

Article **Enhanced Photocatalytic Performances of SnS2/TiO² Composites via a Charge Separation Following Z-Scheme at the SnS2/TiO2{101} Facets**

Nkenku Carl ¹ [,](https://orcid.org/0000-0002-1431-0101) Muhammad Fiaz ² [,](https://orcid.org/0000-0003-4083-2867) Hyun-Seok Oh ¹ and Yu-Kwon Kim 1,2,[*](https://orcid.org/0000-0002-6147-4723)

- ¹ Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; nkenkuc@gmail.com (N.C.); jejuohs@ajou.ac.kr (H.-S.O.)
- ² Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea; fiaz@ajou.ac.kr

***** Correspondence: yukwonkim@ajou.ac.kr; Tel.: +82-31-219-2896

Abstract: The formation of heterojunctions for efficient charge separation has been practiced for the preparation of efficient semiconductor-based photocatalysts for applications such as hydrogen production and environmental remediation. In this study, we synthesized a composite structure with a heterojunction between SnS₂ and TiO₂ through a microwave-assisted hydrothermal process, in which SnS₂ nanoparticles grew on nanocrystalline TiO₂ nanosheets preferentially at the exposed {101} facets. Appropriate exposure of the $\{001\}$ and $\{101\}$ facets of the TiO₂ nanosheet in the composite with a preferential growth of SnS₂ nanoparticles at the {101} facets was the origin of the charge separation following a direct Z-scheme mechanism to result in enhanced photocatalytic performances in photodegradation of organic dyes such as methylene blue (MB) and rhodamine B (RhB) compared to that of SnS₂ and TiO₂ alone. A plot of photodegradation rates vs. SnS₂ ratios in the composites gave an overall volcano-shaped curve with a maximum at the $SnS₂$ ratio of about 33% at which small SnS₂ nanoparticles were populated at the $\{101\}$ facets of the TiO₂ nanosheets with a high surface area (118.2 m 2 g $^{-1}$). Our results suggest the microwave-assisted hydrothermal process can be a good synthetic approach for composite-based photocatalysts with a preferential heterojunction structure.

Keywords: SnS₂ nanoparticles; TiO₂ nanosheets; 2D metal dichalcogenides; photodegradation; heterojunctions

1. Introduction

The design of efficient photocatalytic materials can pave the way not only to utilize energy directly from the Sun as a means to meet the growing world's energy demand but also to eliminate harmful organic compounds for environmental remediation through photocatalytic degradation via direct light-induced chemical reactions mediated by photogenerated electrons and holes [\[1](#page-12-0)[,2\]](#page-12-1). Organic dyes can be good examples of harmful compounds that can be soluble in water and remain for a long time to affect our ecosystems. Organic dyes are commonly used in various areas of our daily life, such as papers, printing, and textiles, and usually have a high degree of chemical stability [\[1\]](#page-12-0). To eliminate such stable but harmful compounds, the use of photocatalysts can ultimately be an environmentally friendly way of accelerating degradation reactions.

Among various photoactive materials, $TiO₂$ is considered a preferred photocatalyst due to its high reduction potential with a sufficiently large band gap, in addition to its nontoxicity, low cost, and high stability [\[3\]](#page-12-2). Furthermore, studies based on shape-controlled synthesis of $TiO₂$ have revealed many interesting aspects of the origin of its photoactivity. For example, the photoactivity of anatase $TiO₂$ has been shown to vary depending on the exposed facets, such as {101} and {001} [\[4\]](#page-12-3). The ratio of exposed facets has been effectively controlled to observe high photoactivities attributed to {001} [\[5–](#page-12-4)[7\]](#page-12-5) and {101} facets $[8]$, respectively, despite the advantageous properties of $TiO₂$, the wide band gap of

Citation: Carl, N.; Fiaz, M.; Oh, H.-S.; Kim, Y.-K. Enhanced Photocatalytic Performances of SnS₂/TiO₂ Composites via a Charge Separation Following Z-Scheme at the SnS₂/ TiO2{101} Facets. *Catalysts* **2024**, *14*, 442. [https://doi.org/10.3390/](https://doi.org/10.3390/catal14070442) [catal14070442](https://doi.org/10.3390/catal14070442)

Academic Editors: Ning Wang and Ning Liu

Received: 6 June 2024 Revised: 3 July 2024 Accepted: 8 July 2024 Published: 10 July 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

about 3.2 eV limits light absorption to the UV region (wavelength below 400 nm) and its photocatalytic activity as well.

The photoactivity of $TiO₂$ can be further enhanced by making use of both the preferential charge separation of $TiO₂$ and the enhanced absorption by a visible-light-active photocatalyst through a proper heterojunction between them. Forming a heterojunction of the photocatalyst in the preferred facets of $TiO₂$ can effectively suppress the recombination of photogenerated e−–h⁺ pairs, which can extend the lifetime of the hot carriers on the surface to improve surface reaction efficiencies [\[9\]](#page-12-7). Combining $TiO₂$ with narrow bandgap semiconductors by forming heterojunctions is a successful approach to extend not only the light absorption range but also the charge carrier lifetime via charge separation at the heterojunctions [\[10\]](#page-12-8). As a result, enhanced photoactivity has been reported for various types of TiO₂-based composites such as MOS_2/TIO_2 [\[11\]](#page-12-9), SnO/TiO₂ [\[12\]](#page-12-10), TiO₂/g-C₃N₄ [\[10\]](#page-12-8) and $CdS/TiO₂$ [\[13\]](#page-12-11).

SnS² is a layered transition metal dichalcogenide (TMD) with a narrow band gap (2.18–2.44 eV) that can act as a charge transfer medium as well as active sites for catalytic reactions [\[14\]](#page-12-12) and is gaining increasing attention as a photocatalyst for solar-driven reactions and degradation of organic pollutants. This is due to its cost-effectiveness, nontoxicity, and unique physicochemical characteristics $[15]$. However, $SnS₂$ is also limited by its high recombination rate, which can be mitigated by forming heterojunctions. These heterojunctions enhance the charge separation of photo-excited electron–hole pairs [\[16\]](#page-12-14).

In this study, we synthesized composites of $SnS₂/TiO₂$ with the intention of exploring the photodegradation performances of the composites in relation to properties such as charge separation at heterojunctions and enhanced visible light absorption due to SnS₂. As a composite preparation method, we employed a microwave-assisted hydrothermal process, which was found to be a facile hydrothermal method of preparing $\text{SnS}_2/\text{TiO}_2$ composites with coupled 2D heterojunctions. The synthesized composites were found to show enhanced photocatalytic activity in the photodegradation of both methylene blue (MB) and rhodamine B (RhB) in an aqueous solution, largely due to enhanced charge separation at the heterojunction via the Z-scheme.

2. Results and Discussion

2.1. Characteristics of SnS2/TiO² Composites

Figure [1](#page-2-0) shows the X-ray diffraction (XRD) spectra of the as-synthesized composites compared to those of as-synthesized $SnS₂$ and $TiO₂$ as references. The XRD spectrum of the as-synthesized $SnS₂$ nanoparticles exhibits the characteristics of hexagonal $SnS₂$ structure (JCPDS no. 01-1010) [\[17\]](#page-12-15). Additionally, as-synthesized $TiO₂$ nanosheets give an XRD spectrum with the characteristic peaks of anatase phase $TiO₂$ without the presence of a rutile phase (JCPDS card no. 21-1272) [\[18\]](#page-12-16). The intense (200) diffraction of anatase $TiO₂$ compared to (004) originates from the shape of the nanosheets with the large (001) facets of anatase $TiO₂$ [\[19](#page-12-17)[,20\]](#page-12-18), which is due to the surfactant-mediated preferential growth mediated by surfactant toward directions perpendicular to (001). The XRD patterns of the $\text{SnS}_2/\text{TiO}_2$ composites display the characteristic peaks of the anatase TiO_2 and hexagonal SnS₂ only, indicating the selective formation of both phases in the compounds with varying ratios of SnS₂. The intensity ratios of the peak SnS₂ (001) to the TiO₂ (101) or (004) change in accordance with the mole ratio of $SnS₂$ to TiO₂ with increasing % $SnS₂$ content. Figure S1 contains the XRD patterns of all the prepared composites. The results indicate that the microwave process can generate composites based on both the hexagonal SnS₂ and the anatase $TiO₂$ phases over a wide range of $SnS₂$ mole ratios.

Figure 1. XRD patterns of selected $\text{SnS}_2/\text{TiO}_2$ composites in comparison with those of as-prepared $SnS₂$ and TiO₂. Γ guie 1. $\Delta \overline{\Delta}$

The absorbance of the composites was measured by UV-vis differential reflectance spectroscopy (DRS), as shown in the inset of Figure 2. [T](#page-2-1)he optical bandgap of the composites was determined using the Kubelka–Munk function (Figure S2), and the results are shown as a plot as a function of %SnS₂ in Figure 2. T[he](#page-2-1) measured band gap of the $\frac{1}{2}$ and $\frac{1}{2}$ a with an absorption edge at around 400 nm [\[21\]](#page-12-19). SnS₂ has an absorption edge of around 560 nm, which corresponds to a bandgap of 2.02 eV [\[14\]](#page-12-12). For the composites, the bandgap rapidly decreased from 3.2 eV as the %SnS₂ increased to 20%. At a higher %SnS₂, it slowly approaches that of SnS₂ (2.02 eV). This agrees well with the presence of the SnS₂ phase in the composites and the absorption by SnS_2 in the visible region with increasing % SnS_2 .

absorbance spectra of the composites. absorbance spectra of the composites. **Figure 2.** Bandgap of the composites as a function of %SnS₂. Also shown in the inset are the

Figure [3](#page-3-0) shows the SEM images of the $SnS₂/TiO₂$ composites with various %SnS₂ ratios (c)–(e) compared to those of $SnS₂$ (a) and $TiO₂$ (b), respectively. The as-synthesized $\rm TiO_2$ nanosheets show SEM images with characteristic square-shaped nanosheets (Figure 3a),

and the shape of the as-synthesized SnS₂ nanoparticles is characterized by irregularly shaped platelets (Figure [3f](#page-3-0)), confirming the 2D nature of the material. At low %SnS₂ ratios (<20%), the square-shaped $TiO₂$ nanosheets appear to have small nanoparticles at both the large facets and the edges of the nanosheets. It appears that the edges of the square-shaped $TiO₂$ nanosheets are more populated with small $\overline{S_2}$ nanoparticles than the large {001} facets. In the composites with higher %SnS₂ ratios (>33%), nanoplates of different shapes that can be assigned to TiO₂ and SnS₂, respectively, are identified from the SEM images Figure [3e](#page-3-0)). It also shows that square-shaped TiO₂ nanoplates are in close contact with 2D SnS₂ platelets. With increasing %SnS₂ ratios (Figure S3), the abundant square-shaped nanosheets gradually transform into more irregularly shaped platelets, suggesting the population of SnS₂ nanoparticles increases. The EDS composition of the composites also confirms that the stoichiometric phases of $SnS₂$ and $TiO₂$ change in ratio in accordance with the varying $SnS₂$ mole ratios (Figure S4 and Table S1). The high oxygen content is attributed to the result of some adsorbed oxygen on the samples from the atmosphere [22]. The unique preferential distribution of $SnS₂$ nanoparticles at the edges of TiO₂ nanosheets may be advantageous in that the photoexcited electrons transported to the edges of TiO₂ can be consumed by the $SnS₂$ nanoparticles for enhanced charge separation. The SnS2 nanoparticles for enhanced charge separation.

Figure 3. SEM images of (a) TiO_2 nanosheets, (b-e) SnS_2/TiO_2 composites with the % SnS_2 ratio of 9–75%, and (**f**) SnS₂ nanoparticles.

From Figur[e 4](#page-4-0)a,b, the lattice fringe of (200) planes with a lattice spacing of 0.19 nm From Figure 4a,b, the lattice fringe of (200) planes with a lattice spacing of 0.19 nm confirms the assignment of the nanosheets to anatase $TiO₂$, as reported previo[usly](#page-13-0) [23]. The TEM images of $SnS₂$ can be distinguished from those of TiO₂ ([Fig](#page-4-0)ure 4a) from the characteristic irregular shapes (Fig[ur](#page-4-0)e $4c$) and the distinct interplanar distance of 0.59 nm (Figur[e 4](#page-4-0)d) which corresponds to the d-spacing of (001) planes of hexagonal SnS₂ [\[24\]](#page-13-1). For the case of $SnS₂/TiO₂$ composites, a preferential distribution of small particles at the edges of square-shaped nanosheets can be seen (Figure [4](#page-4-0)e), suggesting that there exists a pref-of square-shaped nanosheets can be seen (Figure 4e), suggesting that there exists a preferential chemical bonding of SnS₂ nanoparticles at the edges of the TiO₂ nanosheets. The SnS₂ nanoparticles at the edges are confirmed from the lattice fringes with an interplanar distance of 0.59 nm (Figu[re](#page-4-0) 4f as well as Figure S5), corresponding to the (001) facet for distance of 0.59 nm (Figure 4f as well as Figure S5), corresponding to the (001) facet for the $2D$ SnS₂ nanoparticles and the spacing of 0.35 nm which agrees well with the assignment of the $\{101\}$ facet of anatase TiO₂ [\[5,](#page-12-4)[25\]](#page-13-2). The $\{001\}$ facets of TiO₂ are observed to be most exposed to the surface without being in contact with SnS₂. The edges of the anatase TiO₂ nanosheets are suggested to be the {101} facets, and the large planes are photoactive {001} facets [7,26–28]. Fro[m](#page-4-0) Figure 4e,f (as well as Figure S6), the amount of SnS₂ nanoparticles on the ${001}$ facets of TiO₂ increases with an increase in %SnS₂. Such a change in the

Figure 4. TEM images of TiO₂ nanosheets (a,b) , SnS₂ nanoparticles (c,d) , and SnS₂/TiO₂ composites with a SnS₂ ratio of 33% (e) and 43% (f). with a SnS2 ratio of 33% (**e**) and 43% (**f**).

Figure 5 shows the Raman spectra of the as-synthesized $SnS₂/TiO₂$ composites in comparison with those of $TiO₂$ and SnS₂. The characteristic modes of the anatase TiO₂ (E_g, B_{1g}, A_{1g}, and E_g) and that of the SnS₂ phase (A_{1g}) can be identified from the spectra $[14,29-31]$, whi[ch](#page-12-12) [con](#page-13-5)[firm](#page-13-6)s the presence of the anatase TiO₂ and SnS₂ phases in the composites and the relative intensity ratios of the two phases vary according to the SnS₂ ratio. With increasing %SnS₂, the intensity of E_g for anatase TiO₂ decreases, while that of the A_{1g} mode for SnS₂ increases. The Raman spectra of all the composites are shown in Figure S7.

Figure 5. Raman spectra of SnS_2/TiO_2 composites in comparison with those of as-synthesis TiO_2 nanosheets and SnS₂ nanoparticles.

The photoluminescence (PL) spectra shown in Figure 6 indicate that the TiO₂ nanosheets show high PL emission at 520–550 nm under the illumination of a 325 nm laser, which is attributed to the recombination of photoexcited e⁻-h⁺ pairs. From Figure 6b, it can be seen that the PL intensities of the composites are dramatically lower than those of $TiO₂$. The PL emission rapidly drops from the very low $SnS₂$ ratio and approaches the minimum value at the $SnS₂$ ratio of about 33%. This can be interpreted as the result of the charge separation at the heterojunction between $SnS₂$ and TiO₂. If we assume no charge transfer between the two, the PL emission can be expected to decrease linearly from that of TiO₂ to that of pure $SnS₂$ (the dashed line i[n](#page-5-0) Figure 6b). Then, the difference between the dashed line and the actual emission can be related to the efficiency of charge separation (Figure 6c), which is the maximum up to the SnS₂ ratio of about 33%. This result demonstrates that the composites are not just a mixture of anatase TiO₂ nanosheets and SnS₂ nanoparticles but have heterojunctions that can transfer charges between them to lead to the separation of photoexcited e⁻-h⁺ pairs, which can lead to enhanced photocatalytic activity.

Figure 6. (a) PL spectra for SnS_2/TiO_2 composites with the excitation of a 325 nm laser, (b) the plot of maximum PL intensities at wavelengths of 520–550 nm as a function of % SnS₂, and (**c**) the plot of the the difference between the dashed line (Figure 6b) and the actual emission. difference between the dashed line (Figure [6b](#page-5-0)) and the actual emission.

XPS was employed to further interrogate the chemical bonding states in the composites. The survey spectra (Figure S8) confirm the presence of elements O, Ti, S, and Sn in the composites. The core level spectra of O 1s in Figure [7a](#page-6-0) indicate the presence of two oxygen components at 529.7 and 531.5 eV, respectively, for TiO₂, which can be assigned to lattice oxygens with direct Ti–O bonds and surface oxygen atoms in the forms of OH, respectively [\[32\]](#page-13-7). For the SnS_2/TiO_2 composite, the same oxygen components are observed at 530.6 and 532.4 eV, respectively, which are shifted towards higher binding energies at 530.6 and 532.4 eV, respectively, which are shifted towards higher binding energies compared to those of TiO₂. The Ti 2p core-level spectra in Figure [7b](#page-6-0) show Ti $2p_{3/2}$ and Ti 2 $p_{1/2}$ features at 458.6 and 464.3 eV, respectively, for TiO₂ nanosheets. The Ti 2 $p_{3/2}$ peak at 458.6 eV is indicative of the Ti^{4+} chemical state of stoichiometric TiO₂ [\[33\]](#page-13-8). The binding energies of the Ti 2p core level for SnS_2/TiO_2 also appear at 459.3 and 465.0 eV, respectively, which are shifted towards higher binding energies. Detailed fitting results of the composites further disclose the presence of an additional small Ti $2p_{3/2}$ component at lower binding energies of 456.6 eV. This may be due to Ti species with a direct Ti–S bond at the heterojunction between SnS₂ and TiO₂ [34,35]. The [for](#page-13-9)[ma](#page-13-10)tion of a direct Ti–S bond at the interface can [als](#page-6-0)o be seen in the S 2p core-level spectra in Figure 7, which reveals a small S 2p component at the binding energies of 162.4 and 163.6 eV with the spin-orbit splitting of 1.18 eV [34,35] in additio[n to](#page-13-9) [th](#page-13-10)e major component assigned to S^{2-} of SnS₂ at 161.5 and 162.7 eV (S 2 $p_{3/2}$ and S 2 $p_{1/2}$, respectively) for SnS₂/TiO₂. For the case of SnS₂, the binding energies of S^{2−} are shown to appear at 161.8 eV and 162.9 eV for S $2p_{3/2}$ and S $2p_{1/2}$, respectively. Therefore, the binding energies of the sulfur component for $SnS₂/TiO₂$ are shifted towards lower binding energies than those for SnS₂. This may be the result of the heterojunction formation between SnS₂ and TiO₂ and the resulting downward (upward) shift of the electronic bands of $TiO₂$ (SnS₂) through an electron migration between

 $TiO₂$ and $SnS₂$ $SnS₂$ $SnS₂$ in the heterojunction [\[33\]](#page-13-8). Sn 3d core-level spectra in Figure 7d reveal the characteristics of Sn $3d_{3/2}$ and Sn $3d_{5/2}$ features at 486.7 and 495.2 eV, respectively, for $SnS₂$ characteristics of 3n $3a_{3/2}$ and 3n $3a_{5/2}$ can be at 400.7 and 453.2 cv, respectively, for 3n52 and SnS₂. TiO₂, which are assigned to Sn⁴⁺ of SnS₂. No distinct shift in the Sn 3d features between SnS_2 and $\text{SnS}_2/\text{TiO}_2$ can be attributed to the small shift for SnS_2 and the broad nature of the Sn 3d. In addition, the broad Sn 3d spectral shape of the $SnS₂/TiO₂$ may suggest a possible contribution of Sn–O bonding even though it is not resolved. Overall, the XPS results further indicate the heterojunction formation between SnS_2 and TiO_2 nanosheets $\text{with the former of a direct Fig.}$ S hand, which can be beneficial for the efficient charge with the formation of a direct Ti–S bond, which can be beneficial for the efficient charge transfer at the heterojunction for improvement in photoactivity. heterojunction for improvement in photoactivity.

Figure 7. (a) O 1s, (b) Ti 2p, (c) S 2p, and (d) Sn 3d core-level spectra of the SnS₂/TiO₂ composite $(\%SnS_2 = 33%)$ in comparison with those of SnS₂ and TiO₂.

for all the composites to evaluate the surface area since it can also provide insight into the resulting photocatalytic properties [\[36,](#page-13-11)[37\]](#page-13-12). The measured surface areas (m²g⁻¹) for the TiO₂ nanosheets and the SnS₂ nanoparticles were 61.2 and 51.2 m²g⁻¹, respectively, which the Tional the Tion₂ composites was found to be strongly dependent on the SnS₂ rational strongly dependent on the SnS₂ rational to be strongly dependent on the SnS₂ rational to be strongly dependent on the SnS₂ (Figure S9b) and was found to be the highest (~118 m²g⁻¹) at the SnS₂ ratios of around 33%. This result is consistent with the observation of the morphology of the composites (Figures 3 an[d](#page-4-0) 4), which are characterized by small SnS₂ nanoparticles distributed on the \overline{a} TiO_2 nanosheets. The large surface area may act as a promotional effect on the overall photographic parformance by providing more reaction sites. \int igures 3 and 4), which are characterized by small SnS2 nanoparticles distributed on the small SnS2 nanoparticles distributed on the small SnS2 nanoparticles distributed on the small SnS2 nanoparticles distributed on t BET (Brunauer, Emmett, and Teller) N_2 adsorption isotherm was obtained (Figure S9a) are in the range expected for nanoparticles of about 100 nm in diameter [\[38](#page-13-13)[,39\]](#page-13-14). The surface photocatalytic performance by providing more reaction sites.

2.2. Photoactivity of SnS₂/TiO₂ Composite

The photocatalytic activity of the composites was evaluated using the photodegrada-*2.2. Photosity as the degradation proceeds, as shown* in Figure 310. From the intensitied variation in the intensities of the absorption bands, the C/C₀ was calculated and plotted against the irradiation time for MB and RhB, respectively, in Figure 8a,c. The changes in the concentration of both dye solutions with the catalyst present in the dark were limited to 3–14%, possibly due to the adsorption capacity of the catalysis (rigule 311). Assuming
a first-order reaction, the initial rate constants of the composites were calculated, and the the contract contract of the absorption bands, the Contraction bands, the contract of the contraction of $\%$ SnS₂ in Figure [8b](#page-7-0),d for MB and RhB, respectively. The results of Figure 8 indicate that the composites exhibit higher photocatalytic performances in the photodegradation of MB and RhB, especially when the $\%$ SnS₂ is in the range of approximately 30%. The highest rate constant was 4.13×10^{-2} min⁻¹ for MB tion rates of MB and RhB. The characteristic absorption bands of MB and RhB decrease in intensity as the degradation proceeds, as shown in Figure S10. From the measured to 3–14%, possibly due to the adsorption capacity of the catalysts (Figure S11). Assuming

and 9.6×10^{-3} min⁻¹ for RhB, respectively. These values for the composites are 2–3 times higher than those for anatase TiO₂ nanosheets and SnS₂ nanoparticles. The enhanced photodegradation performances of the composites are interpreted to be the result of efficient charge separation at the heterojunction of $SnS₂$ and $TiO₂$, which would result in reduced recombination rates as measured in the PL measurements (Figure [6\)](#page-5-0). The large contact area between SnS_2 and TiO_2 expected for the $\text{SnS}_2/\text{TiO}_2$ composites with a large surface area (Figure S9) is expected to facilitate the charge transfer rate at the heterojunction to reduce the recombination rates and enhance the photodegradation rate. Photogenerated electrons within TiO_2 may be collected more efficiently by SnS_2 nanoparticles at the edges of TiO_2 due to the preferential diffusion of electrons towards the $\{101\}$ facets of TiO₂ [\[40,](#page-13-15)[41\]](#page-13-16) and react with holes in the valence band (VB) of SnS₂ via the Z-scheme. On the other hand, small particles of SnS₂ may also provide recombination sites for charge carriers and limit light absorption of the anatase TiO₂ nanosheets to contribute to reduced photodegradation rates as well $[42,43]$ $[42,43]$. Therefore, the compensation between the promotional and inhibiting roles of SnS₂ nanoparticles may give an optimal SnS₂ ratio (~30%), as observed in this study.
The obtailed size distribution and meantal asime fithe for componential annihi in measure The detailed size distribution and morphologies of the SnS₂ nanoparticles with increasing $SnS₂$ ratios are expected to play an important role in determining the optimum $SnS₂$ ratio.

Figure 8. Photodegradation rates are shown as plots of C/Co vs. irradiation time for (**a**) MB and (**c**) RhB, along with initial rate constants vs. %SnS2 in the composites for (**b**) MB and (**d**) RhB. (**c**) RhB, along with initial rate constants vs. %SnS² in the composites for (**b**) MB and (**d**) RhB. **Figure 8.** Photodegradation rates are shown as plots of C/Co vs. irradiation time for (**a**) MB and

2.3. Proposed Mechanism for the Enhanced Photoactivity of SnS2/TiO² Composite

To further investigate the degradation mechanism and the role of SnS₂/TiO₂ hetpropyl alcohol (for \bullet OH) [\[46](#page-13-21)[,47\]](#page-13-22), sodium oxalate (for h⁺) [\[21,](#page-12-19)[48\]](#page-13-23), and silver nitrate (for e⁻) [49,50] and the changes in the photodegradation rates were evaluat[ed](#page-14-1) (Figure S12) and compared as shown in Figure 9. The decrease in the degradation ra[te](#page-8-0) with the addition of the scavenger indicates that the associated hot carrier plays a dominant role in the erojunction, we employed scavengers such as 1,4 benzoquinone (for $\bullet O_2$ ⁻) [\[44,](#page-13-19)[45\]](#page-13-20), iso-

photodegradation reaction. For the $SnS₂/TiO₂$ composites with the optimized $SnS₂$ content (~30%), the results indicate that the rate constant generally decreases when scavengers are added, suggesting that all active species play a role in the photodegradation of the dyes. The impact of adding 1,4 benzoquinone (for \bullet O₂⁻) and silver nitrate (for e⁻) was found to be a dramatic decrease of approximately 70–90%, while the influences of isopropyl alcohol (for \bullet OH) and sodium oxalate (for h⁺) were relatively limited to a small decrease of approximately 10–30%. Such trends were found to be consistent for both MB and RhB, as can be seen in Figure 9, suggesting that e− and •O2− play a major role in the photodegradation of seen in Figure [9,](#page-8-0) suggesting that e[−] and \bullet O₂⁻ play a major role in the photodegradation of the dyes.

Figure 9. Comparison of rate constants with the use of trapping agents for (**a**) MB (SnS₂/TiO₂ 29%) and (**b**) PbP (SnS₄/TiO₂ 29%) and (**b**) RhB (SnS2/TiO2 33%). and (**b**) RhB (SnS₂/TiO₂ 33%).

tively) are more negative than those of anatase TiO₂ nanosheet (-0.31 eV and 2.93 eV vs. NHE, respectively), the heterojunction could be either type II heterojunction or direct
Zacharen 1511 Carena aita arriver arrive CaS, and TiO, hat resignationalists directibul respectively), the heterojunction could be either type II heterojunction or direct Z-scheme were also proposed to follow either type II heterojunction or direct Z-scheme, depending on the detailed preparation and evaluation conditions. Nonetheless, the E_{VB} of $SnS₂$ is more negative than the standard redox potential of E° (\cdot OH/OH⁻) = 1.99 eV (vs. NHE) [52], implying that the photogenerated holes of SnS₂ may not be able to oxidize OH[−] to yield ·OH ations $[52,5]$. To commit this, trapping experiments were carried out for $110₂$ handsheet and SnS₂ using sodium oxalate (for h⁺) and silver nitrate (for e⁻) (Figure S13). The hot carriers (h⁺ and e[−]) of TiO₂ were found to play an important role in the degradation of the dye, as c[an](#page-9-1) be expected from the proposed energy diagram of Figure 10. The effect of trapping e[−] was also a significant reduction in the degradation rate, as can be expected from the sufficiently high reducing power of the e[−] in the CB of SnS₂. However, the capture of h⁺
in SnS₂, were found to alightly in weses the doesn dation wate subjab or he intermeted on the role of the h⁺-scavenger was the suppression of the recombination rate within SnS₂. This is consistent with the above energy diagram and confirms that the photogenerated holes of SnS₂ may not be effective in oxidizing OH[−] to yield ·OH radicals. Contrary to the case of SnS_2 , the scavenger experiments for the $\text{SnS}_2/\text{TiO}_2$ composites (Figure [9\)](#page-8-0) clearly show that incit and STT tradicals contribute to the photodegradation of the dyes. Therefore, the most
likely charge transfer pathway at the heterojunction is likely to be the direct Z-scheme, as has been reported for studies of 2D−2D SnS₂/TiO₂ [42]. SnS₂ nanoparticles preferentially bound at the {101} edges of TiO₂ nanosheets can collect electrons more favorably from TiO₂ to promote Z-scheme interaction. Similar charge transfer mechanisms have been reported for other composite systems, such as $SnS_2/BiOBr$ [\[53\]](#page-14-4) and g-C₃N₄/Vo-ZnO [\[52\]](#page-14-3). Considering that the E_{CB} and E_{VB} for SnS₂ (−0.82 eV and 1.17 eV vs. NHE, respec-Z-scheme [\[51\]](#page-14-2). Composite systems with $SnS₂$ and TiO₂ heterojunctions listed in Table [1](#page-9-0) radicals $[52,53]$ $[52,53]$. To confirm this, trapping experiments were carried out for TiO₂ nanosheet in $SnS₂$ was found to slightly increase the degradation rate, which can be interpreted as the the h⁺ and ·OH radicals contribute to the photodegradation of the dyes. Therefore, the most

Figure 10. Energy diagram of the valence band (VB) and conduction band (CB) of the SnS₂/TiO₂ composite and a plausible mechanism for the charge separation and the generation of radical species. (a) Band alignment diagram for the SnS₂/TiO₂ and (b) Proposed charge separation mechanism at the heterojunction via Z-scheme. The energy levels for the CB (E_{CB}) and the VB (E_{VB}) can be calculated culated following Equations (S1) and (S2) listed in the Supplementary Materials . following Equations (S1) and (S2) listed in the Supplementary Materials.

That being the case, under light irradiation, both the $TiO₂$ nanosheet and $SnS₂$ absorb photons and generate electron−hole pairs with electrons excited to their respective con-photons and generate electron−hole pairs with electrons excited to their respective conduction bands. The electrons accumulated in the conduction band of $SnS₂$ with a strong reduction potential can react with O₂ to form \cdot O₂⁻ because E_{CB} of SnS₂ is more negative than E° (O₂/•O₂⁻) = -0.046 eV (vs. NHE) [\[52\]](#page-14-3). Meanwhile, the photoinduced electrons in the TiO₂ conduction band can recombine with the holes in the valence band of SnS₂. Finally, the holes in the valence band of the TiO₂ nanosheet with its high positive potential $(E_{VB} = 3.02 \text{ eV})$ can oxidize MB. This charge transfer pathway would effectively enhance charge separation while retaining its great oxidation and reduction abilities [51]. Although charge separation while retaining its great oxidation and reduction abilities [\[51\]](#page-14-2). Although the degradation products were not determined in this study, the subsequent degradation of both dyes was suggested to undergo the following pathways. The degradation of RhB was suggested to be initiated by the removal of ethyl groups, resulting in intermediate products such as phthalic acid, benzyloxyamine, and ben[zoic](#page-14-5) acid [54]. Similarly, the degradation of MB was suggested to begin with the removal of methyl groups, resulting in the formation of intermediates such as N-methyl formamide, azure A, B, and C, as [wel](#page-14-6)[l as](#page-14-7) thionine [55-57].

System	Type of Heterojunction	Catalyst Concentration (g/L)	Dye (Concentration)	Light Source	Rate Constant (min^{-1})	Reference
SnS_2/TiO_2	Z-scheme	0.02	MB (7.5 μ M) and RhB (3.75 mg/L)	Halogen lamb (100 mW/cm^2)	0.052 (MB) 0.008 (RhB)	This work
SnS_2/TiO_2	Z-scheme	0.15	MB (12 μ M) and RhB (10 mg/L)	Xe lamp (200 W, $200 - 800$ nm)	0.02 (MB) 0.022 (RhB)	Gao et al. (2021) [58]
SnS_2/TiO_2	Type II	0.2	$MB(20 \mu M)$	Mercury lamp (250 W)	0.03	Zhang et al. (2017) [56]
$TiO2/SnS2/MoS2$	Z-scheme		MB(10 mL, 5 mg/L)	Artificial sunlight (AM 1.5 G, 150 mW	0.0175	Gao et al. (2022) [59]
SnS_2/TiO_2	Type II	$\mathbf{1}$	RhB(10 mg/L)	Xe lamp (300 W, 420 nm)	0.035	Yan et al. (2017) [60]
SnS ₂ /BiOBr	Z-scheme	0.625	RhB(10 mg/L)	Xe lamp (400 W, 420 nm)	0.1203	Oiu et al. (2017) [53]
SnS ₂ /TiO ₂	Z-scheme	50	CO ₂	Xe lamp $(300 W)$		She et al. (2019) [42]
TiO ₂ /CdS	Z-scheme	2	CO ₂	Xe lamp (350 W)		Wang et al. (2020) [61]

Table 1. Proposed type of heterojunction and degradation performances of SnS₂/TiO₂ photocatalysts.

3. Materials and Methods

3.1. Synthesis of TiO₂ Nanosheets

The detailed procedures for the preparation of the anatase TiO₂ nanosheet were described in our previous work [\[27\]](#page-13-24). Butanol (25 mL) and tetrabutyl titanate (TBT, 25 g)
detailed procedures for the processes for the anatase Tional and Tional and Tional and Tional and Tional and T were added into a Teflon beaker and kept in an ice bath under stirring. Then, 4 mL of HF was subsequently added dropwise, and the resulting solution was transferred into a
———————————————————— Teflon-lined autoclave, which was firmly screwed tight and kept in an oven at 200 $^{\circ}$ C for 24 h. After the reaction, the precipitate was filtered, washed with deionized water, and dried at 80 $^{\circ}$ C.

 $\frac{1}{2}$ - She et al. (2019)

 $\overline{}$

3.2. Synthesis of SnS2/TiO²

The as-synthesized $TiO₂$ nanosheet (0.2 g) was dispersed in 40 mL of deionized water and stirred for 1 h using a high-power sonicator (VC505, Sonics & Materials, Newtown, CT, USA). Then, an aqueous solution of $SnCl_4·5H_2O$ and CH_3CSNH_2 (with the Sn-to-S mole ratio of 1:2) was mixed with the aqueous suspension of TiO₂ with initial mixing mole ratios of Sn from 9 to 80%. The mixture was stirred for 1 h and placed on a microwave synthesizer (Monowave 400, Anton Paar, Graz, Austria) operating at 850 W, 200 °C, and stirring at extractionated 1807 rhitter Paar, State, Prastina) operating at 850 W, 200 °C, and stirring [1.](#page-10-0)
900 rpm for 1-h synthesis. The schematic of the whole procedure is shown in Scheme 1. at 900 rpm for 1-h synthesis. The schematic of the whole procedure is shown in Scheme 1.

Scheme 1. The schematic diagram for the synthesis of SnS₂/TiO₂ heterojunction.

3.3. Characterization of As-Synthesized Photocatalysts 3.3. Characterization of As-Synthesized Photocatalysts

The detailed morphologies of the as-synthesized composites were examined by The detailed morphologies of the as-synthesized composites were examined by transmission electron microscopy (TEM, Tecnai G2 F30 S-Twin, Igualada, España) and scanning scanning electron microscopy (SEM, JSM-7900F, JEOL, Japan). Diffuse reflectance spectra electron microscopy (SEM, JSM-7900F, JEOL, Tokyo, Japan). Diffuse reflectance spectra were measured with a UV–visible spectrophotometer (September 2000, September were measured with a UV–visible spectrophotometer (Scinco, Neosys-2000, Seoul, Republic of Korea) that was equipped with an integrating sphere and BaSO₄ as the reference. X-ray diffraction (XRD) patterns of our samples were measured with Cu Kα radiation from an X-ray diffractometer (Rigaku, Ultima III, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS) measurement was performed using K-alpha (Thermo VG, Altrincham, UK) with monochromated Al X-ray sources (Al K α line: 1486.6 eV). All binding energies are calibrated to the C 1s peak at 284.8 eV of the adventitious carbon on the surface.

3.4. Evaluation of Photocatalytic Properties

The photodegradation characteristics of the composites were evaluated using MB and RhB as model dyes. 10 mL of the aqueous solution of MB or RhB (6×10^{-5} M) was added to 40 mL of the aqueous solution with Sn_2/TiO_2 composites (0.04 g/L), which were diluted with 30 mL of distilled H_2O to result in 80 mL aqueous solution. The solution was stirred in the dark for 60 min before light illumination to achieve adsorption–desorption equilibrium of the MB and RhB dyes. Photocatalytic reactions were initiated with a halogen lamp (100 mW/cm²). During light illumination, the air was constantly blown by a fan to mitigate any temperature rise from room temperature. For the investigation of the role of hot carriers, the aqueous solution (5 mL, 20 mM) of the scavengers (1,4 benzoquinone (for •O² [−]), isopropyl alcohol (for •OH), sodium oxalate (for h⁺), and silver nitrate (for e−)) was added to the solution before shining light. The solution was sampled during the reaction to determine the concentration of MB (or RhB) from the absorbance at 664 (555) nm for MB (RhB). Initial rate constants for the photodegradation reactions were obtained by assuming first-order reaction kinetics.

4. Conclusions

A microwave-assisted hydrothermal method was employed to synthesize $\text{SnS}_2/\text{TiO}_2$ composites for photocatalytic applications. Both $TiO₂$ nanosheets and $SnS₂$ nanoparticles showed activities in the photodegradation of MB and RhB. Such activities were found to be further enhanced for the $\text{SnS}_2/\text{TiO}_2$ composites, especially when the SnS_2 ratio in the composite was around 30%, giving an overall volcano-type change in the graph of the photodegradation performances of the composites vs. the $SnS₂$ ratio. The origin of the enhanced photocatalytic activity is attributed to the formation of $SnS₂–TiO₂$ heterojunctions, which can facilitate the charge separation to reduce the recombination rate. The composites with the maximum photocatalytic performances (in the $SnS₂$ ratio of about 30%) have small SnS₂ nanoparticles in contact with the $TiO₂$ nanosheets, especially at the edges of the nanosheets, which can result in a large surface area of the composites (~118 m^2g^{-1}) and the large interfacial heterojunction for efficient charge separation following the Zscheme towards enhanced photocatalytic performances. The preferential diffusion of electrons toward the edges of the $TiO₂$ nanosheets may facilitate the charge separation at the SnS₂ heterojunctions at the $\{101\}$ edges of TiO₂ via Z-scheme further. Scavenger experiments further corroborate the charge transfer mechanism at the interfaces following Z-scheme, suggesting that the $\text{SnS}_2/\text{TiO}_2$ composites can be good examples of promising photocatalysts for the photodegradation of dyes with enhanced redox ability.

Supplementary Materials: The following supporting information can be downloaded at [https:](https://www.mdpi.com/article/10.3390/catal14070442/s1) [//www.mdpi.com/article/10.3390/catal14070442/s1,](https://www.mdpi.com/article/10.3390/catal14070442/s1) Figure S1. XRD patterns of as-prepared $SnS₂$, TiO₂ nanosheet, and SnS₂/TiO₂ heterojunction. Figure S2. Bandgap energy plot Kubelka–Munk function for synthesis samples. Figure S3. a–i shows SEM images of $\text{SnS}_2/\text{TiO}_2$ heterojunctions. Figure S4. a-i shows EDS images of SnS₂/TiO₂ heterojunctions. Figure S5. Profile of inverse fast Fourier transformation (IFFT) for (a) anatase $TiO₂$ nanosheet (200), (b) $SnS₂$ nanoparticles (001), (c) $\text{SnS}_2/\text{TiO}_2$ 43% (TiO₂ (101) and SnS_2 (001), respectively). Figure S6. Increase content of SnS_2 nanoparticles for (a) SnS₂/TiO₂ 33% and (b) SnS₂/TiO₂ 43%. Figure S7. Raman spectra patterns of as-synthesis TiO₂ nanosheets, $SnS₂$ nanoparticles, and $SnS₂/TiO₂$ heterojunctions. Figure S8. Survey scan spectra of synthesis samples. Figure S9. (a) BET N_2 adsorption isotherms and (b) the measured surface area of the SnS₂/TiO₂ composites, SnS₂, and TiO₂. Figure S10. Typical absorbance for a) MB and b) RhB degradation under halogen lamp irradiation in the presence of $SnS₂/TiO₂$ shows a decrease in absorbance peak with time. Figure S11. Photodegradation rates are shown as plots of C/Co vs. time in the dark for (a) MB and (b) RhB. Figure S12. C/C₀ for trapping experiment using MB (SnS₂/TiO₂ 29%) and RhB (SnS₂/TiO₂ 33%). Figure S13. Rate constant for trapping experiment for using MB TiO₂ and SnS₂. Table S1. %SnS₂ calculations from EDS data. References [\[62](#page-14-13)[–64\]](#page-14-14) are cited in the Supplementary Materials.

Author Contributions: N.C.: writing—original draft, investigation, visualization, formal analysis. M.F.: visualization, formal analysis. H.-S.O.: investigation, formal analysis. Y.-K.K.: conceptualization, formal analysis, writing—original draft, writing—review and editing, project administration, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A2C1007227 and NRF-2021R1A6A1A10044950), Learning & Academic research institution for Master's·PhD students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285390), and the H2KOREA funded by the Ministry of Education (2022Hydrogen fuel cell-002, Innovative Human Resources Development Project for Hydrogen Fuel Cells).

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- 1. Kumari, H.; Sonia; Suman; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; et al. A review on photocatalysis used for wastewater treatment: Dye degradation. *Water Air Soil Pollut.* **2023**, *234*, 349. [\[CrossRef\]](https://doi.org/10.1007/s11270-023-06359-9)
- 2. Sultana, R.; Liba, S.I.; Rahman, M.A.; Yeachin, N.; Syed, I.M.; Bhuiyan, M.A. Enhanced photocatalytic activity in RhB dye degradation by Mn and B co-doped mixed phase TiO² photocatalyst under visible light irradiation. *Surf. Interfaces* **2023**, *42*, 103302. [\[CrossRef\]](https://doi.org/10.1016/j.surfin.2023.103302)
- 3. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. *Nature* **1972**, *238*, 37–38. [\[CrossRef\]](https://doi.org/10.1038/238037a0)
- 4. Yu, X.; Jeon, B.; Kim, Y.K. Dominant influence of the surface on the photoactivity of shape-controlled anatase TiO₂ nanocrystals. *ACS Catal.* **2015**, *5*, 3316–3322. [\[CrossRef\]](https://doi.org/10.1021/cs5020942)
- 5. Wu, B.; Guo, C.; Zheng, N.; Xie, Z.; Stucky, G.D. Nonaqueous production of nanostructured anatase with high-energy facets. *J. Am. Chem. Soc.* **2008**, *130*, 17563–17567. [\[CrossRef\]](https://doi.org/10.1021/ja8069715)
- 6. Yu, J.; Fan, J.; Lv, K. Anatase TiO₂ nanosheets with exposed (001) facets: Improved photoelectric conversion efficiency in dye-sensitized solar cells. *Nanoscale* **2010**, *2*, 2144–2149. [\[CrossRef\]](https://doi.org/10.1039/c0nr00427h)
- 7. Wen, C.Z.; Jiang, H.B.; Qiao, S.Z.; Yang, H.G.; Lu, G.Q. Synthesis of high-reactive facets dominated anatase TiO² . *J. Mater. Chem.* **2011**, *21*, 7052–7061. [\[CrossRef\]](https://doi.org/10.1039/c1jm00068c)
- 8. Zhang, H.; Sun, P.; Fei, X.; Wu, X.; Huang, Z.; Zhong, W.; Gong, Q.; Zheng, Y.; Zhang, Q.; Xie, S.; et al. Unusual facet and co-catalyst effects in TiO² -based photocatalytic coupling of methane. *Nat. Commun.* **2024**, *15*, 4453. [\[CrossRef\]](https://doi.org/10.1038/s41467-024-48866-1)
- 9. Ozawa, K.; Emori, M.; Yamamoto, S.; Yukawa, R.; Yamamoto, S.; Hobara, R.; Fujikawa, K.; Sakama, H.; Matsuda, I. Electron–hole recombination time at TiO₂ single-crystal surfaces: Influence of surface band bending. *J. Phys. Chem. Lett.* 2014, 5, 1953-1957. [\[CrossRef\]](https://doi.org/10.1021/jz500770c)
- 10. Wang, Y.; Fiaz, M.; Kim, J.; Carl, N.; Kim, Y.K. Kinetic evidence for type-II heterojunction and z-scheme interactions in g-C3N4/TiO² nanotube-based photocatalysts in photocatalytic hydrogen evolution. *ACS Appl. Energy Mater.* **2023**, *6*, 5197–5206. [\[CrossRef\]](https://doi.org/10.1021/acsaem.3c00130)
- 11. Govinda Raj, M.; Mahalingam, S.; Gnanarani, S.V.; Jayashree, C.; Ganeshraja, A.S.; Pugazhenthiran, N.; Rahaman, M.; Abinaya, S.; Senthil, B.; Kim, J. TiO₂ nanorod decorated with $MoS₂$ nanospheres: An efficient dual-functional photocatalyst for antibiotic degradation and hydrogen production. *Chemosphere* **2024**, *357*, 142033. [\[CrossRef\]](https://doi.org/10.1016/j.chemosphere.2024.142033)
- 12. Yang, S.; Lu, Q.; Wang, F.; Zhi, Y.; Chen, J.; Wang, Y.; Zhang, H.; Yin, H.; Sun, P.; Cao, W. S-scheme SnO/TiO² heterojunction with high hole mobility for boosting photocatalytic degradation of gaseous benzene. *Chem. Eng. J.* **2023**, *478*, 147345. [\[CrossRef\]](https://doi.org/10.1016/j.cej.2023.147345)
- 13. Pandeya, S.; Ding, R.; Ma, Y.; Han, X.; Gui, M.; Mulmi, P.; Panthi, K.P.; Neupane, B.B.; Pant, H.R.; Li, Z.; et al. Self-standing C dS/TiO₂ Janus nanofiberous membrane: COD removal, antibacterial activity and photocatalytic degradation of organic pollutants. *J. Environ. Chem. Eng.* **2024**, *12*, 112521. [\[CrossRef\]](https://doi.org/10.1016/j.jece.2024.112521)
- 14. Burton, L.A.; Whittles, T.J.; Hesp, D.; Linhart, W.M.; Skelton, J.M.; Hou, B.; Webster, R.F.; O'Dowd, G.; Reece, C.; Cherns, D.; et al. Electronic and optical properties of single crystal SnS² : An earth-abundant disulfide photocatalyst. *J. Mater. Chem. A* **2016**, *4*, 1312–1318. [\[CrossRef\]](https://doi.org/10.1039/C5TA08214E)
- 15. Zhang, F.; Zhang, Y.; Wang, Y.; Zhu, A.; Zhang, Y. Efficient photocatalytic reduction of aqueous Cr (VI) by Zr⁴⁺ doped and polyaniline coupled SnS² nanoflakes. *Sep. Purif. Technol.* **2022**, *283*, 120161. [\[CrossRef\]](https://doi.org/10.1016/j.seppur.2021.120161)
- 16. Nguyen Thi, T.H.; Huu, H.T.; Phi, H.N.; Nguyen, V.P.; Le, Q.D.; Thi, L.N.; Trang Phan, T.T.; Vo, V. A facile synthesis of SnS₂/g-C3N⁴ S-scheme heterojunction photocatalyst with enhanced photocatalytic performance. *J. Sci. Adv. Mater. Devices* **2022**, *7*, 100402. [\[CrossRef\]](https://doi.org/10.1016/j.jsamd.2021.11.004)
- 17. Xie, O.; Zhou, H.; Lv, Z.; Liu, H.; Guo, H. Sn⁴⁺ self-doped hollow cubic SnS as an efficient visible-light photocatalyst for Cr(VI) reduction and detoxification of cyanide. *J. Mater. Chem. A* **2017**, *5*, 6299–6309. [\[CrossRef\]](https://doi.org/10.1039/C6TA11052E)
- 18. Zhu, L.; Lu, Q.; Lv, L.; Wang, Y.; Hu, Y.; Deng, Z.; Lou, Z.; Hou, Y.; Teng, F. Ligand-free rutile and anatase TiO₂ nanocrystals as electron extraction layers for high performance inverted polymer solar cells. *RSC Adv.* **2017**, *7*, 20084–20092. [\[CrossRef\]](https://doi.org/10.1039/C7RA00134G)
- 19. Wang, M.; Tan, S.; Kan, S.; Wu, Y.; Sang, S.; Liu, K.; Liu, H. In-situ assembly of TiO² with high exposure of (001) facets on three-dimensional porous graphene aerogel for lithium-sulfur battery. *J. Energy Chem.* **2020**, *49*, 316–322. [\[CrossRef\]](https://doi.org/10.1016/j.jechem.2020.03.011)
- 20. Huang, G.; Zhang, J.; Jiang, F.; Zhang, Z.; Zeng, J.; Qi, X.; Shen, Z.; Wang, H.; Kong, Z.; Xi, J.; et al. Excellent photoelectrochemical activity of Bi2S³ nanorod/TiO² nanoplate composites with dominant {001} facets. *J. Solid State Chem.* **2020**, *281*, 121041. [\[CrossRef\]](https://doi.org/10.1016/j.jssc.2019.121041)
- 21. Gonçalves, B.S.; Palhares, H.G.; Souza, T.C.C.d.; Castro, V.G.d.; Silva, G.G.; Silva, B.C.; Krambrock, K.; Soares, R.B.; Lins, V.F.C.; Houmard, M.; et al. Effect of the carbon loading on the structural and photocatalytic properties of reduced graphene oxide-TiO₂ nanocomposites prepared by hydrothermal synthesis. *J. Mater. Res. Technol.* **2019**, *8*, 6262–6274. [\[CrossRef\]](https://doi.org/10.1016/j.jmrt.2019.10.020)
- 22. Mayerhofer, A.; Dali, Y.; Presoly, P.; Bernhard, C.; Michelic, S.K. Study on the possible error due to matrix interaction in automated SEM/EDS analysis of nonmetallic inclusions in steel by thermodynamics, kinetics and electrolytic extraction. *Metals* **2020**, *10*, 860. [\[CrossRef\]](https://doi.org/10.3390/met10070860)
- 23. Yuan, Y.-J.; Ye, Z.-J.; Lu, H.-W.; Hu, B.; Li, Y.-H.; Chen, D.-Q.; Zhong, J.-S.; Yu, Z.-T.; Zou, Z.-G. Constructing anatase TiO² nanosheets with exposed (001) facets/layered MoS₂ two-dimensional nanojunctions for enhanced solar hydrogen generation. *ACS Catal.* **2016**, *6*, 532–541. [\[CrossRef\]](https://doi.org/10.1021/acscatal.5b02036)
- 24. Dashairya, L.; Sharma, M.; Basu, S.; Saha, P. SnS₂/RGO based nanocomposite for efficient photocatalytic degradation of toxic industrial dyes under visible-light irradiation. *J. Alloys Compd.* **2019**, *774*, 625–636. [\[CrossRef\]](https://doi.org/10.1016/j.jallcom.2018.10.008)
- 25. Ye, L.; Mao, J.; Liu, J.; Jiang, Z.; Peng, T.; Zan, L. Synthesis of anatase TiO₂ nanocrystals with {101}, {001} or {010} single facets of 90% level exposure and liquid-phase photocatalytic reduction and oxidation activity orders. *J. Mater. Chem. A* **2013**, *1*, 10532–10537. [\[CrossRef\]](https://doi.org/10.1039/c3ta11791j)
- 26. Selcuk, S.; Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO₂ surfaces and aqueous interfaces. *Nat. Mater.* **2016**, *15*, 1107–1112. [\[CrossRef\]](https://doi.org/10.1038/nmat4672)
- 27. Yu, X.; Wang, Y.; Kim, Y.K. Engineering defects and photocatalytic activity of TiO₂ nanoparticles by thermal treatments in NH₃ and subsequent surface chemical etchings. *Phys. Chem. Chem. Phys.* **2017**, *19*, 24049–24058. [\[CrossRef\]](https://doi.org/10.1039/C7CP03579A)
- 28. Lee, T.-Y.; Lee, C.-Y.; Chiu, H.-T. Enhanced photocatalysis from truncated octahedral bipyramids of anatase TiO₂ with exposed {001}/{101} facets. *ACS Omega* **2018**, *3*, 10225–10232. [\[CrossRef\]](https://doi.org/10.1021/acsomega.8b01251)
- 29. Sriv, T.; Kim, K.; Cheong, H. Low-frequency raman spectroscopy of few-layer 2H-SnS₂. *ACS Catal.* 2018, *8*, 10194. [\[CrossRef\]](https://doi.org/10.1038/s41598-018-28569-6)
- 30. Tian, F.; Zhang, Y.; Zhang, J.; Pan, C. Raman spectroscopy: A new approach to measure the percentage of anatase TiO₂ exposed (001) facets. *J. Phys. Chem. C* **2012**, *116*, 7515–7519. [\[CrossRef\]](https://doi.org/10.1021/jp301256h)
- 31. Du, Y.L.; Deng, Y.; Zhang, M.S. Variable-temperature raman scattering study on anatase titanium dioxide nanocrystals. *J. Phys. Chem. Solids* **2006**, *67*, 2405–2408. [\[CrossRef\]](https://doi.org/10.1016/j.jpcs.2006.06.020)
- 32. Sun, L.; Zhao, Z.; Li, S.; Su, Y.; Huang, L.; Shao, N.; Liu, F.; Bu, Y.; Zhang, H.; Zhang, Z. Role of SnS $_2$ in 2D–2D SnS $_2/\rm TiO_2$ nanosheet heterojunctions for Photocatalytic Hydrogen Evolution. *ACS Appl. Nano Mater.* **2019**, *2*, 2144–2151. [\[CrossRef\]](https://doi.org/10.1021/acsanm.9b00122)
- 33. Sun, Q.; Li, Y.; Hao, J.; Zheng, S.; Zhang, T.; Wang, T.; Wu, R.; Fang, H.; Wang, Y. Increased active sites and charge transfer in the SnS2/TiO² heterostructure for visible-light-assisted NO² sensing. *ACS Appl. Mater. Interfaces* **2021**, *13*, 54152–54161. [\[CrossRef\]](https://doi.org/10.1021/acsami.1c16095) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/34734688)
- 34. van Kasteren, J.G.A.; Basuvalingam, S.B.; Mattinen, M.; Bracesco, A.E.A.; Kessels, W.M.M.; Bol, A.A.; Macco, B. Growth mechanism and Film properties of atomic-layer-deposited titanium oxysulfide. *Chem. Mater.* **2022**, *34*, 7750–7760. [\[CrossRef\]](https://doi.org/10.1021/acs.chemmater.2c01033)
- 35. Gonbeau, D.; Guimon, C.; Pfister-Guillouzo, G.; Levasseur, A.; Meunier, G.; Dormoy, R. XPS study of thin films of titanium oxysulfides. *Surf. Sci.* **1991**, *254*, 81–89. [\[CrossRef\]](https://doi.org/10.1016/0039-6028(91)90640-E)
- 36. He, Z.; Que, W. Surface scattering and reflecting: The effect on light absorption or photocatalytic activity of TiO₂ scattering microspheres. *Phys. Chem. Chem. Phys.* **2013**, *15*, 16768–16773. [\[CrossRef\]](https://doi.org/10.1039/c3cp52570h) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/23995240)
- 37. He, Z.; Zhu, Z.; Li, J.; Zhou, J.; Wei, N. Characterization and activity of mesoporous titanium dioxide beads with high surface areas and controllable pore sizes. *J. Hazard. Mater.* **2011**, *190*, 133–139. [\[CrossRef\]](https://doi.org/10.1016/j.jhazmat.2011.03.011) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/21458919)
- 38. Yadav, U. 2D SnS² nanostructure-derived photocatalytic degradation of organic pollutants under visible Light. *Front. Nanotechnol.* **2021**, *3*, 711368. [\[CrossRef\]](https://doi.org/10.3389/fnano.2021.711368)
- 39. Veres, Á.; Ménesi, J.; Janáky, C.; Samu, G.F.; Scheyer, M.K.; Xu, Q.; Salahioglu, F.; Garland, M.V.; Dékány, I.; Zhong, Z. New insights into the relationship between structure and photocatalytic properties of TiO₂ catalysts. *RSC Adv.* **2015**, *5*, 2421–2428. [\[CrossRef\]](https://doi.org/10.1039/C4RA11489B)
- 40. Hou, L.; Guan, Z.; Liu, T.; He, C.; Li, Q.; Yang, J. Synergistic effect of {101} crystal facet and bulk/surface oxygen vacancy ratio on the photocatalytic hydrogen production of TiO² . *Int. J. Hydrogen Energy* **2019**, *44*, 8109–8120. [\[CrossRef\]](https://doi.org/10.1016/j.ijhydene.2019.02.075)
- 41. Roy, N.; Sohn, Y.; Pradhan, D. Synergy of low-energy {101} and high-energy {001} TiO² crystal facets for enhanced photocatalysis. *ACS Nano* **2013**, *7*, 2532–2540. [\[CrossRef\]](https://doi.org/10.1021/nn305877v) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/23448713)
- 42. She, H.; Zhou, H.; Li, L.; Zhao, Z.; Jiang, M.; Huang, J.; Wang, L.; Wang, Q. Construction of a two-dimensional composite derived from TiO² and SnS² for enhanced photocatalytic reduction of CO² into CH⁴ . *ACS Sustain. Chem. Eng.* **2019**, *7*, 650–659. [\[CrossRef\]](https://doi.org/10.1021/acssuschemeng.8b04250)
- 43. Chen, Z.; Wang, W.; Zhang, Z.; Fang, X. High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity. *J. Phys. Chem. C* **2013**, *117*, 19346–19352. [\[CrossRef\]](https://doi.org/10.1021/jp406508y)
- 44. Ding, X.; Zhao, K.; Zhang, L. Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped $Bi₂WO₆$ under visible light by generating more superoxide ions. *Environ. Sci. Technol.* **2014**, *48*, 5823–5831. [\[CrossRef\]](https://doi.org/10.1021/es405714q) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/24787282)
- 45. Ren, B.; Wang, T.; Qu, G.; Deng, F.; Liang, D.; Yang, W.; Liu, M. In situ synthesis of g -C₃N₄/TiO₂ heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation. *Environ. Sci. Pollut. Res.* **2018**, *25*, 19122–19133. [\[CrossRef\]](https://doi.org/10.1007/s11356-018-2114-z) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/29725923)
- 46. Shanmugaratnam, S.; Selvaratnam, B.; Baride, A.; Koodali, R.; Ravirajan, P.; Velauthapillai, D.; Shivatharsiny, Y. SnS₂/TiO₂ nanocomposites for hydrogen production and photodegradation under extended solar irradiation. *Catalysts* **2021**, *11*, 589. [\[CrossRef\]](https://doi.org/10.3390/catal11050589)
- 47. He, Y.; Zhang, L.; Fan, M.; Wang, X.; Walbridge, M.L.; Nong, Q.; Wu, Y.; Zhao, L. Z-scheme SnO_{2-x}/g-C₃N₄ composite as an efficient photocatalyst for dye degradation and photocatalytic CO² reduction. *Sol. Energy Mater. Sol. Cells* **2015**, *137*, 175–184. [\[CrossRef\]](https://doi.org/10.1016/j.solmat.2015.01.037)
- 48. Ju, L.; Wu, P.; Yang, Q.; Ahmed, Z.; Zhu, N. Synthesis of ZnAlTi-LDO supported C₆₀@AgCl nanoparticles and their photocatalytic activity for photo-degradation of Bisphenol A. *Appl. Catal. B Environ.* **2018**, *224*, 159–174. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2017.10.056)
- 49. Moss, B.; Lim, K.K.; Beltram, A.; Moniz, S.; Tang, J.; Fornasiero, P.; Barnes, P.; Durrant, J.; Kafizas, A. Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO² . *Sci. Rep.* **2017**, *7*, 2938. [\[CrossRef\]](https://doi.org/10.1038/s41598-017-03065-5) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/28592816)
- 50. Bechambi, O.; Chalbi, M.; Najjar, W.; Sayadi, S. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. *Appl. Surf. Sci.* **2015**, *347*, 414–420. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2015.03.049)
- 51. Su, Q.; Li, Y.; Hu, R.; Song, F.; Liu, S.; Guo, C.; Zhu, S.; Liu, W.; Pan, J. Heterojunction photocatalysts based on 2D materials: The role of configuration. *Adv. Sustain. Syst.* **2020**, *4*, 2000130. [\[CrossRef\]](https://doi.org/10.1002/adsu.202000130)
- 52. Liu, Y.; Wang, R.; Yang, Z.; Du, H.; Jiang, Y.; Shen, C.; Liang, K.; Xu, A. Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts. *Chin. J. Catal.* **2015**, *36*, 2135–2144. [\[CrossRef\]](https://doi.org/10.1016/S1872-2067(15)60985-8)
- 53. Qiu, F.; Li, W.; Wang, F.; Li, H.; Liu, X.; Sun, J. In-situ synthesis of novel Z-scheme SnS₂/BiOBr photocatalysts with superior photocatalytic efficiency under visible light. *J. Colloid Interface Sci.* **2017**, *493*, 1–9. [\[CrossRef\]](https://doi.org/10.1016/j.jcis.2016.12.066) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/28088115)
- 54. Sharma, S.; Mittal, A.; Chauhan, N.S.; Saini, S.; Yadav, J.; Kushwaha, M.; Chakraborty, R.; Sengupta, S.; Kumari, K.; Kumar, N. Mechanistic investigation of RhB photodegradation under low power visible LEDs using a Pd-modified TiO2/Bi2O3 photocatalyst: Experimental and DFT studies. *J. Phys. Chem. Solids* **2022**, *162*, 110510. [\[CrossRef\]](https://doi.org/10.1016/j.jpcs.2021.110510)
- 55. Rauf, M.A.; Meetani, M.A.; Khaleel, A.; Ahmed, A. Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. *Chem. Eng. J.* **2010**, *157*, 373–378. [\[CrossRef\]](https://doi.org/10.1016/j.cej.2009.11.017)
- 56. Zhang, J.; Zhang, L.; Shi, Y.; Xu, G.; Zhang, E.; Wang, H.; Kong, Z.; Xi, J.; Ji, Z. Anatase TiO² nanosheets with coexposed {101} and {001} facets coupled with ultrathin SnS₂ nanosheets as a face-to-face n-p-n dual heterojunction photocatalyst for enhancing photocatalytic activity. *Appl. Surf. Sci.* **2017**, *420*, 839–848. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2017.05.160)
- 57. Moustakas, N.G.; Kontos, A.G.; Likodimos, V.; Katsaros, F.; Boukos, N.; Tsoutsou, D.; Dimoulas, A.; Romanos, G.E.; Dionysiou, D.D.; Falaras, P. Inorganic–organic core–shell titania nanoparticles for efficient visible light activated photocatalysis. *Appl. Catal. B Environ.* **2013**, *130–131*, 14–24. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2012.10.007)
- 58. Gao, J.; Sun, X.; Zheng, L.; He, G.; Wang, Y.; Li, Y.; Liu, Y.; Deng, J.; Liu, M.; Hu, J. 2D Z-scheme TiO₂/SnS₂ heterojunctions with enhanced visible-light photocatalytic performance for refractory contaminants and mechanistic insights. *New J. Chem.* **2021**, *45*, 16131–16142. [\[CrossRef\]](https://doi.org/10.1039/D1NJ02247D)
- 59. Gao, J.; Hu, J.; Wang, Y.; Zheng, L.; He, G.; Deng, J.; Liu, M.; Li, Y.; Liu, Y.; Zhou, H. Fabrication of Z-scheme TiO₂/SnS₂/MoS₂ ternary heterojunction arrays for enhanced photocatalytic and photoelectrochemical performance under visible light. *J. Solid State Chem.* **2022**, *307*, 122737. [\[CrossRef\]](https://doi.org/10.1016/j.jssc.2021.122737)
- 60. Yan, X.; Ye, K.; Zhang, T.; Xue, C.; Zhang, D.; Ma, C.; Wei, J.; Yang, G. Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS² heterojunctions for exceptional visible-light driven photocatalytic activity. *New J. Chem.* **2017**, *41*, 8482–8489. [\[CrossRef\]](https://doi.org/10.1039/C7NJ01421J)
- 61. Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. Step-scheme CdS/TiO² nanocomposite hollow microsphere with enhanced photocatalytic CO² reduction activity. *J. Mater. Sci. Technol.* **2020**, *56*, 143–150. [\[CrossRef\]](https://doi.org/10.1016/j.jmst.2020.02.062)
- 62. Dai, X.; Xie, M.L.; Meng, S.G.; Fu, X.L.; Chen, S.F. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N⁴ photocatalyst under visible light irradiation. *Appl. Catal. B Environ.* **2014**, *158*, 382–390. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2014.04.035)
- 63. Luo, J.; Zhou, X.; Zhang, J.; Du, Z. Fabrication and characterization of Ag₂CO₃/SnS₂ composites with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. *RSC Adv.* **2015**, *5*, 86705–86712. [\[CrossRef\]](https://doi.org/10.1039/C5RA18262J)
- 64. Kuldeep, A.R.; Dhabbe, R.S.; Garadkar, K.M. Development of g-C3N4-TiO2 visible active hybrid photocatalyst for the photodegradation of methyl orange. *Res. Chem. Intermed.* **2021**, *47*, 5155–5174. [\[CrossRef\]](https://doi.org/10.1007/s11164-021-04561-0)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.