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Abstract: The use of non–precious metals for electrocatalytic hydrogen reaction (HER) is partic-
ularly important for energy conservation and environmental protection. In this work, three new
cobalt corroles containing o−, m−, and p−nitrobenzyl (1, 2, 3) at the meso 10−position of the corrole
macrocycle were synthesized, and their electrocatalytic hydrogen evolution reaction in organic and
neutral aqueous systems was also investigated. The results show that these three cobalt corroles
have significant catalytic HER activity in both systems, and the catalytic efficiency follows 1 > 3 > 2,
which indicates that the position of the nitro group can affect the catalytic property of the com-
plexes. In the organic phase, when using trifluoroacetic acid or p−toluenesulfonic acid as the proton
source, the electrocatalytic HER may undergo an EECC (E: electron transfer, C: proton coupling)
pathway. In a neutral aqueous system, the HER turnover frequency value of 1 is up to 137.4 h−1 at
938 mV overpotential.

Keywords: corrole; cobalt; electrocatalysis; hydrogen evolution; nitro group

1. Introduction

Due to the low utilization efficiency of nonrenewable traditional fossil fuels such as
coal, oil, and natural gas, the continuous consumption of fossil fuels will lead to resource
shortage or even depletion [1,2]. At the same time, the use of fossil fuels faces issues
such as the emission of toxic and harmful particulate matter, carbon dioxide, and sulfides,
which will lead to environmental pollution and the exacerbation of global warming [3–5].
Therefore, it is urgent to find clean, economical, and renewable energy alternatives [6].

Green energy such as solar, wind, hydro, geothermal, ocean thermal, and biomass are
the best choices to replace fossil fuels [7]. Hydrogen has the advantage of a high combustion
value. The only product of hydrogen combustion is non–polluting water, and hydrogen
elements are abundant on Earth. Furthermore, hydrogen can not only be used as a fuel,
but also as an energy carrier and storage medium. These advantages make hydrogen a
promising new energy source [8].

Currently, hydrogen production is mainly realized by processing petroleum resources,
which inevitably generates a huge carbon footprint and requires significant use of non-
renewable energy [9]. Electrocatalytic HER has the characteristics of high efficiency,
sustainability, and no carbon emissions, making it an ideal method for green hydrogen
production [10]. Precious metal catalysts such as Pt [11], Ru [12], Ir [13], Rh [14], and Pd [15]
have high catalytic activity, but they are costly, underutilized, and poorly durable [16].
Therefore, finding effective, economical, and durable catalysts is the key to electrocatalytic
hydrogen production [17]. In recent years, transition metal catalysts such as Fe [18–20],
Co [21–23], Ni [24–26], Mo [27,28], Ti [29,30], and Cu [31–34], which are abundant and
inexpensive, have become promising materials in the field of electrocatalytic HER.
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As a porphyrin family member, the corrole macrocycle has one fewer meso−carbon atom
and one more hydrogen atom in the ring compared to porphyrin rings. This makes it a trian-
ionic ligand that can stabilize the central metal ions with a higher oxidation state [35,36]. By in-
troducing electron–withdrawing groups such as halogen [37,38], −CF3 [39,40], −C6F5 [41,42],
and −CN [43,44] at the meso− and/or β−positions of the corrole ring, the electrocatalytic
hydrogen performance of metal corroles may be significantly enhanced.

Previously, we have investigated the effect of the o−, m−, and p−hydroxyl group
of meso−phenyl on the electrocatalytic HER performance of cobalt triaryl corrole com-
plexes [45]. In terms of the electron–withdrawing effect, a nitro group would be more favor-
able for HER than an electron–donating hydroxyl group. We found that a 5,10,15−tris(4−
nitrophenyl)corrole cobalt complex had a better electrocatalytic HER activity than its
counterpart cobalt 5,10,15−tris(phenyl)corrole [46]. Cao et al. also reported that the cop-
per corrole bearing nitro group had a better electrocatalytic performance [47]. Here, we
wish to report the synthesis of three new cobalt corrole complexes with o−nitrobenzyl,
m−nitrobenzyl, and p−nitrobenzyl at the meso 10−position of the corrole macrocycle,
respectively (Scheme 1), to investigate the effect of the nitro substituent position on their
electrocatalytic HER activity in organic and neutral aqueous phases.
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Scheme 1. Structure of three complexes 1–3.

2. Results and Discussion
2.1. Structural Characterization

Free–base corroles and cobalt complexes 1–3 were characterized for structure and
purity using ultraviolet–visible spectroscopy (UV–vis), high–resolution mass spectroscopy
(HRMS), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance spec-
troscopy (NMR). Corresponding graphs and characterization data are given in the text and
Supporting Information (Figures S1–S20).

2.1.1. UV–Vis Spectra of Free–Base Corroles and Cobalt Complexes

As shown in Figure S19, consistent with previous reports [45], the UV–vis of the
free–base corroles all have a sharp and high Soret band at around 410 nm and two lower
and wider Q–bands at 500–650 nm. The Soret band absorption peaks of the cobalt complexes
are blue–shifted, weaker, and split compared to the free–base complexes, indicating that
triphenylphosphine is coordinated to cobalt [43].

2.1.2. X-ray Photoelectron Spectroscopy

To further characterize these three cobalt complexes, we determined the elemental
composition of them by XPS and determined the valence state of the cobalt element. The
XPS full spectra (Figure S20) show that the synthesized cobalt complexes contain Co, F, N,
P, C, and O elements. The XPS spectra for Co 2p and N 1s of complexes 1–3 are shown
in Figure 1. The peak positions of these complexes are similar, while the peak shape is
not exactly the same for all samples. This reflects that complexes 1–3 do have a different
electronic structure. It can be found that the Co2p1/2 binding energies of complexes 1–3 are
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795.58, 795.18, and 795.18 eV, respectively, and for Co2p3/2 are 780.38, 780.38, and 780.18 eV,
respectively. This demonstrates that the central cobalt element in all three cobalt complexes
is positive trivalent [48]. Among the three complexes, complex 1 has the highest Co2p
binding energy, indicating that the electron cloud density of Co in complex 1 is the lowest,
which may result from the strongest electron–withdrawal effect of the o−nitrobenzyl.
And these three complexes all have peaks at around 398.7 eV and 406.1 eV, which are,
respectively, classified as pyrrole nitrogen and nitro nitrogen [49]. Furthermore, the XPS of
F1s, P2p, and O1s are shown in Figure S20.
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2.1.3. X-ray Diffraction of Single Crystal

Single crystals of the complex 1 (CCDC No2326752), 2 (CCDC No2326751), and 3
(CCDC No2326750) were obtained in a mixed system of hexane and dichloromethane using
solvent volatilization. The structures of the three single crystals are shown in Figure 2,
and some specific data are shown in Tables S1–S3. The structures show that the four
pyrrole N atoms of corrole successfully bind to the cobalt atom, and the cobalt complexes
are axially coordinated with triphenylphosphine. The cobalt atoms of complexes 1, 2,
and 3 have deviation distances from the N4 plane, which are 0.2831 Å, 0.2756 Å, and
0.2721 Å, respectively. The deviation of the cobalt atoms from the N4 plane may be caused
by the spatial repulsion of the axial ligand triphenylphosphine. The length of the Co−P
bonds is 2.214 Å, 2.204 Å, and 2.206 Å, respectively. And the length ranges of the Co−N
bonds in complexes 1, 2, and 3 are 1.857 Å–1.894 Å, 1.866 Å–1.891 Å, and 1.865 Å–1.881 Å,
respectively, which indicates that the electronic structure of cobalt in these complexes is
d6CoIII [50].

2.2. Cyclic Voltammogram Studies

Cyclic voltammograms (CVs) were recorded at a scanning speed of 100 mV/s in a
DMF medium with 0.1 M TBAP, calibrated with ferrocene. The three cobalt complexes were
preliminarily electrochemically characterized in the −2.1~0 V potential range (Figure 3).
Table 1 lists the redox peak potentials of the three complexes. Figure 3 shows that complexes
1–3 exhibit the first reduction peak at −0.779, −0.755, and −0.735 V, respectively, assigned
to the reduction of CoIII to CoII. The CoIII/CoII redox couple is irreversible due to the
detachment of the axial ligand triphenylphosphine [43]. The potential of the first reduction
wave peaks follows an order of 1 < 2 < 3, showing that the steric effect of the nitro group
is the main controlling factor. Possibly, the steric hindrance between the big axial ligand
triphenylphosphine and nitro group forces the cobalt atoms to deviate from the corrole N4
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plane at different distances, and the deviation is not favored for the metal–ligand aromatic
electron communication, thus lowering the electron–withdrawing effect of the nitro group
on the central Co atom. This may be further evidenced by the X-ray single–crystal structure.
As mentioned in the previous X-ray diffraction single–crystal structures, the distance
between the cobalt atom and N4 plane follows an order of 1 > 2 >3. Via the comparison of
the CVs between the cobalt corrole complexes and free–base corroles, the second reduction
peak located at around −1.60 V is the reduction peak of the nitro group. Similarly, the less
perturbed nitro group in complex 1 exhibits the most negative reduction potential. The third
reduction peaks of complexes 1–3 appear at −1.906, −1.920, and −1.909 V, respectively.
This reduction wave can be assigned to the reduction of CoII to CoI [51]. This reduction
wave potential follows an order of 2 < 1~3, showing that the normal electron–withdrawing
effect of the nitro groups is mainly controlling the redox potential difference in the CoII/CoI

couple after the axial triphenylphosphine ligand leaves.
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Table 1. Redox peak potentials of complexes 1–3 in DMF containing 0.1 M TBAP.

Complex
CoIII/CoII −NO2Ph CoII/CoI

Ox 1/V Red 1/V Red 2/V Ox 3/V Red 3/V

2−NBPC−Co (1) −0.463 −0.779 −1.671 −1.807 −1.906
3−NBPC−Co (2) −0.435 −0.755 −1.541 −1.829 −1.920
4−NBPC−Co (3) −0.415 −0.735 −1.537 −1.813 −1.909

CV tests were conducted on the three complexes in DMF solution at different scan rates
in Figure S21. From the figure, it can be seen that the peak current (ip) is linearly related
to the square root of the scan rate (v1/2), which indicates that the reaction is controlled by
diffusion [52].
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2.3. Electrocatalytic Study in DMF

Due to the influence of proton sources on the catalytic pathway and property of
catalysts, acetic acid (AcOH, pKa 13.2 in DMF [53]), trifluoroacetic acid (TFA, pKa 3.5 in
DMF [52]), and p−toluenesulfonic acid (TsOH, pKa 2.6 in DMF [53]) were used as the
proton sources to study the electrocatalytic HER catalytic activeness of the three complexes
in DMF.

In Figure S22, AcOH was used as the proton source. With the addition of AcOH,
the first redox peak of the CoIII/CoII couple of the three complexes is almost unchanged,
while the reduction peak current of the NO2Ph group increases obviously but does not
change with the increasing acid concentration. And the third reduction peak of CoII/CoI

shifts slightly positively. However, the catalytic current is small, suggesting that the
electrocatalytic capacity is not good in weak acidic.

As shown in Figure 4, the electrocatalytic HER performance of the three complexes
was investigated using a medium–strength acid TFA as the proton source. The redox peak
of the CoIII/CoII pair of these three complexes remains unchanged with the increasing
acid concentration, which means that this process only involves the CoIII/CoII reduction
accompanying the detachment of triphenylphosphine [54]. The reduction peak potential of
the NO2Ph group significantly shifts positively with the increase in the acid concentration.
However, the reduction peak current basically stays unchanged, suggesting that the NO2Ph
group is involved in the pure redox reaction only [55]. The reduction peak current of the
CoII/CoI pair decreases a little when the acid addition is only 2 eq, but the peak potential
is positively shifted. When more acid is added, the oxidation peak of the CoII/CoI pair
gradually disappears. Meanwhile, the reduction peak current increases remarkably with
the increase in the acid concentration, indicating that the catalytic HER process occurs,
and CoI is the active center of HER [43]. It can be seen that CoII obtains an electron to
be reduced to CoI, which is then protonated to form a transient CoI−H+ species, which
then will quickly transform to a CoIII−H− intermediate. Finally, this intermediate reacts
with a proton to produce H2 [39]. The performance of the catalysts is further evaluated
using icat/ip, where icat is the reduction peak current with the addition of acid and ip is the
reduction peak current without acid,; the icat/ip values of the three complexes in TFA are
given in Figure 4, and the ranking of the icat/ip values of the three complexes is 1 > 3 > 2.
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Further, the electrocatalytic HER property of the three complexes was investigated
using TsOH as the proton source. In Figure 5, similar to TFA, the redox peak of the
CoIII/CoII electric pair of all three complexes does not change with the acid concentration.
The reduction peak of the NO2Ph group is only an electron transfer reaction and is not
involved in proton–coupling processes. When the addition of acid is only 2 eq, the reduction
peak potential of CoII/CoI may be observed to be positively shifted. With the increasing
acid concentration, the peak current increases remarkably, implying that after CoII obtains
an electron to form CoI, the CoI will soon couple with a proton to form a transient CoI−H+,

which then will quickly transform to a CoIII−H− intermediate. After that, this intermediate
combines with a proton to eventually produce H2. In Figure 5d, the icat/ip values of the
three complexes are also ranked as 1 > 3 > 2.
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Equations (1) and (2) and the Tafel Equation (3) were further used to calculate the Tafel
slope to investigate the catalytic dynamics of the complexes and the results are shown in
Figure S23. The relevant Tafel data are summarized in Table S4. In DMF with 32 eq. TFA,
the Tafel slopes of complexes 1–3 are 31, 49, and 41 mV dec−1, respectively. In DMF with
32 eq. TsOH, the Tafel slopes of complexes 1–3 are 34, 43, and 39 mV dec−1, respectively;
it can be seen that the Tafel slope is 1< 3 < 2, indicating that the kinetic superiority of the
electrocatalytic HER is 1 > 3 > 2.

η= E0
HA−E (1)

E0
HA= E0

H+ −
(

2.303RT
F

)
pKaHA (2)

η= blog j + a (3)

where η is the overpotential, E0
HA is the standard electrode potential of H+/H2, E0

H+= −0.62 V
vs. ferrocene in DMF, pKaHA is the dissociation constant of acid in solvent, E0

TFA= −0.83 V,
E0

TsOH= −0.78 V, b is the Tafel slope, j is the current density, and a is a constant [56,57].
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Figure S24 tested the CV curves of the bare glassy carbon electrode, free–base corrole
2−NBPC, and complex 1 (2−NBPC−Co) under the condition of adding an equal amount
of acid in the DMF system and compared it with the current value of the bare glassy carbon
electrode without the acid addition. It can be seen that after adding acid, the current of the
bare glassy carbon electrode increases very little, and the catalytic current of 2−NBPC is
obvious but far less than that of complex 1. The result suggests that the significant increase
in the catalytic current is attributed to the cobalt complexes.

In a nitrogen environment, controlled potential electrolysis experiments were con-
ducted on the three complexes in DMF with excessive TFA at the potential of −2.1 V for
1 h. Deducting the blank, the rank of charge accumulation is found to be 1 > 3 > 2, with a
maximum accumulated charge of 0.54 C (Figure S25). Equation (4) was used to calculate
the TOF values of the three cobalt complexes; the results are summarized in Table S5 [58].
Furthermore, the UV–vis results of complexes 1–3 before and after electrolysis show that
these catalysts all have good stability (Figure S26). The 20−turn cyclic voltametric scanning
of the three complexes showed no significant change in the CV curves between the 1st and
20th turns, which also indicates the good stability of the complexes (Figure S27). The glassy
carbon electrodes that were continuously electrolyzed in the catalyst for 1 h were briefly
rinsed and then the CV curves of the bare glassy carbon electrodes were tested. Comparing
the CV curves of the bare glassy carbon electrodes before and after electrolysis (Figure S28),
it can be seen that there is no deposition of electrochemical active substances on the surface
of the glassy carbon electrodes.

TOF =
∆C

F·n1·n2·t
(4)

where ∆C is the amount of charge accumulated in the experiment after subtracting the
blanks, F is the Faraday constant, n1 is the number of electrons needed to produce 1 mole
of hydrogen, n2 is the amount of catalyst, and t is the electrolysis time.

In Figure S29, the catalytic effect of complexes 1–3 was further investigated using
electrochemical impedance spectroscopy (EIS) at the potential of −1.7 V. In DMF solu-
tion containing 32 eq. TFA, the series resistance Rs values of the complexes 1, 2, and 3
are 34–39 Ω, and the charge transfer resistance Rct values are 517.1, 596.0, and 560.7 Ω,
respectively. In DMF solution containing 32 eq. of TsOH, the Rs values of complexes 1,
2, and 3 are 32–36 Ω, and the Rct values are 407.4, 571.0, and 437.1 Ω, respectively. The
Rct values in different systems were summarized in Table S6. The low Rs indicates that
the catalytic system is a homogeneous catalytic process, and the lower Rct means that the
electrocatalysis has a stronger charge transfer capability and is more favorable for HER. In
both proton sources, the Rct values are 1 < 3 < 2.

2.4. Possible Catalytic Hydrogen Production Pathways

On the basis of the above experiments and studies, the electrocatalytic HER mechanism
for the three catalysts in the organic phase with TFA and TsOH as the proton sources is
hypothesized in Scheme 2. The CoIII/CoII reduction wave is nearly not changed with
increasing the acid concentration, indicating that this step is a pure one–electron reduction
of CoIII to CoII, which is an E process. Meanwhile, the reduction peak current of the
CoII/CoI pairs increases significantly with the increase in the acid concentration, showing
when CoII obtained an electron to form CoI, it will soon bind with a proton to form
transient CoI−H+, which will transform to a CoIII−H− hydride intermediate, and this is an
EC process. Finally, the CoIII−H− hydride reacts with a proton to produce H2, which is a C
process. Therefore, the possible catalytic route is the EECC pathway (I–IV, in Scheme 2).
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used as proton sources.

2.5. Electrocatalytic Study in Neutral Aqueous System

To examine the practicality of the three complexes, the HER performance of the three
catalysts was tested in 0.1 M phosphate buffer (VMeCN/VH2O = 2/3) of pH = 7. MeCN was
applied to improve the solubility of the complexes in H2O. Ag/AgCl was chosen as the
reference electrode for all tests. The effect of the cobalt corrole concentration on the HER in
the neutral aqueous system was investigated in Figure S30. The figure suggests that the
catalytic current increases gradually with the increase in the cobalt complex concentration.
In Figure 6, the catalytic current is extremely small when the catalyst is not added. After
the addition of the three cobalt complexes, significant catalytic currents appear in the CV
tests; among the three complexes, the catalytic currents of complex 1 are the largest. And
the addition of the cobalt complexes results in a large positive shift in the onset potential,
indicating that these three complexes have a significant electrocatalytic HER property in
this system. The Tafel slopes of the three complexes, as shown in Figure S31, are 99, 114,
and 111 mV dec−1, respectively, and the data have been summarized in Table S4.
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In addition, two–minute controlled potential electrolysis experiments were carried out
on three cobalt complexes at overpotentials of 838–1238 mV in Figure S32 (blanks have been
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eliminated in all data). The results show that the charge accumulation of complex 1 is the
largest, reaching about 120 mC at 1238 mV. The TOF values of the three cobalt complexes
at different overpotentials were calculated using Equations (1) and (5) [55]. It can be seen
from Figure S31(d) that the turnover frequency (TOF) values of the three cobalt corroles
increase with the increasing overpotential, and the TOF values at 938 mV for 1, 2, and 3 are
137.40, 126.24, and 128.10 h−1, respectively, the specific results are summarized in Table S5.
Table S7 compares the TOF values of these three new complexes with other reported cobalt
complexes, and the new complexes are found to have good property [39,45,51,57,59,60].

Overpotential = Applied potential + 0.059 pH + 0.199 V (5)

At the initial potential of −1.4 V, the electrocatalytic performance of the three com-
plexes was studied using electrochemical impedance spectroscopy (EIS). The Rs values of
complexes 1–3 are 15–18 Ω, and the Rct values are 159.9, 187.8, and 166.9 Ω, respectively
(Figure S33). The relevant data are listed in Table S6.

Other conditions were kept constant, and the electrolyte of the 0.25 M complex was
continuously electrolyzed at −1.70 V for 1 h. In Figure 7, the gases produced are collected
and analyzed qualitatively and quantitatively by gas chromatography. After subtracting
blanks, the volume of H2 produced is calculated to be 0.17 mL, 0.20 mL, and 0.35 mL
using the external standard method (Figure S34). The Faraday efficiencies of the three cata-
lysts are evaluated using Equations (6) [57] and are calculated to be 86.92%, 81.39%, and
85.72%, respectively.

Faradaic efficiency for H2 =
F·nH2 ·z

Q
× 100% (6)

where F is the Faraday constant, nH2 is the amount of H2 produced by electrolysis, z is the
number of electrons required to produce 1 mol of H2, and Q is the accumulated charge
in electrolysis.
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Figure S35 investigates the stability of the three complexes by measuring the current
density changes during continuous electrolysis at a −1.7 V potential for 8 h. It is clear
that the current density values of complexes 1–3 remain basically constant throughout the
entire 8 h stability test, which indicate that these three complexes have good electrocatalytic
stability. In order to make the potentials of the two systems more comparable, some current
values with the same NHE scale of 2 V in the CV tests of the two systems are summarized
in Table S8 [61].
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3. Materials and Methods

All reagents were commercially available and were used without further purification,
unless otherwise stated. Bruker Avance III NMR spectrometer was used to measure the H
and F spectra in CDCl3 solvent. High–resolution mass spectra (HRMS) were determined by
Agilent 1290LC−MS. MeOH and THF were used as solvents, and electrospray ionization
(ESI) source was used as the light source. UV–vis was measured at r. t. using a Hitachi
U−3010 spectrophotometer with CH2Cl2 as the solvent. X-ray photoelectron spectra
(XPS) were tested with Thermo Scientific K–Alpha, and the associated binding energy was
corrected with a C1s peak (284.8 eV). X-ray diffraction of single crystals was measured
using Bruker D8 VENTURE. All electrochemical tests were conducted using the CHI−660E
electrochemical workstation. Organic–phase electrochemical tests were conducted using a
DMF solution of tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte,
with Ag/AgNO3 as the reference electrode, glassy carbon as the working electrode, and
graphite rod as the counter electrode. The aqueous neutral system was a solution of a
mixture of MeCN and H2O with a volume ratio of 2:3, and KCl, KOH, and KH2PO4 were
added, with Ag/AgCl as the reference electrode, glassy carbon as the working electrode,
and platinum wire as the counter electrode.

Synthesis of 10−(2−nitrophenyl)−5,15−bis−pentafluorophenyl corrole (2−NBPC)

As is shown in Figure 8, the synthesis could be divided into two steps; the first was
the synthesis of pentafluorophenyl dipyrromethane. Pentafluorobenzaldehyde (5.6 g) and
newly distilled pyrrole (320 mL) were stirred evenly, then catalyst TFA (240 µL) was added
and stirred at r. t. for 2 h. Then, Et3N (480 µL) was added to terminate the reaction, and
after the white smoke in the bottle disappeared, a black oily liquid was obtained by vacuum
distillation. Then, this liquid was purified by a silica column with DCM:HEX = 1:1 eluent,
and beige solid was obtained as pentafluorophenyl dipyrromethane (6.9 g, 77%).
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The second step was to synthesize the target product. 2−Nitrobenzaldehyde (0.15 g)
and pentafluorophenyl dipyrromethane (0.63 g) were added in MeOH (100 mL), then HCl
(3.6%, 100 mL) was added and the mixture was stirred at r. t. for 4 h. The organic phase was
then extracted with DCM and H2O and dried with anhydrous sodium sulfate. Then, DDQ
was added for 1 h. Next, it was purified by a silica column with DCM:HEX = 2:1 eluent
to separate the impurities, and finally recrystallized with DCM and HEX to obtain a high–
purity product as 10−(2−nitrophenyl)−5,15−bis−pentafluorophenyl corrole(2−NBPC)
(230 mg, 31%). HRMS (ESI) [M + H]+, calculated for C37H15F10N5O2: 752.1139, found
752.1147. 1H NMR (400 MHz, Chloroform−d) δ 9.10 (d, J = 4.3 Hz, 2H), 8.70 (d, J = 4.7 Hz,
2H), 8.56 (d, J = 4.3 Hz, 2H), 8.50 (d, J = 4.8 Hz, 2H), 8.39 (m, 1H), 8.24–8.19 (m, 1H), 8.00–7.92
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(m, 2H). 19F NMR (376 MHz, Chloroform−d) δ−137.23 (2F), −138.08 (2F), −152.61 (2F),
−161.49 (2F), −161.77 (2F).

Synthesis of 10−(3−nitrophenyl)−5,15−bis−pentafluorophenyl corrole (3−NBPC)

Similar to 2−NBPC, after recrystallization from DCM/Hex, obtain pure corrole
(246 mg, yield 33%). HRMS (ESI) [M + H]+, calculated for C37H15F10N5O2: 752.1139,
found 752.1153. 1H NMR (400 MHz, Chloroform−d) δ 9.15 (d, J = 4.3 Hz, 2H), 9.04 (t,
J = 2.0 Hz, 1H), 8.77 (d, J = 4.7 Hz, 2H), 8.64 (dd, J = 8.3, 2.5 Hz, 1H), 8.60 (d, J = 4.7 Hz,
4H), 8.51 (d, J = 7.7 Hz, 1H), 7.96 (t, J = 7.9 Hz, 1H). 19F NMR (376 MHz, Chloroform−d)
δ−137.83 (4F), −152.36 (2F), −161.50 (4F).

Synthesis of 10−(4−nitrophenyl)−5,15−bis−pentafluorophenyl corrole (4−NBPC)

Similar to 2−NBPC, after recrystallization from DCM/Hex, obtain pure corrole
(258 mg, yield 35%). HRMS (ESI) [M + H]+, calculated for C37H15F10N5O2: 752.1139, found
752.1149. 1H NMR (400 MHz, Chloroform−d) δ 9.13 (d, J = 4.3 Hz, 2H), 8.77 (d, J = 4.8 Hz,
2H), 8.65–8.58 (m, 6H), 8.36 (d, J = 8.5 Hz, 2H). 19F NMR (376 MHz, Chloroform−d)
δ−137.86 (4F), −152.29 (2F), −161.46 (4F).

Synthesis of complex 1

As is shown in Figure 9, 2−NBPC (100 mg) and sodium acetate (200 mg) were added
in MeOH (60 mL) and DCM (60 mL), then triphenylphosphine (330 mg) was added, and
finally cobalt acetate tetrahydrate (200 mg) was added and reacted at r. t. for 1 h. The
solution was then extracted with DCM and saturated saline, then the organic phase was
collected. After drying, the crude product was purified by a silica column with the eluent of
DCM:HEX = 2:1, and brown solid was obtained. Finally, after recrystallization with DCM
and HEX, a high purity cobalt complex product (130 mg, 91%) was obtained (130 mg, 91%).
HRMS (ESI) [M + H]+, calculated for C55H27CoF10N5O2P: 1070.1147, found 1070.1172. 1H
NMR (400 MHz, Chloroform−d) δ 8.60 (d, J = 4.5 Hz, 2H), 8.33–8.20 (m, 5H), 8.08–7.99 (m,
3H), 7.85 (m, 2H), 7.05 (t, J = 7.2 Hz, 3H), 6.70 (d, J = 6.3 Hz, 6H), 4.67 (m, 6H). 19F NMR
(376 MHz, Chloroform−d) δ −136.03–−138.03 (4F), −154.02 (2F), −161.65–−162.89 (4F).

Catalysts 2024, 14, x FOR PEER REVIEW 12 of 17 
 

 

The second step was to synthesize the target product. 2−Nitrobenzaldehyde (0.15 g) 
and pentafluorophenyl dipyrromethane (0.63 g) were added in MeOH (100 mL), then 
HCl (3.6%, 100 mL) was added and the mixture was stirred at r. t. for 4 h. The organic 
phase was then extracted with DCM and H2O and dried with anhydrous sodium sulfate. 
Then, DDQ was added for 1 h. Next, it was purified by a silica column with DCM:HEX = 
2:1 eluent to separate the impurities, and finally recrystallized with DCM and HEX to 
obtain a high−purity product as 10−(2−nitrophenyl)−5,15−bis−pentafluorophenyl cor-
role(2−NBPC) (230 mg, 31%). HRMS (ESI) [M+H]+, calculated for C37H15F10N5O2: 752.1139, 
found 752.1147. 1H NMR (400 MHz, Chloroform−d) δ 9.10 (d, J = 4.3 Hz, 2H), 8.70 (d, J = 
4.7 Hz, 2H), 8.56 (d, J = 4.3 Hz, 2H), 8.50 (d, J = 4.8 Hz, 2H), 8.39 (m, 1H), 8.24–8.19 (m, 1H), 
8.00–7.92 (m, 2H). 19F NMR (376 MHz, Chloroform−d) δ−137.23 (2F), −138.08 (2F), −152.61 
(2F), −161.49 (2F), −161.77 (2F). 

Synthesis of 10−(3−nitrophenyl)−5,15−bis−pentafluorophenyl corrole (3−NBPC) 

Similar to 2−NBPC, after recrystallization from DCM/Hex, obtain pure corrole (246 
mg, yield 33%). HRMS (ESI) [M+H]+, calculated for C37H15F10N5O2: 752.1139, found 
752.1153. 1H NMR (400 MHz, Chloroform−d) δ 9.15 (d, J = 4.3 Hz, 2H), 9.04 (t, J = 2.0 Hz, 
1H), 8.77 (d, J = 4.7 Hz, 2H), 8.64 (dd, J = 8.3, 2.5 Hz, 1H), 8.60 (d, J = 4.7 Hz, 4H), 8.51 (d, J = 
7.7 Hz, 1H), 7.96 (t, J = 7.9 Hz, 1H). 19F NMR (376 MHz, Chloroform−d) δ−137.83 (4F), 
−152.36 (2F), −161.50 (4F). 

Synthesis of 10−(4−nitrophenyl)−5,15−bis−pentafluorophenyl corrole (4−NBPC) 

Similar to 2−NBPC, after recrystallization from DCM/Hex, obtain pure corrole (258 
mg, yield 35%). HRMS (ESI) [M+H]+, calculated for C37H15F10N5O2: 752.1139, found 
752.1149. 1H NMR (400 MHz, Chloroform−d) δ 9.13 (d, J = 4.3 Hz, 2H), 8.77 (d, J = 4.8 Hz, 
2H), 8.65–8.58 (m, 6H), 8.36 (d, J = 8.5 Hz, 2H). 19F NMR (376 MHz, Chloroform−d) 
δ−137.86 (4F), −152.29 (2F), −161.46 (4F). 

Synthesis of complex 1 

As is shown in Figure 9, 2−NBPC (100 mg) and sodium acetate (200 mg) were added 
in MeOH (60 mL) and DCM (60 mL), then triphenylphosphine (330 mg) was added, and 
finally cobalt acetate tetrahydrate (200 mg) was added and reacted at r. t. for 1 h. The 
solution was then extracted with DCM and saturated saline, then the organic phase was 
collected. After drying, the crude product was purified by a silica column with the eluent 
of DCM:HEX = 2:1, and brown solid was obtained. Finally, after recrystallization with 
DCM and HEX, a high purity cobalt complex product (130 mg, 91%) was obtained (130 
mg, 91%). HRMS (ESI) [M+H]+, calculated for C55H27CoF10N5O2P: 1070.1147, found 
1070.1172. 1H NMR (400 MHz, Chloroform−d) δ 8.60 (d, J = 4.5 Hz, 2H), 8.33–8.20 (m, 5H), 
8.08–7.99 (m, 3H), 7.85 (m, 2H), 7.05 (t, J = 7.2 Hz, 3H), 6.70 (d, J = 6.3 Hz, 6H), 4.67 (m, 
6H). 19F NMR (376 MHz, Chloroform−d) δ −136.03–−138.03 (4F), −154.02 (2F), −161.65–
−162.89 (4F). 

 
Figure 9. Schematic of the synthesis of Complex 1. Figure 9. Schematic of the synthesis of Complex 1.

Synthesis of complex 2

Similar to complex 1, after recrystallization, obtain pure cobalt complex (138 mg, yield
97%). HRMS (ESI) [M + H]+, calculated for C55H27CoF10N5O2P: 1070.1147, found 1070.1148.
1H NMR (400 MHz, Chloroform−d) δ 8.84 (dd, J = 26.2, 4.6 Hz, 2H), 8.59–8.55 (m, 1H), 8.38
(d, J = 7.5 Hz, 1H), 8.34 (d, J = 3.3 Hz, 2H), 8.21 (d, J = 4.8 Hz, 1H), 8.17 (d, J = 4.7 Hz, 2H),
8.10 (t, J = 5.2 Hz, 2H), 7.84 (t, J = 7.9 Hz, 1H), 7.10 (m, 3H), 6.74 (m, 6H), 4.63 (dd, J = 10.5,
8.2 Hz, 6H). 19F NMR (376 MHz, Chloroform−d) δ −136.68–−138.00 (4F), −153.80 (2F),
−161.57–−162.61 (4F).

Synthesis of complex 3

Similar to complex 1, after recrystallization, obtain pure cobalt complex (133 mg, yield
93%). HRMS (ESI) [M + H]+, calculated for C55H27CoF10N5O2P: 1070.1147, found 1070.1139.
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1H NMR (400 MHz, Chloroform−d) δ 8.79 (d, J = 4.5 Hz, 2H), 8.52 (dd, J = 8.3, 2.4 Hz,
1H), 8.46 (dd, J = 8.4, 2.4 Hz, 1H), 8.30 (d, J = 4.6 Hz, 2H), 8.24 (d, J = 7.6 Hz, 1H), 8.19 (d,
J = 4.8 Hz, 2H), 8.07 (d, J = 4.5 Hz, 2H), 7.56 (d, J = 8.1 Hz, 1H), 7.09–7.02 (t, 3H), 6.69 (td,
J = 7.8, 2.6 Hz, 6H), 4.59 (dd, J = 11.1, 7.8 Hz, 6H). 19F NMR (376 MHz, Chloroform−d) δ
−136.92 (2F), −137.86 (2F), −153.74 (2F), −161.77 (2F), −162.35 (2F).

4. Conclusions

In this paper, three free–base corroles bearing one o−, m−, or p−nitrobenzyl and
two pentafluorophenyl groups and their cobalt complexes had been synthesized. The
electrocatalytic HER property of these cobalt corrole complexes had also been investigated
in a DMF and MeCN/H2O system, respectively. The results showed that the prepared three
cobalt corroles exhibited significant catalytic activity in both organic and neutral aqueous
systems. In the organic phase, the electrocatalytic HER may via the EECC pathway when
using TFA and TsOH as the proton sources. And the HER turnover frequency values are
up to 137.4 h−1 at 938 mV overpotential in the neutral aqueous system. The three cobalt
corroles also show good stability in the aqueous neutral system. In both systems, the HER
activity follows an order of 1 > 3 > 2. This is in accordance with the order of the electron–
withdrawing effect of the nitro groups on phenyl ortho−NO2 > para−NO2 > meta−NO2,
showing the electronic effect of the nitro group on the phenyl of current cobalt tri–phenyl
corrole is the main factor controlling the HER activity of them.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal14070454/s1, Figure S1: 1H NMR spectrum of 2−NBPC; Figure S2:
19F NMR spectrum of 2−NBPC; Figure S3: ESI−HRMS spectrum of 2−NBPC; Figure S4: 1H NMR
spectrum of 3−NBPC; Figure S5: 19F NMR spectrum of 3−NBPC; Figure S6: ESI−HRMS spectrum
of 3−NBPC; Figure S7: 1H NMR spectrum of 4−NBPC; Figure S8: 19F NMR spectrum of 4−NBPC;
Figure S9: ESI−HRMS spectrum of 4−NBPC; Figure S10: 1H NMR spectrum of complex 1; Figure S11:
19F NMR spectrum of complex 1; Figure S12: ESI−HRMS spectrum of complex 1; Figure S13: 1H
NMR spectrum of complex 2; Figure S14: 19F NMR spectrum of complex 2; Figure S15: ESI−HRMS
spectrum of complex 2; Figure S16: 1H NMR spectrum of complex 3; Figure S17: 19F NMR spectrum
of complex 3; Figure S18: ESI−HRMS spectrum of complex 3; Figure S19: UV–vis spectra of 2−NBPC
and 2−NBPC−Co (1) (a), 3−NBPC and 3−NBPC−Co (2) (b), 4−NBPC and 4−NBPC−Co (3) (c) in
DCM; Figure S20: XPS survey spectrum (a), XPS spectra of F 1s (b), P 2p (c), and O 1s (d) of complexes
1–3; Figure S21: CVs of 0.5 mM complexes 1 (a), 2 (b), and 3 (c) in a varying scan rate (v) from
100 mV/s to 350 mV/s; plot of peak current (ip) values of complexes 1 (d), 2 (e), 3 (f) versus the
square root of the scan rate (v1/2); Figure S22: CVs of 0.5 mM complexes 1 (a), 2 (b), and 3 (c) in
DMF (0.1 M TBAP); Figure S23: Tafel plots of the 0.5 mM complexes 1–3 with 32 eq. TFA (a), and
32 eq. TsOH (b) in DMF; Figure S24: CVs of bare glassy carbon electrode without TFA (black), bare
glassy carbon electrode (red), 0.5 mM 2−NBPC (blue), and 0.5 mM 2−NBPC−Co (1) (green) with
32 eq TFA in DMF; Figure S25: charge of 0.5 mM complexes 1, 2, and 3 after 1 h of electrolysis in
DMF with excessive TFA; Figure S26: UV–vis of complexes 1 (a), 2 (b), and 3 (c) before and after
1 h of electrolysis in excessive TFA; Figure S27: the 1st circle (black line) and the 20th circle (red
line) CVs of complexes 1 (a), 2 (b), and 3 (c); Figure S28: comparison of CV curves of bare glassy
carbon electrodes before and after electrolysis of complexes 1 (a), 2 (b), and 3 (c) in 32 eq TFA for
1 h; Figure S29: the Nyquist plot of the 0.5mM complexes 1–3 with 32 eq TFA (a), and 32 eq TsOH
(b) in DMF; Figure S30: CVs of different concentrations of complexes 1 (a), 2 (b), and 3 (c) in neutral
aqueous system (VMeCN/VH2O = 2/3); Figure S31: the Tafel slope of the 0.25 µM complexes 1–3 in
neutral aqueous medium (VMeCN/VH2O = 2/3); Figure S32: charges accumulated by electrolysis of
2.5 µM complexes 1 (a), 2 (b), and 3 (c) at different potentials for two minutes and corresponding TOF
values (d); Figure S33: the Nyquist plot of the 0.25 µM complexes 1–3 in neutral aqueous medium
(VMeCN/VH2O = 2/3); Figure S34: the standard curve of hydrogen volume; Figure S35: timed current
measurements of 2.5 µM complexes 1 (a), 2 (b), and 3 (c) electrolyzed at −1.7 V for 8 h in neutral
aqueous system; Table S1: crystal data and structure refinement for complex 1; Table S2: crystal data
and structure refinement for complex 2; Table S3: crystal data and structure refinement for complex
3; Table S4: Tafel slope in different systems; Table S5: TOF values at different conditions; Table S6:
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charge transfer resistance (Rct) in different systems; Table S7: comparison of TOF value of cobalt
corroles; [39,45,51,57,59,60]; Table S8: some current values at −2.00 V vs. NHE.
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