Post-Synthetically Treated ERI and SSZ-13 Zeolites Modified with Copper as Catalysts for NH3-SCR-DeNOx
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Textural Properties
2.2. Nature of Copper and Oxygen Species
2.3. Catalytic Investigations
3. In Situ Spectroscopic Studies
4. Experimental
4.1. Catalyst Preparation
4.2. Catalyst Characterization, Catalytic Experiments, and In Situ Investigations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Molokova, A.Y.; Borfecchia, B.; Martini, A.; Pankin, I.A.; Atzori, C.; Mathon, O.; Bordiga, S.; Wen, F.; Vennestrøm, P.N.R.; Berlier, G.; et al. SO2 poisoning of Cu-CHA deNOx catalyst: The most vulnerable Cu species identified by X-ray absorption spectroscopy. JACS Au 2022, 2, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, Y.; Wang, Y.; Li, Z.; Nkinahamira, F.; Zhu, R.; Zhang, J.; Sun, S.; Zhu, Y.; Li, H.; et al. The poisoning mechanism of H2O/SO2 to In/H-Beta for selective catalytic reduction of NOx with methane. Appl. Catal. A, Gen. 2023, 649, 118973. [Google Scholar] [CrossRef]
- Jabłońska, M. Review of the application of Cu-containing SSZ-13 in NH3-SCR-DeNOx and NH3-SCO. RSC Adv. 2022, 12, 25240–25261. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, H.; Haller, G.; Li, Y. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-chabazite catalysts. Appl. Catal. B Environ. 2017, 202, 346–354. [Google Scholar] [CrossRef]
- Salazar, M.; Hoffmann, S.; Tillmann, L.; Singer, V.; Becker, R.; Grünert, W. Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3: Precipitates and physical mixtures. Appl. Catal. B Environ. 2017, 218, 793–802. [Google Scholar] [CrossRef]
- Shi, Z.; Peng, Q.; Jiaqiang, E.; Xie, B.; Wei, J.; Yin, R.; Fu, G. Mechanism, performance and modification methods for NH3-SCR catalysts: A review. Fuel 2023, 331, 125885. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Z.; Xu, L.; Ohnishi, T.; Yanaba, Y.; Ogura, M.; Wakihara, T.; Okubo, T. Understanding the high hydrothermal stability and NH3-SCR activity of the fast-synthesized ERI zeolite. J. Catal. 2020, 391, 346–356. [Google Scholar] [CrossRef]
- Sultana, A.; Nanba, T.; Sasaki, M.; Haneda, M.; Suzuki, K.; Hamada, H. Selective catalytic reduction of NOx with NH3 over different copper exchanged zeolites in the presence of decane. Catal. Today 2011, 164, 495–499. [Google Scholar] [CrossRef]
- Liu, J.; Yu, F.; Liu, J.; Cui, L.; Zhao, Z.; Wei, Y.; Sun, Q. Synthesis and kinetics investigation of meso-microporous Cu-SAPO-34 catalysts for the selective catalytic reduction of NO with ammonia. J. Environ. Sci. 2016, 48, 45–58. [Google Scholar] [CrossRef]
- Rutkowska, M.; Pacia, I.; Basąg, S.; Kowalczyk, A.; Piwowarska, Z.; Duda, M.; Tarach, K.A.; Góra-Marek, K.; Michalik, M.; Díaz, U.; et al. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes. Microporous Mesoporous Mater. 2017, 246, 193–206. [Google Scholar] [CrossRef]
- Góra-Marek, K.; Brylewska, K.; Tarach, K.A.; Rutkowska, M.; Jabłońska, M.; Choi, M.; Chmielarz, L. IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes. Appl. Catal. B Environ. 2015, 179, 589–598. [Google Scholar] [CrossRef]
- Oord, R.; Ten Have, I.C.; Arends, J.M.; Hendriks, F.C.; Schmidt, J.; Lezcano-Gonzalez, I.; Weckhuysen, B.M. Enhanced activity of desilicated Cu-SSZ-13 for the selective catalytic reduction of NOx and its comparison with steamed Cu-SSZ-13. Catal. Sci. Technol. 2017, 7, 3851–3862. [Google Scholar] [CrossRef]
- Wu, G.; Liu, S.; Chen, Z.; Yu, Q.; Chu, Y.; Xiao, H.; Peng, H.; Fang, D.; Deng, S.; Chen, Y. Promotion effect of alkaline leaching on the catalytic performance over Cu/Fe-SSZ-13 catalyst for selective catalytic reduction of NOx with NH3. J. Taiwan Inst. Chem. Eng. 2022, 134, 104355. [Google Scholar] [CrossRef]
- Jabłońska, M.; Góra-Marek, K.; Grilc, M.; Bruzzese, P.C.; Poppitz, D.; Pyra, K.; Liebau, M.; Pöppl, A.; Likozar, B.; Gläser, R. Effect of textural properties and presence of co-cation on NH3-SCR activity of Cu-exchanged ZSM-5. Catalysts 2021, 11, 843. [Google Scholar] [CrossRef]
- Suharbiansah, R.S.R.; Pyra, K.; Liebau, M.; Poppitz, D.; Góra-Marek, K.; Gläser, R.; Jabłońska, M. Micro-/mesoporous copper-containing zeolite Y applied in NH3-SCR, DeNOx. Microporous Mesoporous Mater. 2022, 334, 111793. [Google Scholar] [CrossRef]
- Tekla, J.; Lakiss, L.; Valchev, V.; Tarach, K.A.; Jabłońska, M.; Girman, V.; Szymocha, A.; Kowalczyk, A.; Góra-Marek, K.; Gilson, J.-P. Increasing the catalytic performance of erionite by hierarchization. Microporous Mesoporous Mater. 2020, 299, 110088. [Google Scholar] [CrossRef]
- Akgul, F.A.; Akgul, G.; Yildirim, N.; Unalan, H.E.; Turan, R. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 2014, 147, 987–995. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Sommer, L.; Mores, D.; Svelle, S.; Stöcker, M.; Weckhuysen, B.M.; Olsbye, U. Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH. Microporous Mesoporous Mater. 2010, 132, 384–394. [Google Scholar] [CrossRef]
- Lillerud, K.P. Aluminium distribution in the zeolites offretite and erionite. Zeolites 1987, 7, 14–17. [Google Scholar] [CrossRef]
- Occelli, M.L.; Ritz, G.P.; Iyer, P.S.; Walker, R.D.; Gerstein, B.C. Quarternary ammonium cation effects on the crystallization of zeolites of the offretite-erionite family: Part III. 29Si nmr, 27Al nmr, and mid-ir characterization. Zeolites 1989, 9, 104–110. [Google Scholar]
- Lusardi, M.; Chen, T.T.; Kale, M.; Kang, J.H.; Neurock, M.; Davis, M.E. Carbonylation of dimethyl ether to methyl acetate over SSZ-13. ACS Catal. 2019, 10, 842–851. [Google Scholar] [CrossRef]
- Bing, L.; Liu, J.; Yi, K.; Li, F.; Han, D.; Wang, F.; Wang, G. Rapid synthesis of hierarchical SSZ-13 zeolite microspheres via a fluoride-assisted in situ growth route using aluminum isopropoxide as aluminum source. RSC Adv. 2020, 10, 3566–3571. [Google Scholar] [CrossRef]
- Villamaina, R.; Liu, S.; Nova, I.; Tronconi, E.; Ruggeri, M.P.; Collier, J.; York, A.; Thompsett, D. Speciation of Cu cations in Cu-CHA catalysts for NH3-SCR: Effects of SiO2/AlO3 ratio and Cu-loading investigated by transient response methods. ACS Catal. 2019, 9, 8916–8927. [Google Scholar] [CrossRef]
- Hu, W.; Selleri, T.; Gramigni, F.; Fenes, E.; Rout, K.R.; Liu, S.; Nova, I.; Chen, D.; Gao, X.; Tronconi, E. On the redox mechanism of low-temperature NH3-SCR over Cu-CHA: A combined experimental and theoretical study of the reduction half cycle. Angew. Chem. Int. Ed. 2021, 60, 7197–7204. [Google Scholar] [CrossRef]
- Wang, H.; Xu, R.; Jin, Y.; Zhang, R. Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts. Catal. Today 2019, 327, 295–307. [Google Scholar] [CrossRef]
- Jabłońska, M.; Góra-Marek, K.; Bruzzese, P.C.; Palčić, A.; Pyra, K.; Tarach, K.; Bertmer, M.; Poppitz, D.; Pöppl, A.; Gläser, R. Influence of framework n(Si)/n(Al) ratio on the nature of Cu species in Cu-ZSM-5 for NH3-SCR-DeNOx. ChemCatChem 2022, 14, e202200627. [Google Scholar] [CrossRef]
- Suharbiansah, R.S.R.; Lukman, M.F.; Nannuzzi, C.; Wach, A.; Góra-Marek, K.; Liebau, M.; Palčić, A.; Pöppl, A.; Berlier, G.; Bordiga, S.; et al. Effect of the preparation method on the catalytic properties of copper-containing zeolite Y applied for NH3-SCR-DeNOx. Catal. Sci. Technol. 2023, 13, 3804–3817. [Google Scholar] [CrossRef]
- Jabłońska, M.; Góra-Marek, K.; Lukman, M.F.; Tarach, K.; Bertmer, M.; Denecke, R.; Poppitz, D.; Marcinowski, K.; Pöppl, A.; Gläser, R. Selective catalytic reduction of NOx over micro-/meso-/macroporous Cu-SAPO-34. Catal. Sci. Technol. 2022, 12, 6660–6675. [Google Scholar] [CrossRef]
- Godiksen, A.; Vennestrøm, P.N.R.; Rasmussen, S.B.; Mossin, S. Identification and quantification of copper sites in zeolites by electron paramagnetic resonance spectroscopy. Top. Catal. 2017, 60, 13–29. [Google Scholar] [CrossRef]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef]
- Zamadics, M.; Kevan, L. Electron spin resonance and electron spin echo modulation studies of copper (II) ions in the aluminosilicate chabazite: A comparison of copper (II) cation location and adsorbate interaction with isostructural silicoaluminophosphate-34. J. Phys. Chem. 1992, 96, 8989–8993. [Google Scholar] [CrossRef]
- Fernández, E.; Moreno-González, M.; Moliner, M.; Blasco, T.; Boronat, M.; Corma, A. Modeling of EPR parameters for Cu (II): Application to the selective reduction of NOx catalyzed by Cu-zeolites. Top. Catal. 2018, 61, 810–832. [Google Scholar] [CrossRef]
- Larsen, S.C.; Aylor, A.; Bell, A.T.; Reimer, J.A. Electron paramagnetic resonance studies of copper ion-exchanged ZSM-5. J. Phys. Chem. 1994, 98, 11533–11540. [Google Scholar] [CrossRef]
- Alayon, E.M.C.; Nachtegaal, M.; Bodi, A.; van Bokhoven, J.A. Reaction conditions of methane-to-methanol conversion affect the structure of active copper sites. ACS Catal. 2014, 4, 16–22. [Google Scholar] [CrossRef]
- Martini, A.; Alladio, E.; Borfecchia, E. Determining Cu-speciation in the Cu-CHA zeolite catalyst: The potential of multivariate curve resolution analysis of in situ XAS data. Top. Catal. 2018, 61, 1396–1407. [Google Scholar] [CrossRef]
- Wang, H.; Jia, J.; Liu, S.; Chen, H.; Wei, Y.; Wang, Z.; Zheng, L.; Wang, Z.; Zhang, R. Highly efficient NO abatement over Cu-ZSM-5 with special nanosheet features. Environ. Sci. Technol. 2021, 55, 5422–5434. [Google Scholar] [CrossRef]
- Borfecchia, E.; Lomachenko, K.A.; Giordanino, F.; Falsig, H.; Beato, P.; Soldatov, A.V.; Bordiga, S.; Lamberti, C. Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem. Sci. 2015, 6, 548–563. [Google Scholar] [CrossRef]
- Persson, I.; Lundberg, D.; Bajnóczi, E.G.; Klementiev, K.; Just, J.; Sigfridsson Clauss, K.G. V EXAFS study on the coordination chemistry of the solvated copper (II) ion in a series of oxygen donor solvents. Inorg. Chem. 2020, 59, 9538–9550. [Google Scholar] [CrossRef] [PubMed]
- Chillemi, G.; Pace, E.; D’Abramo, M.; Benfatto, M. Equilibrium between 5-and 6-fold coordination in the first hydration shell of Cu (II). J. Phys. Chem. A 2016, 120, 3958–3965. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.H.; Tran, D.; Burton, S.D.; Szanyi, J.; Lee, J.H.; Peden, C.H.F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J. Catal. 2012, 287, 203–209. [Google Scholar] [CrossRef]
- Zhang, T.; Qiu, F.; Li, J. Design and synthesis of core-shell structured meso-Cu-SSZ-13@ mesoporous aluminosilicate catalyst for SCR of NOx with NH3: Enhancement of activity, hydrothermal stability and propene poisoning resistance. Appl. Catal. B Environ. 2016, 195, 48–58. [Google Scholar] [CrossRef]
- Olsson, L.; Sjövall, H.; Blint, R.J. A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5. Appl. Catal. B Environ. 2008, 81, 203–217. [Google Scholar] [CrossRef]
- Gao, F.; Washton, N.M.; Wang, Y.; Kollár, M.; Szanyi, J.; Peden, C.H.F. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: Implications for the active Cu species and the roles of Brønsted acidity. J. Catal. 2015, 331, 25–38. [Google Scholar] [CrossRef]
- Signorile, M.; Borfecchia, E.; Bordiga, S.; Berlier, G. Influence of ion mobility on the redox and catalytic properties of Cu ions in zeolites. Chem. Sci. 2022, 13, 10238–10250. [Google Scholar] [CrossRef] [PubMed]
- Fedyna, M.; Mozgawa, B.; Zasada, F.; Góra-Marek, K.; Gryboś, J.; Piskorz, W.; Yin, C.; Zhao, Z.; Pietrzyk, P.; Sojka, Z. Mechanistic stages of the SCR reaction-Insights into the trade-off between NO reduction and NH3 oxidation over CuSSZ-13 catalysts via isotopic 15NH3 and 18O2 TPSR and steady state studies supported by IR 2D COS and DFT modeling. Appl. Catal. B Environ. 2023, 325, 122309. [Google Scholar] [CrossRef]
- Oda, A.; Shionoya, H.; Hotta, Y.; Takewaki, T.; Sawabe, K.; Satsuma, A. Spectroscopic evidence of efficient generation of dicopper intermediate in selective catalytic reduction of NO over Cu-ion-exchanged zeolites. ACS Catal. 2020, 10, 12333–12339. [Google Scholar] [CrossRef]
- Negri, C.; Selleri, T.; Borfecchia, E.; Martini, A.; Lomachenko, K.A.; Janssens, T.V.W.; Cutini, M.; Bordiga, S.; Berlier, G. Structure and reactivity of oxygen-bridged diamino dicopper (II) complexes in Cu-ion-exchanged chabazite catalyst for NH3-mediated selective catalytic reduction. J. Am. Chem. Soc. 2020, 142, 15884–15896. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, C.; Khurana, I.; Parekh, A.A.; Li, S.; Shih, A.J.; Li, H.; Di Iorio, J.R.; Albarracin-Caballero, J.D.; Yezerets, A.; Miller, J.T.; et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 2017, 357, 898–903. [Google Scholar] [CrossRef]
- Gao, F.; Walter, E.D.; Kollar, M.; Wang, Y.; Szanyi, J.; Peden, C.H.F. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J. Catal. 2014, 319, 1–14. [Google Scholar] [CrossRef]
- Jabłońska, M. Recent progress in the selective catalytic reduction of NOx with NH3 on Cu-SAPO-34 catalysts. Mol. Catal. 2022, 518, 112111. [Google Scholar] [CrossRef]
- Tarach, K.A.; Jabłońska, M.; Pyra, K.; Liebau, M.; Reiprich, B.; Gläser, R.; Góra-Marek, K. Effect of zeolite topology on NH3-SCR activity and stability of Cu-exchanged zeolites. Appl. Catal. B Environ. 2021, 284, 119752. [Google Scholar] [CrossRef]
Sample | Applied Treatment |
---|---|
ERI_HNO3_NaOH/0.5_0.5 | 0.3 M HNO3 at 65 °C for 0.5 h followed by 0.2 M NaOH at 65 °C for 0.5 h |
ERI_HNO3_NaOH/0.5_2 | 0.3 M HNO3 at 65 °C for 0.5 h followed by 0.2 M NaOH at 65 °C for 2 h |
ERI_NaOH/2 | 0.2 M NaOH at 65 °C for 2 h |
SSZ-13_NaOH/0.5 | 0.2 M NaOH at 65 °C for 0.5 h |
SSZ-13_NaOH/2 | 0.2 M NaOH at 65 °C for 2 h |
Sample | ωAl/wt.% | ωSi/wt.% | ωCu/wt.% | n(Si)/n(Al) | n(Cu)/n(Al) |
---|---|---|---|---|---|
ERI | 8.8 | 31.5 | - | 3.4 | - |
Cu-ERI | 8.2 | 29.9 | 6.1 | 3.5 | 0.3 |
Cu-ERI_NaOH/2 | 7.9 | 23.7 | 3.7 | 2.9 | 0.2 |
Cu-ERI_HNO3_NaOH/0.5_0.5 | 7.7 | 25.5 | 3.4 | 3.2 | 0.2 |
Cu-ERI_HNO3_NaOH/0.5_2 | 7.6 | 21.5 | 3.1 | 2.7 | 0.2 |
SSZ-13 | 6.1 | 38.3 | - | 6.0 | - |
Cu-SSZ-13 | 5.8 | 36.2 | 4 | 6.0 | 0.3 |
Cu-SSZ-13_NaOH/0.5 | 6.6 | 24.6 | 3 | 3.6 | 0.2 |
Cu-SSZ-13_NaOH/2 | 6.7 | 24.2 | 3.3 | 3.5 | 0.2 |
Sample | As(BET)/m2 g−1 | V(MIC)/cm3 g−1 | V(MES)/cm3 g−1 | V(TOT)/cm3 g−1 | dWp/nm |
---|---|---|---|---|---|
ERI | 525 | 0.19 | 0.04 | 0.24 | 2.7 |
Cu-ERI | 396 | 0.14 | 0.04 | 0.18 | 2.6 |
Cu-ERI_HNO3_NaOH/0.5_0.5 | 466 | 0.17 | 0.10 | 0.27 | 3.9 |
Cu-ERI_HNO3_NaOH/0.5_2 | 479 | 0.17 | 0.09 | 0.28 | 4.0 |
Cu-ERI_NaOH/2 | 467 | 0.18 | 0.05 | 0.23 | 2.7 |
SSZ-13 | 716 | 0.26 | 0.06 | 0.32 | 4.0 |
Cu-SSZ-13 | 672 | 0.25 | 0.03 | 0.28 | 3.2 |
Cu-SSZ-13_NaOH/0.5 | 526 | 0.14 | 0.23 | 0.37 | 4.9 |
Cu-SSZ-13_NaOH/2 | 560 | 0.13 | 0.26 | 0.39 | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles, A.M.; Deplano, G.; Góra-Marek, K.; Rotko, M.; Wach, A.; Lukman, M.F.; Bertmer, M.; Signorile, M.; Bordiga, S.; Pöppl, A.; et al. Post-Synthetically Treated ERI and SSZ-13 Zeolites Modified with Copper as Catalysts for NH3-SCR-DeNOx. Catalysts 2024, 14, 457. https://doi.org/10.3390/catal14070457
Robles AM, Deplano G, Góra-Marek K, Rotko M, Wach A, Lukman MF, Bertmer M, Signorile M, Bordiga S, Pöppl A, et al. Post-Synthetically Treated ERI and SSZ-13 Zeolites Modified with Copper as Catalysts for NH3-SCR-DeNOx. Catalysts. 2024; 14(7):457. https://doi.org/10.3390/catal14070457
Chicago/Turabian StyleRobles, Alejandro Mollá, Gabriele Deplano, Kinga Góra-Marek, Marek Rotko, Anna Wach, Muhammad Fernadi Lukman, Marko Bertmer, Matteo Signorile, Silvia Bordiga, Andreas Pöppl, and et al. 2024. "Post-Synthetically Treated ERI and SSZ-13 Zeolites Modified with Copper as Catalysts for NH3-SCR-DeNOx" Catalysts 14, no. 7: 457. https://doi.org/10.3390/catal14070457
APA StyleRobles, A. M., Deplano, G., Góra-Marek, K., Rotko, M., Wach, A., Lukman, M. F., Bertmer, M., Signorile, M., Bordiga, S., Pöppl, A., Gläser, R., & Jabłońska, M. (2024). Post-Synthetically Treated ERI and SSZ-13 Zeolites Modified with Copper as Catalysts for NH3-SCR-DeNOx. Catalysts, 14(7), 457. https://doi.org/10.3390/catal14070457