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Abstract: This comprehensive review covers recent advancements in utilizing various types of
polymers and their modifications as photocatalysts for the removal of pharmaceutical contaminants
from water. It also considers polymers that enhance the photocatalytic properties of other materi-
als, highlighting their dual role in improving water purification efficiency. Over the past decades,
significant progress has been made in understanding the photocatalytic properties of polymers,
including organic, inorganic, and composite materials, and their efficacy in degrading pharmaceuti-
cals. Some of the most commonly used polymers, such as polyaniline, poly(p-phenylene vinylene),
polyethylene oxide, and polypyrole, and their properties have been reviewed in detail. Physical
modification techniques (mechanical blending and extrusion processing) and chemical modification
techniques (nanocomposite formation, plasma modification techniques, surface functionalization, and
cross-linking) have been discussed as appropriate for modifying polymers in order to increase their
photocatalytic activity. This review examines the latest research findings, including the development
of novel polymer-based photocatalysts and their application in the removal of pharmaceutical com-
pounds, as well as optimization strategies for enhancing their performance. Additionally, challenges
and future directions in this field are discussed to guide further research efforts.

Keywords: pharmacologically active compounds; drugs; water contaminants; modification of polymers;
catalytic materials; sustainable water treatment; environmental protection; wastewater

1. Introduction

The aqueous environment plays a central role in the water cycle and the world’s
ecology and is a major component of various forms of human activities [1]. Water pollution
with residue amounts of various chemicals, including pharmaceuticals, pesticides [2],
dyes, etc., creates a lot of serious environmental problems [3–5]. The main reason for
the spread of pharmaceuticals is the treatment of various diseases, as well as the so-
called pro-pharmaceutical effects [6]. The appearance of pharmaceutical substances in the
environment also concerns the emission of veterinary-connected preparations [7,8]. The
impact of various factors on the behavior and properties of pharmaceuticals in wastewater,
natural bodies (rivers, lakes, seas), and technical water has significantly expanded our
understanding [9].

Today, the most common technologies used for the removal of pharmaceutically active
compounds include reverse osmosis, ultrafiltration, nanofiltration, activated carbon, and
many others [10–12]. However, these processes do not entirely remove pharmaceuticals
from the water. The inefficiency of conventional methods in wastewater treatment and
the removal of pharmaceutical compounds from wastewater have become a global con-
cern [13,14]. Advanced oxidation processes (AOPs) showed great potential and played a
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prominent role in the complete removal of pharmaceuticals from water sources and the
environment. One of the most often used AOPs is photocatalysis [15]. In this process,
photocatalytic materials, whose activation is induced by light emission, take a primary role.
The application of nanotechnologies for removing pharmaceuticals from water is widely
used [14]. Nano-sized photocatalysts, such as TiO2 [16], ZnO [17], etc., are widely used.
However, nowadays, new polymer materials [18] and their modifications are used very
often, side by side with TiO2 and ZnO [18,19].

Since the number of research studies regarding the efficiency of polymers has ex-
panded in recent years, there is a need for a more comprehensive review of polymers as a
promising sustainable material for photocatalytic applications in water treatment [20,21].
Therefore, the current work intends to encompass all significant studies on sustainable
polymer materials for the elimination of pharmaceuticals from water and wastewater. This
review is divided into several sections. Information on sources, problems, occurrences,
and potential risks of pharmaceutical compounds are discussed first. The next section
presents a critical examination of various polymer materials and their modifications used in
photocatalytic processes from both experimental and computational approaches. Further,
the efficiency of different polymer modifications in the removal of pharmaceuticals from
the environment is addressed in detail. The most important advantages and challenges of
using polymer materials are addressed, as well as their limitations.

1.1. The Problem of Pharmaceutical Pollutants in Water

The production and consumption of pharmaceuticals have increased dramatically
in recent decades [22], leading to the emergence of water-soluble and pharmacologically
active organic micropollutants [23,24]. These pollutants can be found in water sources
and ecosystems as parent compounds or as metabolites [25]. Pharmaceuticals present
in the environment can change the composition of the natural flora and fauna [26], as
well as the structure of the entire ecosystem in the aquatic environment [27]. They are
frequently found in wastewater (Table 1), surface water, and groundwater, where they have
raised concerns due to their environmental impact and the ineffectiveness of conventional
treatment plants in removing them [28]. The presence of pharmaceutical pollutants can lead
to the pollution of ecosystems [29] and the exchange of carbon, nitrogen, and phosphorus
within cyclical processes. One of the responses to this environmental challenge is the
emergence of new technology and materials, in particular, the use of AOPs [30–33]. The
appearance of pharmaceuticals in the environment can have severe consequences and can
generate resistance to certain drugs in aquatic organisms, humans, and animals [34].

From an economic point of view, the cost of removing pharmaceuticals in water
treatment plants [35], which requires the development of increasingly efficient treatment
technologies, is very high, since pharmaceuticals are present as residues in these wa-
ters [36,37]. In order to satisfy current demands without affecting the environment, it is
essential to provide a long-term solution for pharmaceutical removal from the environ-
ment based on social, technical, economic, and environmental conditions in a sustainable
way [38–41]. Among AOPs, photocatalysis stands out [42]. One of the new materials
utilized in photocatalysis is sustainable polymers [43,44]. Photocatalytic polymer-based
degradation stands out as a potential approach for the removal of pharmaceuticals from
the environment [45] since it typically requires little energy, has low operation costs, and,
most importantly, does not produce any toxic by-products that cause secondary contamina-
tion [46]. Also, polymer materials can interact with the transformation products made in
the photocatalytic degradation process. The advantages of polymer-assisted preparation
procedures are mainly the speed of the synthesis and maturation around the matrix surface
and improved polymer adhesion/anchorage of the anchored oxides. However, little is
known about the effect of the formation of small molecules as products of photocatalytic
reactions in situ on the anchored oxides or their interaction with the matrix-to-supported
oxide binding. The interactions of photodegradation products with polymers can be of
importance for many potential products. The products of photocatalytic degradation of
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pollutants are often deposited or adhered to matrix materials like polymers. This may
affect their properties, determined by chemical as well as physical interaction and binding
to the surface. Polymer-modified properties of those materials, as matrices for photocat-
alytic degradation, have recently been successfully applied for wastewater purification,
self-cleaning surfaces, and surfaces with photobiocidal properties. This would allow for an
extremely easy one-step preparation of photocatalytic-polymer based reactive materials,
used for degradation of both parent compounds and photodegradation products, thus
backing up the economy of their implementation [47–49].

Table 1. Detection of pharmaceuticals in different wastewater.

Pharmaceutical Location Analysis Method c (ng/dm3) Detected
in Effluents

Reference

Amoxicillin Kisii and Kabarnet wastewater treatment
plants in Kenya HPLC–UV/Vis 90 [50]

Ampicillin Olomouc region, Czech Republic UPLC–TQ-S/MS 48 [51]

Azithromycin Sanya, China wastewater treatment plants HPLC–UV/Vis 56,600 [52]

Carbamazepine Czech wastewater treatment plants UHPLC–MS/MS 730 [53]

Cephalexin
Pharco B
International Pharmaceutical Company in
Borg El Arab, Alexandria, Egypt

HPLC–DAD 71,900 [54]

Ceftazidime
Pharco B
International Pharmaceutical Company in
Borg El Arab, Alexandria, Egypt

HPLC–DAD 94,000 [54]

Ceftriaxone
Pharco B
International Pharmaceutical Company in
Borg El Arab, Alexandria, Egypt

HPLC–DAD 170,300 [54]

Clarithromycin Neringa (Nida) wastewater treatment
plants HPLC–UV/Vis 15 [55]

Chloramphenicol Kanchipuram District, Chennai GCE 39 [56]

Ciprofloxacin Sanya, China wastewater treatment plants HPLC–UV/Vis 24,000 [52]

Doxycycline Machakos, wastewater stabilization ponds LC-ESI–MS/MS 1500 [57]

Erythromycin South Africa, untreated wastewater LC–MS/MS 55 [58]

Metoprolol Czech wastewater treatment plants UHPLC–MS/MS 960 [53]

Metronidazole Czech wastewater treatment plants UHPLC–MS/MS 7500 [53]

Naproxen Czech wastewater treatment plants UHPLC–MS/MS 980 [53]

Norfloxacin Machakos, wastewater stabilization ponds LC–ESI–MS/MS 2900 [57]

Oxytetracycline Dhaka wastewater effluents in
Bangladesh RP–HPLC–UV/Vis 670 [59]

Paracetamol Czech wastewater treatment plants UHPLC–MS/MS 82,500 [53]

Propranolol San Luis Province, Argentina HPLC–DAD 850 [60]

Roxithromycin Nicosia wastewater, Cyprus SPE–DEX 700 [61]

Sulfadimidine Shanghai wastewater treatment plant UPLC–DAD 440 [62]

Sulfamethoxazole Czech wastewater treatment plants UHPLC–MS/MS 7500 [53]

Tetracycline Bouc-bel-air, France wastewater UPLC–FLD 4820 [63]

Tramadol Czech wastewater treatment plants UHPLC–MS/MS 3500 [53]

Trimethoprim Czech wastewater treatment plants UHPLC–MS/MS 3000 [53]
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1.2. Objectives and Significance of the Study

Photocatalysis by semiconductors has been recognized as one of the most acceptable,
sustainable, and eco-friendly techniques to mitigate increasing pollution of the environ-
ment [64]. However, commercialization of these advanced technologies is challenging due
to the poor activity of pure semiconductor photoactive material, charge recombination, and
light absorption only in the ultraviolet region of the solar spectrum [65,66]. Evolution in the
materials science area has led to the use of various polymers as adequate support for semi-
conductor photocatalysts, providing solutions for the challenges mentioned above [67,68].
This might be attributed to the very low recombination of photogenerated charge carriers
(electron–holes, e−–h+), which possess a long carrier lifetime due to the heavy adsorption
of semiconductor nanocrystals onto polymer support [69]. The introduction of a polymer
barrier band can increase photocatalysts’ response to visible light owing to the narrow
band gap, and they can also act as effective scavengers of photo-generated holes [70].

Photocatalysis is a green technology [71], and from this perspective, polymers are
concurrently applied without employing supporting semiconductors for wastewater pu-
rification [72]. Polymers have several distinct advantages as photocatalysts [73] over
conventional metal oxides, semiconductors, and inorganic nanocrystals, including turgid
backbones, controlled porosity, excellent chemical durability, well-defined micropores,
strong chelation sites for favorable interactions with transition metal centers, and flexibility
in maintaining conjugation in extended structures [18,74,75]. Organic polymers could pro-
vide an alternative to toxic and bioaccumulative heavy-metal-containing semiconductors,
especially in biomedical and environmental remediation applications [76]. Still, polymeric
materials exhibit low absorption in the visible spectrum of sunlight [77]. This problem
can be dealt with by introducing photoactive species, including conducting polymers and
TiO2 [78]. Currently, conjugated polymers are recognized for their additional application as
visible-light active photocatalysts owing to their long excited-state lifetimes, high quantum
yields, and outstanding photostability [79,80]. The major challenge is enhancing the photo-
catalytic degradation of recalcitrant organic waste in environments where stable, reliable,
and benign aromatic (homo)polymers can offer structural and functional sustainability
under a wide range of operational conditions [81].

In the history of the development of organic and inorganic chemistry, inorganic
nanoparticles, nano capsules, and nano complexes have been used in combination with
organic polymers as reaction media for many organic modifications. Their easy methods
of preparation have been mediated by chemical and physical procedures [82]. Organic
polymers are used as supported/reducing/dispersing/capping agents in most cases of
synthesis of such inorganic nano catalysts as reaction media. Polymers are seemingly
the best choice as reaction media in the presence of nano catalysts due to their ease of
separation, recyclability, low cost, and non-corrosive, reusable, non-toxic nature in mediated
synthesis. Polymers have been widely used as reaction media in combination with various
nano catalysts in different organic transformations [83]. Organic nano catalysts, polymer
nanocomposites, and support polymers have been comprehensively used in combination
with molecular catalysts, nano catalysts, and metal-free catalysts. Such polymer-supported
nano catalysts have offered a unique benefit in organic synthesis with the development
of many magnetic, non-magnetic, and semi-magnetic complex nano hetero molecules,
which have been used in many organic transformations and minimize the volume of toxic
waste and disposal of products due to their reusability in the organic transformation,
and offer economy and safety along with the environmental sustainability of the desired
products [84]. The use of TiO2 nanoparticles is attracting increased attention in various
technological, environmental, and biomedical applications. In turn, polymers, with their
broad spectrum of physical characteristics, processability, tailorable biodegradation, various
related substances, responsiveness to external stimuli, and low production cost, are widely
used in different areas such as medicine, biotechnologies, environmental uses, drug delivery,
dentistry, cosmetics, clothing, packaging, and rarefied gas separation [85]. ZnO is an
essential technological material. The popularity of ZnO is due to the fact that zinc oxide
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nanoparticles possess and manifest various physical properties, as well as the nature
and characteristics that are a consequence of the peculiarities of nanoparticle formation
and growth. Furthermore, ZnO also has broad applications relative to various sectors
and could be used to realize a variety of sensors. ZnO and polymers have a number
of properties, the combination of which allows for the realization of a wide range of
composite material properties. According to the requirements of protective coatings, the
most essential property is protection against ultraviolet and visible light. Some polymers
have an enhanced absorption capacity in these particular ranges. In many areas, polymers
can effectively compete with more expensive inorganic materials [86,87].

2. Polymers for Photocatalytic Applications

Rapid advancements in interdisciplinary scientific research on hybrid green functional
materials, incorporating functional elements for advanced electronic, ionic, and photonic
functionalities, continue to facilitate elusive clean energy production, toxic pollutant clean-
ups, and safe biologically relevant reductions and hydrogenation chemistries [88,89]. The
cost-effective synthesis, facile band manipulation, and straightforward nano-modularity of
polymeric photocatalysts are, broadly speaking, the main reasons for increasing research
and application attributes [90]. The combination of a synthetic environment and tapping
malleable surfaces of photocatalysts often causes an active photocatalytic face to interact
charge distribution with electro-photonic and integrated photogenerated product storage
and cycles [91].

The versatility of polymers in the industry lies in the ability to combine different
compounds to form polymers and mold them into any desired shape, and subsequently
apply desired properties, or make chemical modifications to obtain value-added poly-
mers. Polymers can be used in the form of powders, membranes, foams, surface loads,
etc. [92–95]. Polymer powders are defined as finely divided, solid, spherical plastics that
are made from combinations of bulk or solution polymerization and processing technology.
These spherical particles may have diameters ranging from a few micrometers to over
200 µm. Powdered polymers are essential in terms of form, economics, aesthetics, and
chemistry. For practical use, a polymer powder must have a basic elemental composition,
suitable physical characteristics, and uniform properties when sampled [96]. Polymer
membranes are generally synthesized from organic solvent mixtures involving polymers
and additives and need to be prepared in films. According to its intended application,
the polymer type/dosage, concentration, crosslinking density, film thickness, and any
additives can be chosen to meet different aims, and can include materials like polysul-
fone, polyetherimide, cellulose acetate, poly(vinylidene fluoride), and others. Utilizing
polymer membranes could be preferable owing to their exceptional properties such as
structure, surface modifications/enhancements, hydrophobic/hydrophilic balance, size,
function, and cost for specific applications. Despite the possibility of using them in differ-
ent ways, polymer membranes have some disadvantages, such as fouling and low water
flux [97]. During the current era of agricultural and environmental concerns, interest in
biodegradable and renewable polymer foams is increasing. Importantly, the properties of
porous foam are intimately linked with the processing technology used in foam formation.
Therefore, manufacturing processes and techniques for novel polymer foams are constantly
improving. Due to their unique properties and performance, polymer foams have achieved
significant improvements in product performance, cost-effectiveness, weight reduction,
etc. [98]. Polymers, having a wide variety of properties and chemical compositions, are
currently serviceable in a number of applications, including packaging, electrical insulation,
and protective coatings. Many advantageous and valuable properties of polymers are
realized in the performance of surface functions. The characteristics of polymers’ surfaces
are often complex, qualitatively different, and sometimes unpredictable from data on their
bulk state. Polymeric materials are classified into semicrystalline, amorphous, or glassy
forms; usually, polymers have complex chemical, physical, and mechanical natures, and
exhibit a great range of properties. Polymer surface engineering is both necessary and in-
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teresting from a variety of technological perspectives. It can involve structural organization
at several length scales, ranging from the small or nanostructured surface topographies
(length scale < 100 nm) of coatings and adhesive adhesion devices to macroscopic-scale
patterns (length scale > 1000 µm) [99].

Due to the distinctive chemical and physical properties of polymeric materials, they
are considered suitable and promising candidates for AOPs [100,101]. The advantage of
using polymers as sensitizing agents in photocatalytic composites is that they may con-
tribute to improving photocatalytic efficiency due to π-conjugated systems containing high
concentrations of electron-rich species, which are available for transfer in the semiconduc-
tor’s conduction band [102]. Also, it has been proved that by using polymer materials,
recombination of photo-generated charge carriers is reduced, while conductive polymers
tune the semiconductor’s band gap [103]. Based on density functional theory models,
conducting polymers such as polyaniline, poly(p-phenylene vinylene), polyethylene ox-
ide, polypyrrole, polythiophene, poly(1-naphthylamine), polycarbazole, polyacetylene,
poly(3,4-ethylenedioxythiophene), and poly(o-phenylenediamine) exhibit visible absorp-
tion activity due to their low band gap values, which makes them ideal candidates for
extending the semiconductor’s range of light absorption [104,105]. Also, conjugated meso-
porous polymers and, subsequently, covalent triazine frameworks are widely used for
visible light-induced photocatalysis [106]. These bulk systems are large-scale conjugated
systems with defined nanostructures, maximizing surface area and, therefore, allowing an
efficient photocatalytic process [107].

Over the past few decades, research endeavors have been intensively devoted to
finding suitable photocatalysts for practical applications [108]. Among them, polymers
have gained attention as promising candidates for many photocatalytic applications
(Figure 1) [19]. Some of the most often used polymers in photocatalytic reactions are
polyaniline, poly(p-phenylene vinylene), polyethylene oxide, polypyrrole, polythiophene,
poly(1-naphthylamine), polycarbazole, polyacetylene, poly (3,4-ethylenedioxythiophene),
poly(o-phenylenediamine, etc. [104,105].
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2.1. Types of Polymers Used in Photocatalysis

The fundamental classification of polymers:

i. Inorganic polymers. They represent aluminosilicate-based materials, which are con-
ventionally produced by the activation of solid alkali silicate. Geopolymers are in-
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organic polymers, considered a subset of inorganic polymers since the aluminosili-
cate network is coordinated tetrahedrally and primarily has aluminum atoms and
silicon [109]. These materials are flammable, durable, resistant to rust, and non-
poisonous. Inorganic polymers based on silicon are widely employed in water pu-
rification treatment due to their large surface area, electrical conductivity, stability,
flexibility, and reusability. The inorganic polymers with silicon and phosphorous in
their structures have large bond angles and bond lengths, while their bonds are more
ionic [110,111]. Even at low temperatures, they retain elasticity. They can withstand
very high temperatures in an oxygenated atmosphere since these polymers have more
inorganic elements. Inorganic polymers are highly resistant to homolytic dissocia-
tion. As a consequence of their inorganic networks, these polymers are resistant to
UV and high-energy irradiation, owing to their optical transparency throughout a
narrow wavelength range and stronger inorganic connections [112]. Typically, in an
inorganic polymer, the microstructural elements are built from three-dimensional
arrays of oxygen, E-O-E, where E is an element such as Si, Al, P, or B, through link-
age with either oxygen or other heteroatoms [113]. The mechanism that joins the
silicon–oxygen–silicon links, characteristic of siloxanes, has substantially varying hy-
drophobic or hydrophilic stability according to the size and the polar character of the
molecular affine groups, which are silicon polymeric units in a nonpolar environment,
differing from the glycol groups. These polymeric membranes polymerize the silicon
and oxygen cycles near the parent alkoxide, which is produced with high reactivity,
and which can be used in polyester acrylate copolymeric coatings. Inorganic silicon-
based polymers must undergo heat treatment for reactivity and their final application
(biomaterials, photocataysis, optical devices, energy storage) [114]. Polymers contain-
ing a main-chain of boron are an interesting and important class of materials that have
applications in several fields such as liquid-crystal materials, photoresist materials,
nonlinear optics, boron neutron capture therapy, fire retardants, and inorganic binders.
Boron-based polymers and inorganic polyboron clusters with isolable boron–boron,
boron–oxygen, and boron–carbon linking atoms have long attracted widespread inter-
est in both pi-conjugated all-boron and pi-conjugated all-boron-containing polymers to
expand the palette of functional molecular and polymeric materials, including (opto)
electronic, (non) linear optics, magnetic, electrical, and chiral properties. In addition to
the inherent upper chalcogenide boron clusters, hexacyclic structures are valuable as a
building block for the design of advanced high-level functional building blocks, with
the stabilization of the resultant polymers using flexible moieties, porphyrins, and
donor-acceptor [115]. While a small number of chemical elements, such as carbon and
silicon, have become highly important in the development of new types of polymers,
other atoms that are used much less frequently, such as phosphorus, can build poly-
mers with unique and distinct properties. Of particular note for phosphorus-based
polymers is the inherent flame-retardant nature of certain phosphinated materials.
Such polymers find utility in a number of applications, including the electronics sector
and soft materials. Phosphorus-based polymers exhibit a wide range of properties
such as flame retardancy, mechanical properties, thermal stability, proton or anion
conductivity, and anticorrosive resistance when compared with traditional organic or
inorganic polymers [116].

ii. Organic polymers. Porous organic polymers have a porous framework that is impreg-
nated in various dimensions. These polymers arise from covalent bonds between the
organic monomers of different orientations and shapes. They can be categorized as
crystalline or amorphous depending on the difference in the arrangement of monomers
in their structure. They are mainly used as photocatalysts for modifications because
of their extraordinary stability, inherent porosity, economical designs, and flexibility
in structure and function. The nature, pore size, functions, and surface area of these
polymers can be altered by modifying their side chains. They are used for heteroge-
neous catalysis, photocatalytic conversion, biochemical sensors, and gas and energy
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storage. There are different variations in their structure, so they could be divided
into polymers that have homogenous catalysts, such as monomers; polymers that are
altered post-synthesis; and polymers that have coordinated metal ions [112,117].

iii. Inorganic–organic hybrids. The coupling of inorganic materials with an organic
polymer matrix produces inorganic–organic hybrid materials. Their mechanical,
thermal, and physical properties are enhanced to a high extent. The strength of
coupling between inorganic and organic depends on the conjugation with the polymer
matrix, the number of particles, and the regular dispersal of particles in the 3D
network. These polymers’ thermoplastic or thermosetting behaviors and elasticity
are improved by inorganic fillers [118]. This new family of polymer composites
combining inorganic and organic systems is prepared in situ using sol–gel processes.
By optimizing the conditions for their synthesis, their characteristics can be controlled.
The inorganic constituents provide stability to heat and friction and enhance chemical
and electromagnetic properties and the refractive index, while the organic components
are responsible for producing films. Hybrid systems are improved compared to the
individual constituents [112].

Conducting polymers belong to the family of conjugated polymers, which include
polyaniline, poly(p-phenylene vinylene), polyethylene oxide, polypyrrole, poly(3,4-ethylene
dioxythiophene), poly(2,2′ bithiophene), and polythiophene. They have been shown to be
valuable materials in high-tech technologies, such as photocatalysis, sensors, biosensors,
nanotechnology, and organic electronic devices [104,105].

Polyaniline (PANI) has been one of the most studied conducting polymers due to
its numerous possible applications [119]. The terminology of a quasi-metal univocally
designates its electronic properties [120]. PANI is an electrically conductive polymer that is
easily prepared using chemical or electrochemical oxidation of aniline, usually in aqueous
medium [121]. Due to its electrochemical, electrical, and optical properties and excellent
thermal and environmental stability, it has emerged as one of the leading conducting
polymers for photocatalytic commercial applications [122]. The main disadvantage of PANI
is poor processability both in melt and solution processing as a consequence of its backbone
stiffness [123]. PANI salt, emeraldine hydrochloride, is not soluble in common organic
solvents. It is soluble only in concentrated sulfuric acid. However, recent discoveries
have found that functionalized protonic acids like camphor sulfonic and dodecylbenzene
sulfonic acid, together with phosphoric acid esters, enable polyaniline salts to dissolve in
organic solvents [124]. PANI can have its physical properties precisely tailored to meet the
requirements of various applications by applying several synthetic methods. The potential
of the PANI thin film on conductive electrode surfaces as an efficient photocatalyst and the
possibility of using it as a photocatalyst in different conjunctions have been studied by many
authors [125–128]. In order to achieve suitable environmental and thermal stability, three
doping forms of PANI have been designed using post-treatment oxidation methods. Newly
synthesized PANI materials (emeraldine base, pernigraniline form, and leucoemeraldine
base) have been studied by many characterization techniques such as SEM, TEM, EDS, EPR,
XRD, XPS, DRS, and FTIR methods. The results of these studies revealed these materials’
high photocatalytic activity in pharmaceutical degradation. The emeraldine base’s low
band gap, policrystallinity, and the fact that it possessed the most active sites made it the
best candidate in comparison with the other two materials [129–133].

Poly(p-phenylene vinylene) (PPV) possesses long-term π-conjugation and photophysical
properties, which are suitable for photocatalysis [134]. Moreover, the easy chemical modifi-
cation and synthesis strategy of PPV can obtain various derivatives [135]. Therefore, PPV
is a promising candidate for different applications like photocatalytic degradation, CO2
reduction, H2 production, and organic synthesis [136]. PPV is also an essential conjugated
polymer used in various optoelectronic devices, such as solar cells, light-emitting diodes,
organic transistors, and chemical sensors [134]. PPV-based materials exhibit both p and n
doping properties. These materials can be oxidized in the positive potential range [137].
When the polaron is formed, the positive charge is delocalized over the average of the four
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monomer units. Also, oxidizing PPV units undergo disproportionation processes leading to
the formation of localized dications, which are separated by four neutral monomer moieties.
The PPV oxidation process is followed by the incorporation of supporting electrolyte an-
ions into the polymeric network. Also, PPV and its derivatives can be reduced at negative
potentials to form negative polarons and dope the polymeric phase with the cations of
the supporting electrolyte [134]. PPV is utilized in a wide range of applications, including
molecular imaging, light-emitting devices, biosensors, and anticancer therapy. Recently,
there have been an increasing number of studies on the application of PPV-based materials
in the field of photocatalysis [138–141]. When deposited on an appropriate material, PPV is
able to significantly improve its photocatalytic response, allowing the controlled formation
(or retention) of exciting matter [142]. PPV and its derivatives have been proven to be im-
portant photoactive components for fabricating polymer–inorganic hybrid nanocomposites,
which can be easily processed into stable and efficient photoactive coatings that are almost
exclusively responsive to visible light within the solar spectrum [138].

Polyethylene oxide (PEO). Hydrophilic polymers have been an essential class of materi-
als for various applications as biocompatible and biodegradable materials [143]. PEO, also
known as polyethylene glycol, is a polyether polymer that has recently received a great
deal of attention in research and industrial applications in the area of photocatalysis [144].
PEO has been widely used due to its biocompatibility and non-toxicity properties. PEO
is a very versatile polymer with a wide range of applications, such as solid polymer elec-
trolytes [145]. As its name indicates, PEO has an oxide group within the main chain;
therefore, it is possible to tailor the material according to the requirements of the intended
application. The polymer features good dielectric and ion-related properties due to its
structure, high solvation power, easy formation of complexes with alkali salts, and the fact
that it provides a direct path for cation migration [146]. Considering complex materials
design for advanced multifunctional materials for the most strategic sectors, it appears
clear that the tailoring of PEO is fundamental for progress in the field of energy storage
technologies, like fuel cells and batteries, as well as eco-sustainable solutions for the use of
PEOs in water remediation technologies [147].

Polypyrrole (PPy) Electrically conducting polymers have received a considerable amount
of attention due to their usability in different applications, such as field-effect transistors,
light-emitting diodes, solar cells, and photocatalysis processes [148]. Electrically conducting
polymers are amorphous or semi-crystalline organic compounds that exhibit metallic levels
of electronic conductivity and high electrochemical and chemical stability, similar to inor-
ganic semiconductors [149]. PPy is a nitrogen-containing five-membered heteroaromatic
ring molecule [150]. Five lone-pair electrons are present on the nitrogen atom, which are
beneficial for electron transfer, and hence, there is an easy and moderate oxidation of PPy
to form PPy+ [151]. This feature is advantageous for the modification and post-synthesis
functionalization of the PPy. To improve the potential applications of doped PPy for ions
from anionic environmental pollutants, some approaches to reversible tuning of the PPy+

anion exchange membrane to PPy upon removal of the specifically adsorbed ions have
been reported in the literature [152,153]. Changes in the electronic structure of PPy can
be identified through spectroscopic and electrochemistry-based techniques. Thus, the
solid-state near-edge X-ray absorption fine structure spectra revealed an increase in the
occupation probability of the electronically conducting π electrons in the partially or fully
oxidized PPy [154].

2.2. Modification of Polymers for Enhanced Photocatalytic Activity

The directed modification of synthetic polymers has long been known to signifi-
cantly expand the range of polymer utility, even when only a few fundamental chemical
transformations are available for this purpose [132]. Techniques for polymer modifi-
cations to enhance their photocatalytic activity are divided into physical and chemical
modification techniques.
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2.2.1. Physical Modification Techniques

Mechanical blending. Although a number of methods are available for the preparation
of polymer blends, a common one is using a stirrable device in the liquid phase. It is
called mechanical blending [155]. In a typical preparation, the polymers to be blended are
mixed above the glass transition temperature of the polymers to allow proper mixing and
obtain a homogeneous melt. Polymeric blends can also be used to meet requirements for
various physical and mechanical characteristics, such as processability, abrasion resistance,
impact resistance, and deformability, as well as to meet the needs of biocompatible and
environmental formulations with higher biological activity. From these evaluations, tough-
ened plastics, composite materials, films, fibers, elastomers, and gels can be prepared [156].
Therefore, the mechanical blending of polymers is crucial in improving polymers’ proper-
ties for the purpose of removing pharmaceutical pollutants by the photocatalytic process.
Blending polymers gives stable mixtures that have been used to create a variety of polymers
with specific physical and chemical properties for use in some forms of processing. This
is particularly attractive because it is generally less expensive to formulate blends than to
synthesize entirely new polymers [157].

Extrusion processing. Extrusion and injection molding are widely used methods in
polymer processing. In extrusion, polymer melts continuously in a conduit (barrel) and
is subsequently forced through a restrictive forming tool. During the extrusion process,
polymer melts and is transported through different geometries, takes a complex shape,
cools down, and ultimately solidifies into the desired form. For the products of commercial
polymers, crystallization usually happens during the extrusion process [158]. In the case
of semicrystalline polymers, the most critical factors influencing the properties of the
products can be cooling rate, temperature, pressure, and the orientation of the elongated
macromolecular chains.

Moreover, extrusion is usually the final process in a complex macromolecular ma-
terial technology involving operations like the crystallization of newly formed macro-
molecules [159]. As a result of limiting the operating conditions and the pressure drop
in the system (especially at the die hole), the extrudate emerges as a solid, e.g., stock, a
profile, a pipe, or a film. Obtained materials are widely used to remove pharmaceutical
contaminants from the environment through adsorption or photodegradation. The high
value of the die compression ratio means that the effective pressure drop in the die is also
enhanced, leading to an increase in viscosity and then an increase in extrusion force [160].
A reduction in the die compression ratio leads to a reduction in the adequate pressure in
the die and a correspondingly more significant decrease in viscosity. If speed decreases, a
discontinuous flow of material can occur [161].

The ongoing evolution of computer technology has resulted in the ability to perform
complex optimization studies on many aspects of single-screw profile extrusion, which
would be uneconomical using predictive full 3D numerical simulations. As single-screw
extrusion processes of polymer materials are susceptible to numerous influencing parameter
combinations, an overall optimization of the distinct technical task is essential [162]. The
steady-state computational approach based on a 3D solver has several drawbacks, e.g.,
computational time and resource use, especially for the simulation of thermal processes
with defined temperature boundary conditions. The need for computational optimization
to obtain new polymer materials will be illustrated with an example of injection stretch
blow molding. The main process steps are illustrated in Figure 2a–f. An injection unit
(Figure 2a) fills the cavity of an injection mold (Figure 2b) to produce a pre-form material.
This is then transferred to a blow mold (Figure 2c), where it is stretched and blown
(Figure 2d) against the contours of the mold cavity. The mold opens (Figure 2e) when
the container is sufficiently cold. Modeling of this process to predict the performance of
the part for a given set of input conditions (operating conditions, equipment geometry,
material properties) typically entails the numerical modeling of each of its steps, followed
by expensive process costs. Therefore, before the process starts, modeling the thickness,
morphology, and mechanical performance of polymers and their action on pharmaceutical



Catalysts 2024, 14, 447 11 of 36

molecules could be predicted. It is suggested that the optimization process be approached
backward, as indicated by the curved arrows (Figure 2, from 1 to 5) [159].
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2.2.2. Chemical Modification Techniques

Nanocomposite formation. Interaction between a component of the polymer matrix and
the nanoparticle surface can be an additional aspect that occurs during the production of
classical composites by reinforcing the polymer matrix with filler. Such an interaction, in
some aspects, limits the possibility of selecting the filler, significantly changing the internal
structure of the polymer nanocomposite and affecting the properties of these materials in the
removal of pharmacological compounds from the environment. Nanoparticle dispersion
in the polymeric matrix is another essential aspect of research on polymer nanocompos-
ites [163]. Polymer nanocomposites are an important class of materials that are popularly
used in various applications due to their characteristic unique behavior in comparison to
their pristine polymer forms [164]. The ability to control nanoscale particle dispersion can
lead to unique properties (mechanical, electrical, and thermal properties) due either to
molecular confinement or control over the structure formation process during nanocom-
posite production [165]. The most common applications of polymer nanocomposites are in
photocatalysis, biomedicine, and other industrial applications [166–168].

The dispersion of the nanoparticles, their size, their surface topography, and the
chemical properties of the interface with the polymeric matrix all together play an essential
role in defining the characteristics of the nanocomposite [169]. These nanocomposites can
have rheological, mechanical, and gas barrier properties that surpass the best traditional
composites but often also have new functionalities like flame retardancy, transparency,
light shielding, photocatalytic activity, or environmental sensors [170]. In the development
of complex systems formed by nanoscopic inorganic clusters and organic matrices, it is
essential to understand the architecture of the polymer matrix at the level of dynamic and
static nanoscopic heterogeneity. In this field, a fundamental issue is to understand how the
functional properties of a polymer change due to the complex nanoscale architecture of the
matrix formed by the dispersed material [171].

Plasma modification. Process control and plasma generation are the main aspects of
polymer modification in many applications, including nanotechnology, material science,
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and biomedical engineering [172]. The generation of plasma is achieved by the application
of an electric field to typically an inert gas, leading to the ionization and excitation of gas
molecules. Created plasma is a highly reactive mixture of radicals, electrons, ions, and
excited species [173]. To achieve effective polymer modification, control of the plasma
generation process and parameters such as exposure time, gas flow rate, power, and pres-
sure are essential. Properties of the plasma, such as its composition, temperature, density,
and ultimately the modification of the material surface, can be significantly affected by
these parameters [174]. Plasmas offer multiple ways to modify polymer surfaces and thus
influence the adhesion environment. Polymer substrates benefit from direct interaction
with the plasma medium, and impinging charged and neutral plasma species acquire
an organization fitting within two physical processes of interaction, i.e., the formation of
permanent polar/aromatic groups or the grafting of other chemical functions via interme-
diate activation sites [175]. These chemical modifications can affect the polymeric network,
generally reducing hydrophobicity and replacing aliphatic molecular moieties with new
anchoring points for further chemical surface tailoring [176]. Many techniques are used to
generate plasma, such as radiofrequency, alternating current, and direct current. The choice
of technique depends on the desired surface properties of the material being modified.
For example, radiofrequency plasma is commonly used to modify polymers and remove
pharmaceutical compounds through photocatalytic processes [177].

Surface functionalization. Surface functionalization refers to any chemical reaction that
alters the surface of a material, or modifies or introduces physicochemical properties with-
out fundamentally changing the bulk characteristics [178]. A properly designed surface
can be implemented using various direct surface functionalization processes. The most
often used techniques are physisorption and chemisorption of small molecules and manu-
facturing composite materials [179]. Controlling the surface properties of materials is an
essential factor in determining interactions between obtained materials and the environ-
ment. The first requirement for surface modification of materials is the introduction of
new functionality and physical properties. Surface modification can be performed through
various methods like surface-initiated polymerization, high-energy irradiation, and di-
rect immobilization of natural entities [180]. Stereoregular polymers may be produced
from optically active monomers. For example, in terms of salient features, chiral polymer
production in either a racemic or a scalemic manner may lead to asymmetric surfaces
with congruent properties. Another possibility lies in the use of optically active initiators
directing the polymerization propagation processes towards the canonical synthesis even
of atactic polymers [181]. Fluorescent, electronically active polymers are largely hetero-
geneous, including the strongly delocalized radical along the polymer chain. These are
produced by overcoming the disadvantages of post-deposition functionalization techniques
with their confined degree of grafting. Polymer incorporation into a material phase leads
to significant changes in the properties of the surface, such as wettability, charge density, or
even spatial distribution of functional groups. Various industrial applications are described
in the literature: water purification, packaging in pharmaceutical and food industries,
wood coatings for protection against sunlight, membranes for gas separation, coatings for
textiles and optical sensors, optical information storage, soft contact lenses, etc. [182–184].

Cross-linking. Some of the polymers used in composite systems, photocatalytic pro-
cesses, and other applications are thermoset or cross-linked polymers [185]. Cross-linking
polymers containing one or more reactive monomeric subunits can produce materials
with three-dimensional net points connected by covalent bonds in a process that is often
referred to as curing. Various covalent reactions are used to cross-link polymers, many of
which can be considered “click” reactions because they are efficient, regiospecific, and lead
to high conversions [186,187]. In particular, they can be used to create environmentally
robust, mechanically tough, and heat-resistant materials. By controlling those properties,
new materials with unprecedented functionality are expected to emerge, enabling differ-
ent applications such as all-polymer actuators and novel optical devices. In the last few
years, many polymers based on dynamic covalent bonds have been modified and used
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in many fields because of their superior properties [188,189]. Polymers obtained by cross-
linking, with shear self-repairing and thinning properties, are often used in 3D printing,
and polymers with antibacterial, conducting, and self-healing properties are often used in
photocatalytic reactions [190].

3. Efficiency in Removing Pharmaceutical Pollutants

Photocatalysis is a chemical reaction in which the catalyst is activated by light. Cata-
lysts accelerate a chemical reaction by lowering the activation energy, making the reaction
easier. In a conventional chemical reaction, heat is commonly used to activate catalysts.
Photocatalysis provides an alternative way to carry out reactions at a reduced temperature,
therefore decreasing side products that may be formed. Overall, this yields increased
economical and environmentally friendly reactions. The field of photocatalysis has made
significant progress, replacing several conventional methods based on its cost-effectiveness
and utility [191]. The general mechanism of photocatalysis is based on the use of a semi-
conductor, which enables the absorption of visible or UV light from the solar spectrum.
Absorption of irradiation causes the excitation of electrons from valence band to con-
duction band and generates e−–h+ pairs. In the next step, e− and h+ are transferred to
the photocatalyst surface for the degradation and oxidization of pollutants to CO2 and
H2O [192].

In general, the photocatalysis process involves three significant steps: photocatalyst
light absorption, separation of photogenerated charge carriers, and interfacial catalytic
redox reactions [193]. When the conducting polymer is irradiated with UV/Visible light,
an e− from the valence band is excited by a photon of light to the conduction band. This
phenomenon is called π-π* electronic transition. The excited e− migrates to the surface
of the conducting polymer and activates the adsorbed O2 molecules to form superoxide
radicals O•−

2 , which oxidize organic contaminants in the aqueous environment (Figure 3a).
Photogenerated h+ can also oxidize organic pollutants directly [194]. In the case of conduct-
ing polymer–metal oxide hybrid (Figure 3b), conducting polymer acts as a photosensitizer,
and it is able to absorb a wide range of visible irradiation because of the lower band gap
compared to metal oxide. The excited e− in the lowest unoccupied molecular orbital
(LUMO) of conducting polymer chains is injected into a conduction band of transition
metal oxide (e.g., TiO2, ZnO), which reacts with an adsorbed water molecule to form
O•−

2 radicals. h+ can react with water to form HO•. These polymer modifications, with
improved photocatalytic activity, are widely used in the degradation of pharmaceutical
compounds by the photodegradation process [81,105].
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Researchers are taking a greater interest in the development of new polymeric materi-
als that have a high affinity for harmful organic compounds and also exhibit high fluxes in
membrane separation processes for the treatment of natural water, underground, and do-
mestic and industrial sewage. Polymers and polymer-based structures have found a wide
range of applications in the removal of pharmaceuticals from the environment [195,196].
Discussions on this topic have been recognized since around 2000. Since the year 2000,
5616 articles related to the use of polymers in photocatalysis have been published, while
only 128 articles have referred to the photocatalytic degradation of pharmaceuticals by
the use of polymers as catalysts [197]. The main aim of the present work was to com-
prehensively address studies performed using polymers to achieve effective removal of
pharmaceutical contaminants from the environment.

The high synergy between PANI and ZnO was observed by Nosrati et al. [198]. They
used PANI/ZnO to remove ampicillin. It was indicated that PANI/ZnO composites could
be reused multiple times with a minimal loss of reactivity. ZnO/PANI nanocomposite
was also synthesized by Asgari et al. [199] and used in the photocatalytic degradation
of metronidazole. The photocatalytic activity of the ZnO/PANI nanocomposite in the
degradation of MNZ was 63 times higher than that of ZnO under visible light radiation.
Šojić Merkulov et al. [200] investigated the kinetics of photocatalytic degradation of phar-
maceuticals in the presence of TiO2/PANI nanocomposite powders. Degradation and
mineralization efficiency of propranolol and amitriptyline using TiO2/PANI was high in
environmental waters.

The synergistic association of WS2/PANI nanocomposite can degrade pollutants such
as antibiotics (nitrofurantoin). This research was conducted by Fatima et al. [201], wherein
the WS2/PANI nanocomposite was successfully synthesized via a facile, in situ polymer-
ization technique. By using the in situ oxidative polymerization method, Ujwal et al. [202]
synthesized GdFeO3/PANI nanocomposite. The chemical, physical, and structural proper-
ties of GdFeO3/PANI enabled electrochemical detection and photocatalytic degradation of
an organic pollutant, acetaminophen. Tahir et al. [203] synthesized a novel nanocompos-
ite of Bi2WO6 through PANI intercalation. This nanostructure exhibited effective charge
separation and outstanding activity in hydrogen evolution and photocatalytic degrada-
tion. Fabricated nanocomposite showed higher stability even after four degradation cycles.
PANI/LaFeO3/CoFe2O4 ternary heterojunction was synthesized by in situ polymeriza-
tion by Kumar et al. [204]. In comparison with the photocatalyst PANI, the synthesized
PANI/LaFeO3/CoFe2O4 was shown to be superior. It led to degradation of 92% of the
selected pharmaceutical after 120 min of irradiation.

Dai et al. [205] synthesized 3D PANI/Perylene diamide and applied it in pharma-
ceutical removal using visible irradiation. They provided a promising approach for
improving the photocatalytic performance of polymer materials and indicated that 3D
PANI/PDI organic heterojunction can be efficiently applied for water treatment remediation.
PANi@carbon nanotubes/stainless steel was designed by Peng et al. [206]. Synthesized
material showed high efficiency, was environmentally friendly, and stable. It was used
and proved to be effective in the degradation of pharmaceutical ibuprofen. Tian et al. [207]
synthesized carbonized PANI-activated peracetic acid and used it in the degradation of
different pharmaceutical compounds. A high degradation rate of pharmaceuticals was
observed, while the primary reactive species for degradation was HO•.

Table 2 represents a summary of PANI composites used for photocatalysis of pharma-
ceutical compounds.



Catalysts 2024, 14, 447 15 of 36

Table 2. Photocatalysis of pharmaceuticals using PANI composite materials.

Type of Polymer
Composite

Synthesis of
Photocatalyst Contaminant Light Removal

Efficiency (%) Lamp Power Reference

ZnO/PANI
nanocomposite

Chemical
adsorption Ampicillin Sunlight 41% in 120 min - [198]

ZnO/PANI
nanocomposite

In situ chemical
polymerization Metronidazole Visible 97% in 180 min 300 W Xenon

lamp [199]

TiO2/PANI
nanocomposite

Oxidative
polymerization Propranolol UV irradiation 34% in 60 min

125 W
High-pressure
mercury lamp

[200]

TiO2/PANI
nanocomposite

Oxidative
polymerization Amitriptyline UV irradiation 45% in 60 min

125 W
High-pressure
mercury lamp

[200]

WS2/PANI
nanocomposite

In situ
polymerization Nitrofurantoin Visible 99% in 120 min Xenon arc lamp [201]

GdFeO3/PANI In situ oxidative
polymerization Acetaminophen Visible 88% in 60 min 30 W Light

emitting diode [202]

Bi2WO6/PANI Intercalation Ciprofloxacin Visible 98% in 90 min 50 W Halogen
lamp [203]

PANI/LaFeO3/CoFe2O4
ternary heterojunction

In situ
polymerization Clozapine Visible 92% in 120 min 50 W Halogen

lamp [204]

3D PANI/Perylene
diimide In situ growth Tetracycline Visible 70% in 120 min

5 W LED lamp
(420 nm cut-off
filter)

[205]

PANi@carbon
nanotubes/stainless steel

In situ
polymerization Ibuprofen Visible 76% in 35 min 300 W Xenon

lamp [206]

Carbonized
PANI-activated peracetic
acid

Interfacial
polymerization Sulfamethoxazole Visible 100% in 60 min 30 W Light

emitting diode [207]

Carbonized
PANI-activated peracetic
acid

Interfacial
polymerization Naproxen Visible 100% in 60 min 30 W Light

emitting diode [207]

Carbonized
PANI-activated peracetic
acid

Interfacial
polymerization Antipyrine Visible 30% in 60 min 30 W Light

emitting diode [207]

PPy-based composites also exhibit significant photocatalytic properties in pharmaceu-
tical degradation. Silvestri et al. [208] applied PPy-ZnO synthesized via polymerization
in the degradation of diclofenac. The PPy-ZnO was demonstrated to be highly active
for diclofenac degradation under simulated solar irradiation, even when compared with
pure ZnO. Jiadi et al. [209] synthesized TiO2@V2O5-PPy, exhibiting high photocatalytic
performance and water stability. This photocatalyst has been used to remove water-soluble
organic pollutants with high efficiency under visible light irradiation. The photocatalytic
degradation ability of the newly synthesized Fe-TiO2-PPy was investigated under solar
light. From the results, it can be concluded that the prepared Fe-TiO2-PPy could be an
efficient adsorbent as well as a photocatalyst for the degradation of pharmaceuticals from
an aqueous environment [210].

Ultrasound-assisted synthesis of PPy/V2O5 was performed by Zia et al. [211]. The ob-
tained photocatalyst was used in the visible-light-driven photodegradation of erythromycin
and ciprofloxacin. The generation of hydroxide and superoxide radicals was enhanced by
the use of a newly synthesized composite. Kumar et al. [212] synthesized Fe3O4 nanorods
coated in PPy/rGO by a chemical reflux method. Fe3O4@PPy/rGO showed good repeata-
bility, stability, and reproducibility. Photocatalytic studies revealed 84% degradation of
acetaminophen by Fe3O4@PPy/rGO in the presence of persulfate. Zhu et al. [213] success-
fully synthesized high-dispersed PPy@Ag/g-C3N4. The as-prepared PPy@Ag/g-C3N4 was
used to remove various organic pollutants from the water. It was established that enhanced
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photocatalytic activity of PPy@Ag/g-C3N4 came from π-conjugated electronic structures of
PPy and Ag species as well as the electron transfer mediator between g-C3N4 and PPy.

The newly synthesized nanocomposite Ag2MoO4/PPy performs as an efficient photo-
catalyst in the degradation of pharmaceutical ciprofloxacin within 10 min. As prepared,
Ag2MoO4/PPy provided a defined morphology, larger surface area, and smaller size, and
this improved its electrocatalytic and photocatalytic properties [214]. Das et al. [215] fabri-
cated new PPy-sensitized zinc ferrite/graphitic carbon nitride by an in situ polymerization
method. This material showed good photocatalytic performance towards ciprofloxacin
degradation and generation of hydrogen energy. It may offer a promising strategy for
maximum light absorption that meets environmental claims.

Table 3 represents a summary of PPy composites used for photocatalysis of pharma-
ceutical compounds.

Table 3. Photocatalysis of pharmaceuticals using PPy composite materials.

Type of Polymer
Composite

Synthesis of
Photocatalyst Contaminant Light Removal

Efficiency (%) Lamp Power Reference

PPy-ZnO Polymerization Diclofenac UV and visible 81% in 60 min

Xenon lamp
(wavelength
range
250–800 nm)

[208]

TiO2@V2O5-PPy In situ polymerization Tetracycline Visible 98% in 120 min 300 W Xenon
lamp [209]

TiO2@V2O5-PPy In situ polymerization Doxycycline Visible 96% in 120 min 300 W Xenon
lamp [209]

TiO2@V2O5-PPy In situ polymerization Oxytetracycline Visible 85% in 120 min 300 W Xenon
lamp [209]

Fe-TiO2-PPy Polymerization Tetracycline
hydrochloride Sunlight 96% in 180 min - [210]

PPy/V2O5
Ultrasound-assisted
synthesis Ciprofloxacin Visible 53% in 50 min 300 W Xenon arc

lamp [211]

PPy/V2O5
Ultrasound-assisted
synthesis Erythromycin Visible 76% in 50 min 300 W Xenon arc

lamp [211]

Fe3O4@PPy/rGO Chemical reflux Acetaminophen UV and visible 84% in 120 min 250 W
tungsten-halogen [212]

PPy@Ag/g-C3N4

Calcination followed
by surface
polymerization

Danofloxacin Visible 90% in 60 min 300 W Xenon
lamp [213]

PPy@Ag/g-C3N4

Calcination followed
by surface
polymerization

Tetracycline Visible 95% in 60 min 300 W Xenon
lamp [213]

PPy@Ag/g-C3N4

Calcination followed
by surface
polymerization

Ciprofloxacin Visible 92% in 60 min 300 W Xenon
lamp [213]

PPy@Ag/g-C3N4

Calcination followed
by surface
polymerization

Gatifloxacin Visible 89% in 60 min 300 W Xenon
lamp [213]

PPy@Ag/g-C3N4

Calcination followed
by surface
polymerization

Enrofloxacin
hydrochloride Visible 91% in 60 min 300 W Xenon

lamp [213]

Ag2MoO4/PPy In situ synthesis Ciprofloxacin Sunlight 100% in 10 min - [214]

PPy-sensitized zinc
ferrite/graphitic
carbon nitride

In situ polymerization Ciprofloxacin Visible 92% in 120 min 300 W Xenon
lamp [215]

Besides photocatalytic activity, polymer materials are also used as adsorbents for the
efficient removal of pharmaceuticals. The potential and structure of polymeric adsorbents
are of much interest in the context of understanding the adsorption phenomenon in solid
materials [216–218]. The sorption curve or the adsorption isotherm is the most general
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way to describe the adsorption capacity of the adsorbent or the amount of the adsorbate
adsorbed. The specific surface area of polymer materials is the most important parameter
characterizing the porous structures of the adsorbent [219]. It is related to the adsorption
capacity. In addition, the thermodynamics of the adsorption process are still of great interest,
including the enthalpy of adsorption, entropy, and free energy change accompanying the
adsorption process. These have provided valuable insight into the adsorption mechanism
at the molecular level. Furthermore, the adsorption mechanism of the adsorbent toward
the pharmaceuticals in water can be better understood by detecting the surface groups
and information about the interactions between the specific groups of the pharmaceutical
molecule and the functional ligands on the polymer [220,221].

4. The Role of Atomistic Calculations in Polymer-Assisted Photocatalytic Degradation

The term “atomistic calculations” encompasses a variety of theoretical and computa-
tional methods used to perform simulations on molecular and periodic structures. Other
names for this class of theoretical tools are molecular modeling, computational chemistry,
computational physics, etc. Over the last two decades, scientists have been able to predict
a vast number of properties at the atomic level using these calculations and simulations,
which are now possible to perform even on simple personal computers [222–224]. Atom-
istic calculations include methods such as molecular dynamics (MD) simulations, ab initio
calculations, density functional theory (DFT), semiempirical calculations, and molecular
docking, among others [225–227]. These techniques allow researchers to study the behavior
of materials, predict their properties, and understand complex processes at an unprece-
dented level of detail. Advancements in computational power and the development of
sophisticated algorithms have made it feasible to tackle problems that were once considered
highly challenging, leading to significant breakthroughs in materials science, chemistry,
and nanotechnology [228].

The power of atomistic calculations is best illustrated by the fact that the first step
in the development of novel materials or the improvement of current ones often involves
the application of computational methods to predict the properties of structures before
they are synthesized. This approach allows researchers to identify the best candidates
for physical experimentation, thereby optimizing research and minimizing the use of
resources. By using these computational techniques, scientists can efficiently screen a wide
range of materials and focus on those with the most promising properties, significantly
reducing the time and cost associated with experimental trials. This predictive capability is
a fundamental part of modern materials science and engineering, driving innovation and
accelerating the discovery of advanced materials.

Over the years, a vast array of methods has been developed for performing calculations
on molecules. Nevertheless, three distinct directions of development have emerged, each
with its own set of advantages and disadvantages. These methods often intersect and
complement each other, forming a comprehensive toolkit for molecular simulations. Their
relationships are illustrated in the Venn diagram presented in Figure 4.

In terms of computational modeling, polymers are most frequently treated as molecules
rather than periodic structures, so we will refer to molecular calculations hereafter. In
general, all basic computational methods for simulations of molecules can be divided into
three main groups: classical mechanics, quantum mechanics, and semiempirical methods.
Classical mechanics treats molecular systems as classical systems, where a molecule is
observed as a collection of balls interconnected with springs. The balls represent atoms,
while the springs represent bonds between atoms. This approach utilizes a “force field” to
describe the potential energy of the system. Although this approach is relatively simplistic,
it is very useful, especially if the equations used to calculate the total energy of a molecule
are adequate. However, to derive accurate equations, it is necessary to parameterize the
force field using data from a large number of molecules [229].
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molecular simulations.

Quantum mechanical methods offer unprecedented accuracy for theoretical methods,
but they come with a significant computational cost. Among these methods, one of
the earliest was the Hartree–Fock (HF) method. This method is a typical example of
wavefunction methods, meaning that the main task is to find a wavefunction that minimizes
the energy of a given system. The main drawback of this method is that it does not account
for electron correlations, which is where the density functional theory (DFT) method comes
in. DFT is based on electron density, and the main task is to find the electron density that
minimizes the energy of a molecule. This method accounts for electron correlation and is
by far the most frequently applied computational method for calculations on molecules
since it offers the best cost–accuracy ratio. DFT relies on the density functional, a function
that determines how the energy of a molecule is calculated. However, based on the
fundamental setup of DFT, there is no single, universal density functional suitable for all
types of molecules. Literally hundreds of density functionals have been developed so far,
and it takes experience to know which functional to apply and when. However, the best-
known functional for calculations on molecules is undoubtedly the famous B3LYP [230–233],
while for periodic structure, the best-known functional is certainly the PBE [234]. Post-HF
methods offer unprecedented accuracy when it comes to various molecular properties;
however, the computational costs associated with these methods prevent them from being
applied to a higher extent, compared to DFT methods.

In the last decade, significant effort has been invested in the development of semiem-
pirical methods. These methods are essentially quantum mechanical methods, but with
additional approximations in the description of electron density and numerical procedures.
For a long time, the parametrized method (PM) family of semiempirical methods [235–238]
was the best choice. However, since 2017, the extended tight binding (xTB) methods devel-
oped by the renowned Professor Stefan Grimme and his group have emerged. In many
significant aspects, these methods have achieved DFT accuracy at a fraction of the compu-
tational time required for calculations. Another important thing to mention is the fact that
the GFN family of methods is available in the program called xtb [239–243], completely
open source and free to use.

Currently, the latest xTB method is GFN2 [239], and aside from its remarkable accuracy,
the superiority of this method over other semiempirical methods lies in its ability to cover
the majority of the periodic table of elements (PSE). The parameters for these semiempirical
calculations are available for atoms with Z equal up to 86. In terms of xTB methods,
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the development of GFN methods has also led to the creation of the force field called
GFN-FF. This force field stands out not only for its accuracy and speed but also for its
automated applicability to the PSE, meaning that the only requirement to run it is the
starting molecular structure.

There is a reason why we have devoted significant space to semiempirical meth-
ods, particularly to GFN-xTB methods. Polymers are large and highly flexible molecular
structures, and their optimization via DFT methods can be quite demanding in terms of
computational time. Additionally, highly rotatable functional groups can make vibrational
analysis particularly difficult, making it very challenging to identify the ground-state ge-
ometry of the polymer chain. In such situations, we warmly recommend a multiscale
modeling workflow, i.e., the application of different computational methods (Figure 5).
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Figure 5. Suggested workflow for geometrical optimization and property calculations of long
polymer chains.

To achieve faster geometrical optimizations, it is wise to pre-optimize large structures
using very fast methods such as GFN2-xTB. This method yields optimized geometries that
are very close to those obtained via DFT methods (Figure 6). Ground-state geometries
obtained via GFN methods can be further re-optimized with DFT methods. This subsequent
optimization is much faster since the pre-optimized structure is already very close to the
ground state. This multiscale modeling approach significantly reduces computational time
while maintaining high accuracy in the final optimized structures [244].

In Figure 6, we visually compare the optimized geometries of a polymethylmethacry-
late (PMMA) polymer chain (consisting of five monomer units) obtained via the GFN2-xTB
semiempirical method and the DFT method using the B3LYP-D3 density functional with the
6-31G(d,p) basis set. Both structures appear very similar, with no clearly visible differences
in ground-state geometries. However, the GFN2-xTB method took less than five seconds
for geometrical optimizations, while the DFT optimization at the specified level took almost
two hours.
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In the case of very large structures, ground-state geometries obtained via GFN methods
can be treated as true ground-state geometries and further subjected to more accurate
single-point energy calculations. This approach helps to obtain precise electron distribution,
various quantum-molecular descriptors, spectral properties, non-covalent interactions, and
more. Such a workflow is illustrated in Figure 5, demonstrating the efficiency and accuracy
of combining GFN methods with single-point energy calculations for comprehensive
molecular analysis.

One of the most powerful aspects of atomistic calculations in the context of photocat-
alytic polymers is the ability to estimate light absorption and charge transport properties.
These crucial aspects of polymers’ photocatalytic properties can be addressed with molecu-
lar orbital theory or time-dependent DFT (TD-DFT) calculations. Accurate DFT or post-HF
calculations on geometrically optimized polymer chains yield the energies of the highest
occupied and the lowest unoccupied molecular orbitals, HOMO and LUMO, respectively.
The energies of these orbitals play a vital role in estimating reactivity and light absorption.
The larger the energy gap, the less reactive the molecule, as a larger amount of energy is
required to promote electrons from the HOMO to the LUMO. When combining polymers
with photocatalytic nanomaterials, it is also important to know the “positions” of the
polymers’ HOMO and LUMO orbitals to find compatible combinations of polymers and
photocatalytic materials [245].

In terms of improving photocatalytic properties, polymers are frequently used to
achieve light sensitization of photocatalytic nanomaterials. In such cases, it is crucial
to know the UV/Vis absorption spectrum of a polymer. While UV/Vis spectra can be
inexpensively and quickly obtained experimentally, it is necessary to have the polymer
physically first. However, synthesizing new structures is often complicated and expensive,
making it beneficial to predict the UV/Vis spectrum prior to synthesis to select the best
candidates. In this regard, TD-DFT calculations are extremely valuable, as they enable
researchers to study excitations and construct UV/Vis spectra. A good illustration of
how DFT methods can be applied for comprehensive computational studies of structural,
reactive, and optoelectronic properties of polymers can be found in [246–249].

Regarding computational methods for studying polymers and other molecular struc-
tures, it is useful to mention modeling codes and packages currently available. Thanks
to the amazing development of both computational codes and computer resources, re-
searchers nowadays have a plethora of computational tools, most of which can be used on
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simple desktop computers. Computational codes for atomistic calculations can be either
open-source, free-for-academics, or commercial [250].

Among open-source solutions, the xtb program of Professor Grimme and coworkers
is an amazing tool with extensive possibilities for semiempirical calculations. This and
other tools from this group are freely available on the official GitHub page of the Grimme
group [251]. In addition to its remarkable functionality, the xtb program is also charac-
terized by very detailed documentation with plenty of tutorials and case studies freely
available [252]. Users are also warmly encouraged to visit the official web presentation of
the Grimme group to learn more about computational tools and publications arising from
them [253].

Online and desktop graphical user interfaces for the xtb program are available within
the atomistica.online project. Atomistica.online is a free molecular modeling platform
offering online and desktop tools for atomistic calculations, available at atomistica.online.
One of the tools is the online GUI for the xtb program, allowing users to run most xtb
calculations on a remote server through their web browsers for free. The current limitation
is a molecule size of up to 200 atoms, which is sufficient for teaching and most research
tasks. Tasks such as molecular dynamics simulations that cannot be run with the online
tool can be easily run through the recently developed desktop xtb GUI. The desktop GUI
for xtb removes the necessity of running the xtb from the command line and generating
running commands or input files [254,255].

Regarding quantum mechanical calculations, the ORCA [256–264] code stands as
one of the most powerful codes available. It is free for academics and can be obtained
through the official forum [265]. This code, developed by Professor Frank Neese and
colleagues, implements the latest DFT and wavefunction methods and is interconnected
with the xtb code, making it a unique solution on the market. ORCA is well-documented,
with plenty of tutorials and case studies, and features user-friendly input file structures.
Another tool within the atomistica.online platform is the online input generator, a GUI for
easy and user-friendly generation of input files for the ORCA modeling package. Atom-
istica also offers a desktop GUI for simple running and monitoring of ORCA calculations.
All atomistica.online desktop tools are available for both Windows and Linux operating
systems [264].

Since surface modifications with polymers play an important role in the functionaliza-
tion of photocatalytic nanomaterials for water purification, we also mention the possibility
of applying a combination of semiempirical and quantum mechanical calculations to study
non-covalent interactions between a polymer and photocatalytic material. A detailed
analysis of electron density within the molecular system is crucial for this purpose. The
famous Multiwfn code [266], developed by Professor Tian Lu and freely available at its
official web presentation [267], is extremely useful for this analysis and a vast number of
other activities. By examining electron density between atoms, it is possible to identify
specific sites where non-covalent interactions are formed and obtain information about
their strengths. In particular, the concept of reduced density gradients (RDG) is very useful
for this purpose. This approach allows for the identification of areas with specific electron
densities indicating attractive or repulsive interactions between atoms [268]. Additionally,
with the help of the Multiwfn program, it is possible to obtain RDG scatter plots and RDG
surfaces, as shown in Figure 7.

The aforementioned RDG figures help researchers visualize the relationship between
electron density and the reduced density gradient to identify non-covalent interactions and
regions of weak interactions in a molecular system. The RDG scatter plot, presented in
Figure 7a, represents specific points in space within a molecular system, each characterized
by its electron density and reduced density gradient values. These dots help identify and
visualize regions of non-covalent interactions, such as hydrogen bonds, van der Waals
forces, and steric repulsions, by highlighting areas with low density gradients and varying
electron densities. For example, a higher number of blue dots indicates a higher number
of attractive non-covalent interactions. Similarly, the RDG surface, presented in Figure 7b,
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represents regions in three-dimensional space where the RDG values indicate the presence
of non-covalent interactions. It is color-coded to show the nature and strength of these
interactions based on the electron density values.
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The atomistica.online project also offers an online tool for easily obtaining RDG scatter
plots and files necessary to produce high-quality RDG surfaces through its user-friendly
GUI, which runs Multiwfn in the background on a remote server provided by the project
developers. Instead of working in the command prompt and combining several programs,
users can easily obtain RDG scatter plots and files for RDG surfaces by simply uploading
the output file containing the necessary information obtained after quantum mechanical
calculations, for example, with ORCA [268].

Commercial solutions come at a price that can be quite high, but the graphical user
interfaces, code optimization, and suites of tools for system preparation and data analysis
justify the cost and enable users to achieve remarkable productivity. In terms of polymers,
the commercial solution offered by Schrödinger, Inc. (New York, NY, USA) [269] within
the Materials Modeling Suite [270] provides extremely useful tools for the preparation of
polymer systems for quantum mechanical calculations and MD simulations, for running
state-of-the-art classical and quantum mechanical calculations, and for the analysis of the
obtained data and machine learning. This comprehensive tool enables researchers to study
the intrinsic properties of polymers and interactions with photocatalytic materials through
both molecular and periodic DFT calculations, allowing them to obtain, for example, band
gaps of polymer-functionalized photocatalytic materials, which is of supreme importance
for developing novel materials and procedures for water purification. Readers are warmly
encouraged to study the case studies and documentation on the corresponding page of the
Schrödinger, Inc. website [271].

5. Advantages and Challenges

As already pointed out throughout this manuscript, the use of photocatalytic polymers
in the removal of pharmaceuticals from water has drawn significant attention due to their
potential for efficient and sustainable water treatment. This chapter explores the advantages
and challenges associated with this innovative approach. The benefits of the application of
polymers in this area are summarized in the illustration presented in Figure 8.
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from water.

Due to numerous possibilities during synthesis, polymers can be engineered to en-
hance photocatalytic efficiency through better light absorption and charge separation. For
example, the synthesis of photocatalytically active polymers without any additives or
metal co-catalysts is one way to enable the forced degradation of contaminants, as demon-
strated in a recent paper by Kumar et al. [272]. In this research, the conductive polymer
poly(3,4-ethylenedioxythiophene) (PEDOT) was employed for the photocatalytic removal
of metformin, a widely utilized molecule with antidiabetic activity that has been found in
wastewater due to overuse.

Another essential advantage of polymer application we would like to emphasize
is the potential for developing photocatalytic procedures for the forced degradation of
contaminants by combining photocatalytic oxide materials with desired photocatalytic
properties with polymers. In this way, photocatalytic nanoparticles are incorporated
within a polymer medium, creating hybrid composites. This approach brings numerous
improvements, one of them being that photocatalytic nanoparticles are tightly immobilized
in the polymer medium [273–275], reducing the necessity to filter out nanoparticles later to
keep water safe for consumption.

Another advantage essential to showcase is the possibility of functionalizing surfaces
with polymers, which allows for targeting specific pharmaceutical pollutants by enhancing
the selectivity and effectiveness of the treatment process. For example, in the paper by
Park et al. 2013 [276], several polymers were mentioned in the context of modification of
TiO2 surface: polyaniline (PANI), polythiophene, poly(3-hexyl-thiophene) (P3HT), and
poly(fluorine-co-thiophene) (PFT). For the TiO2 photocatalytic materials, according to
a series of studies, these polymers have been demonstrated to be able to increase the
absorption of visible light and stability [277], charge transfer [278], charge separation [279],
and to sensitize the surface in the visible light area [280–282].

Another equally important advantage of polymer applications in the context of photo-
catalytic removal of pharmaceutical contaminants is related to sustainability and recycla-
bility. Immobilization of photocatalytic nanomaterials within a polymer matrix not only
stabilizes the whole system, but also enables multiple uses of the working material. This is
crucial because it removes the necessity of filtering out nanoparticles to make the water
safe for use. Instead, it is only necessary to remove the entire filter based on the polymer
with incorporated photocatalytic nanomaterials [283].

In the context of water purification, it is essential to highlight the non-toxicity of hybrid
composites consisting of photocatalytic nanomaterials and polymers. A notable study by
Zhao et al. [284] exemplifies this concept by utilizing the well-known PANI to create a novel
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composite photocatalytic material with BiVO4. This composite not only exhibits superior
photocatalytic efficiencies but has also been rigorously tested for toxicity. The material was
evaluated against Bacillus subtilis and Staphylococcus aureus, demonstrating non-toxic
properties. This finding underscores the potential of such hybrid composites in environ-
mental applications, offering both high efficiency in pollutant degradation and safety for
biological systems. The combination of polymers and photocatalytic materials presents a
promising approach for developing advanced, eco-friendly photocatalytic materials for
effective water purification.

The properties of individual polymers can often be tailored by combination with
other materials to achieve a balance of properties that will ensure satisfactory performance
under many different conditions. Some applications require a range of mechanical, thermal,
electrical, chemical, or optical properties to be achieved in a single product. This diversity
of properties is usually achieved by using various additives in the form of discrete particles
or fibers. It is generally necessary to modify the surface properties of these particulate
or fibrous particles in order to achieve an intimate and enduring association between the
additive and the polymer. The large internal surface area available for such associations
and the potential increase in macroscopic performance of the filled-polymer systems
implies a need for increasing use of heterogeneous oxide fillers. There is also a distinct
set of polymers whose degree of crystallinity and mechanical properties are considerably
improved with additional phases such as blends or fillers [285,286]. Determining the
effect of these different processing techniques, or the properties of the chemically modified
phases, on the properties of a heterogeneous polymer often involves the property of interest
but also may require extensive measurements such as surface area measurements, surface
technique augmentations such as XPS, or the measurement of fundamental packed or
porous structures. Characterizing the mechanical properties of these materials is not only of
interest from an application perspective, as the most widespread industrial application of
polymers is as an engineering material, but it can also tell us more about how the polymers
interact at an atomic level [287].

Current challenges include polymer stability, costs, and potential toxicity of degra-
dation products, with one of the greatest being the stability of polymers. Polymers can
undergo photo-degradation when exposed to UV or visible light, leading to the breakdown
of polymer chains and loss of mechanical and chemical properties. In a recent study by
Ran et al. 2018 [288], a well-known conjugated polymer poly(1,3,4-oxadiazole) (POD) was
synthesized through readily available synthesis and processing and tested for photocat-
alytic properties. The authors of the study concluded that although it exhibited excellent
photocatalytic properties against selected compounds, its reusability was not ideal because
of the relatively poor photostability. However, due to the simplicity of synthesis and
processing, further studies and improvements were suggested. In a very interesting study
by Chin et al. (2006), different polymeric membranes were tested under conditions typical
for photocatalytic degradation, including, among others, the presence of UV light oxidation
stress [289]. According to this study, when considering both UV exposure and oxidative
test, polytetrafluoroethylene and hydrophobic polyvinylidene fluoride were good choices
for photocatalytic applications.

The stability of polymers in water is essential for their use in environmental appli-
cations, such as water purification through photocatalysis. Polymers exposed to water,
especially under varying pH conditions, can undergo hydrolytic degradation. This involves
the breaking of polymer chains due to the reaction with water molecules, which can be
accelerated in acidic or alkaline environments. However, in this regard, polymer structures
based on polylactic acid (PLA) may offer a solution compared to polymers derived from
petroleum [290]. PLA requires much less energy for production compared to petroleum-
derived polymers and has the potential to decompose through composting, followed by
the release of CO2. On the other hand, PLA has much lower biodegradability, and finding
ways to increase the speed of biodegradation was the topic of a recently reported study
by Garratt et al. (2023) [291]. In their study, it was demonstrated that the incorporation of
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α-Fe2O3 into PLA increased the speed of PLA’s degradation, resulting in 32% of the solid
transforming to the liquid phase, compared to PLA’s decomposition alone.

6. Conclusions

In conclusion, this comprehensive review highlights the significant advancements and
potential of polymer-based photocatalysts in the removal of pharmaceutical contaminants
from water. The unique properties of polymers, including their tunable structures, ease of
modification, and ability to enhance the photocatalytic efficiency of other materials, make
them promising candidates for sustainable water treatment technologies.

The reviewed literature demonstrates that both organic and inorganic polymers, as
well as their hybrids, exhibit excellent photocatalytic properties, enabling efficient degra-
dation of pharmaceuticals. Polyaniline, poly(p-phenylene vinylene), polyethylene oxide,
and polypyrrole are among the most studied polymers, showing remarkable results in
various photocatalytic applications. The modification techniques, including mechanical
blending, extrusion processing, nanocomposite formation, plasma modification, surface
functionalization, and cross-linking, play a crucial role in enhancing the photocatalytic
activity of polymers.

However, despite the promising results, several challenges remain. The stability of
polymers under photocatalytic conditions, the cost of synthesis and modification, and the
potential toxicity of degradation products are critical issues that need to be addressed.
Future research should focus on developing more robust and cost-effective polymer-based
photocatalysts with enhanced stability and reduced environmental impact.

Moreover, the integration of computational methods, such as DFT and TD-DFT, can
provide valuable insights into the electronic properties and light absorption characteristics
of polymers. This approach can guide the design and optimization of new polymeric
materials with superior photocatalytic performance.

Polymer-based photocatalysts offer a promising and sustainable solution for the re-
moval of pharmaceuticals from water. Continued interdisciplinary research, combining
experimental and computational approaches, will be essential to overcome existing chal-
lenges and fully realize the potential of these materials in environmental protection and
water purification.
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