by additional stirring for 12 h. After this time,
the solvent was removed under reduced pressure, and the residue was extracted with
anhydrous THF (3 × 5 mL). After removing the THF solvent, the remaining solid residue
underwent trituration with dry CH3CN (3 × 4 mL), followed by vacuum drying at 40 ◦C
for 6 h to yield the ligand 9 in a moderate yield. (0.33 g, 55%). 1H-NMR (CD2Cl2): 3.16
(S, 3H, -CH3), 6.69 (m, 1H, Ar-H), 7.0–7.8 ppm (m, 27H, Ar-H); 13C NMR (CD2Cl2): 36.09,
111.49, 113.24, 117.78, 119.70, 120.03, 124.66, 124.93, 126.41, 126.65, 128.13, 129.17, 133.40,
139.66, 142.96, 145.67 ppm; 31P NMR (CD2Cl2): δ 62.43 (s) ppm. Anal. Calc. for C35H29NP2:
H 5.56, C 79.99, N 2.67%. Found H 5.37, C 79.85, N 2.54%.
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Synthesis of PNP ligand (7) (Scheme 6). In a 1.5 mL solution of dichloromethane
containing 6-aminochrysene (0.063 g, 0.26 mmol) and triethylamine (0.079 g, 0.78 mmol),
Ph2PCl (0.115 g, 0.52 mmol) was slowly added at 0 ◦C. The mixture was stirred for 1 h
and allowed to warm up to room temperature (r.t.), followed by additional stirring for
14 h. The volatiles were removed under reduced pressure, and the residue was extracted
with anhydrous THF (2 × 2 mL). After removing THF, the remaining solid was degassed
under vacuum at 50 ◦C for 3 h to yield the desired ligand 7 in moderate yield. (0.1 g,
62%). 1H NMR (CD2Cl2): δ 7.0–8.2 (m, 31H, Ar-H) ppm; 13C NMR (CD2Cl2): 108.82, 120.97,
122.80, 123.36, 124.36, 124.82, 126.03, 126.17, 126.38, 126.79, 127.03, 128.30, 128.72, 129.36,
131.35, 131.75, 132.09, 132.43, 132.84, 134.32, 139.37, 144.16 ppm; 31P NMR (CD2Cl2): δ

60.09 (s) ppm. Elemental microanalysis: Calculated (%) for C42H31NP2: H 5.11, C 82.47, N
2.29; Found (%) H 5.18, C 82.38, N 2.19.
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Synthesis of PNP ligand (8) (Scheme 7). In a 2 mL solution of dichloromethane
containing 1-aminofluorene (0.15 g, 0.84 mmol) and triethylamine (0.25 g, 2.48 mmol),
Ph2PCl (0.36 g, 1.65 mmol) was slowly added at 0 ◦C. The mixture was stirred for 1 h and
allowed to warm up to room temperature (r.t.), followed by additional stirring for 14 h.
The volatiles were removed under reduced pressure, and the residue was extracted with
anhydrous THF (2 × 2 mL). After removing THF, the remaining solid was triturated with
anhydrous CH3CN (1 × 3 mL), followed by degassing at 50 ◦C to yield the desired ligand 8
in a moderate to good yield (0.29 g, 62%). 1H NMR (CD2Cl2): δ 1.74 (bs, 2H, -CH2-), 6.71 (s,
1H, Ar-H), 7.0–7.8 (m, 26H, Ar-H); 13C NMR (CD2Cl2): 20.30, 124.03, 124.52, 126.16, 126.45,
127.18, 127.67, 128.15, 128.86, 129.30, 132.36, 133.70, 133.84, 134.98, 135.15, 138.94, 139.22,
142.75 ppm. Elemental microanalysis: Calculated (%) for C37H29NP2: H 5.32, C 80.86, N
2.55; Found (%) H 5.21, C 80.71, N 2.42.
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3.2. General Oligomerization Procedure

All runs for ethylene oligomerization were carried out in a 250 mL stainless steel
(vessel) Buchi reactor system equipped with a propeller-like stirrer (1000 rpm) and injection
barrel. Co-catalyst diluted in 95 mL of desired solvent and pre-catalyst mixture (containing
Cr(acac)3 and ligand dissolved in 5 mL of chlorobenzene) was charged to the reactor and
pressurized with ethylene at 45 bar at the required temperature. The reaction temperature
was maintained constant during the reaction by circulating hot oil in the jacket and by
allowing the cool liquid to flow from the chiller through the cooling coil present inside
the reactor vessel. SCADA software was used to control the reaction temperature and
pressure of the reactor precisely using an electronic controller. Ethylene was fed on demand
to keep the reactor pressure constant, and the uptake was monitored using a mass flow
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controller (MFC). After the desired reaction time, 2 mL methanol was injected to quench the
reaction, which was then cooled and depressurized slowly to atmospheric pressure. The
small portion of the crude products was filtered and analyzed via GC-FID using nonane as
the internal standard. The remaining mixture was added to 50 mL of acidic methanol (5%
HCl), and the polymeric products were recovered by filtration and washed with distilled
water (3 × 50 mL), followed by drying at 60 ◦C under vacuum.

4. Conclusions

In summary, a systematic study was undertaken to evaluate the effect of a fused
polyaromatic N-aryl substitution of the PNP-type ligands towards a Cr-catalyzed ethylene
tetramerization reaction. The catalytic results show that by judiciously selecting the ligand
structure capable of exhibiting different degrees of steric profiles around the catalytic
Cr-center, product selectivity could be altered in an amenable manner. A remarkably
total alpha selective (94.8 wt%) ethylene tetramerization reaction could be achieved by
decorating both the β-position of the N-aryl ligand with an appropriate functional moiety.

5. Patents

Part of this work was considered for a US patent application (18/068659).
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