Facile Preparation of Attapulgite-Supported Ag-AgCl Composite Photocatalysts for Enhanced Degradation of Tetracycline
Abstract
:1. Introduction
2. Results
2.1. XRD Analysis
2.2. Morphology Analysis
2.3. FT-IR Analysis
2.4. Surface Chemical State Analysis
2.5. UV-Vis DRS
2.6. Photo-Electrochemistry Analysis
3. Photocatalytic Performance
3.1. Photocatalytic Activity
3.2. Stability
3.3. Capture Experiment
3.4. Mechanism Analysis
4. Materials and Methods
4.1. Pre-Treatment of the ATP
4.2. Preparation of Ag-AgCl/ATP Materials
4.3. Photocatalytic Degradation of Tetracycline
4.4. Stability Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huong, V.T.; Duc, B.V.; An, N.T.; Anh, T.T.P.; Aminabhavi, T.M.; Vasseghian, Y.; Joo, S.W. 3D-Printed WO3-UiO-66@reduced graphene oxide nanocomposites for photocatalytic degradation of sulfamethoxazole. Chem. Eng. J. 2024, 483, 149277. [Google Scholar] [CrossRef]
- Singh, A.; Dhau, J.; Kumar, R.; Badru, R.; Singh, P.; Kumar Mishra, Y.; Kaushik, A. Tailored carbon materials (TCM) for enhancing photocatalytic degradation of polyaromatic hydrocarbons. Prog. Mater. Sci. 2024, 144, 101289. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Liu, E.; Xu, J.; Sun, J.; Shi, H. Biochar decorated Bi4O5Br2/g-C3N4 S-scheme heterojunction with enhanced photocatalytic activity for Norfloxacin degradation. J. Mater. Sci. Technol. 2024, 198, 1–11. [Google Scholar] [CrossRef]
- Wang, H.; Wan, Y.; Yin, S.; Xu, M.; Zhao, X.; Liu, X.; Song, X.; Wang, H.; Zhu, C.; Huo, P. Boosting mineralized organic pollutants by using a sulfur-vacancy CdS photocatalyst. Chem. Commun. 2023, 59, 9356–9359. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Wu, Q.; Zheng, C.; Sun, Y.; Shah, K.J. Study on the Degradation Effect of Tetracycline Using a Co-Catalyst Loaded on Red Mud. Catalysts 2024, 14, 133. [Google Scholar] [CrossRef]
- Wang, H.; Wan, Y.; Li, B.; Ye, J.; Gan, J.; Liu, J.; Liu, X.; Song, X.; Zhou, W.; Li, X.; et al. Rational design of Ce-doped CdS/N-rGO photocatalyst enhanced interfacial charges transfer for high effective degradation of tetracycline. J. Mater. Sci. Technol. 2024, 173, 137–148. [Google Scholar] [CrossRef]
- Lee, S.; Devarayapalli, K.C.; Kim, B.; Lim, Y.; Lee, D.S. Fabrication of MXene-derived TiO2/Ti3C2 integrated with a ZnS heterostructure and their synergistic effect on the enhanced photocatalytic degradation of tetracycline. J. Mater. Sci. Technol. 2024, 198, 186–199. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Wan, Y.; Nazir, A.; Song, X.; Huo, P.; Wang, H. Fabrication of Zn vacancies-tunable ultrathin-g-C3N4@ZnIn2S4/SWNTs composites for enhancing photocatalytic CO2 reduction. Appl. Surf. Sci. 2023, 613, 155989. [Google Scholar] [CrossRef]
- Veerakumar, P.; Sangili, A.; Chen, S.-M.; Kumar, R.S.; Arivalagan, G.; Firdhouse, M.J.; Hameed, K.S.; Sivakumar, S. Photocatalytic degradation of phenolic pollutants over palladium-tungsten trioxide nanocomposite. Chem. Eng. J. 2024, 489, 151127. [Google Scholar] [CrossRef]
- Cui, Y.; Li, Y.; Liu, Y.; Shang, D.; Liu, Y.; Xie, L.; Zhan, S.; Hu, W. High-efficiency photocatalytic degradation of rhodamine 6G by organic semiconductor tetrathiafulvalene in weak acid-base environment. Chem. Commun. 2022, 58, 4251–4254. [Google Scholar] [CrossRef]
- Mergenbayeva, S.; Abitayev, Z.; Batyrbayeva, M.; Vakros, J.; Mantzavinos, D.; Atabaev, T.S.; Poulopoulos, S.G. TiO2/Zeolite Composites for SMX Degradation under UV Irradiation. Catalysts 2024, 14, 147. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Wan, Y.; Nazir, A.; Song, X.; Huo, P.; Wang, H. Synthesis of AgInS2 QDs-MoS2/GO composite with enhanced interfacial charge separation for efficient photocatalytic degradation of tetracycline and CO2 reduction. J. Alloys Compd. 2023, 954, 170159. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Xu, M.; Yan, C.; Song, X.; Liu, X.; Wang, H.; Zhou, W.; Huo, P. Dual-plasma enhanced 2D/2D/2D g-C3N4/Pd/MoO3-x S-scheme heterojunction for high-selectivity photocatalytic CO2 reduction. Appl. Surf. Sci. 2023, 640, 158420. [Google Scholar] [CrossRef]
- Arana Juve, J.-M.; Baami González, X.; Bai, L.; Xie, Z.; Shang, Y.; Saad, A.; Gonzalez-Olmos, R.; Wong, M.S.; Ateia, M.; Wei, Z. Size-selective trapping and photocatalytic degradation of PFOA in Fe-modified zeolite frameworks. Appl. Catal. B Environ. Energy 2024, 349, 123885. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, M.; Gao, K.; Fu, R.; Zhang, S.; Xiao, Y.; Guo, J.; Wang, Z.; Wang, H.; Zhao, Y.; et al. Boosting photocatalytic degradation of levofloxacin over plasmonic TiO2-x/TiN heterostructure. Appl. Surf. Sci. 2024, 655, 159516. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Lu, Y.; Liu, Q.; Kong, L. Oxygen-defected WO3-OVs@Bi2MoO6 S-scheme micro flowers heterojunctions with promoted photocatalytic degradation of tetracycline. Appl. Surf. Sci. 2024, 657, 159654. [Google Scholar] [CrossRef]
- Li, N.; Gao, X.; Su, J.; Gao, Y.; Ge, L. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis. Chin. J. Catal. 2023, 47, 161–170. [Google Scholar] [CrossRef]
- Sun, H.; Wang, L.; Wang, X.; Dong, Y.; Pei, T. A magnetically recyclable Fe3O4/ZnIn2S4 type-II heterojunction to boost photocatalytic degradation of gemifloxacin. Appl. Surf. Sci. 2024, 656, 159674. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, X.M.; Chen, F.Z.; Fan, G.C.; Zhao, W.W. Ag/AgCl-Like Photogating of a COF-on-MOF Heterojunction in Organic Photoelectrochemical Transistor. Adv. Funct. Mater. 2024, 2404497. [Google Scholar] [CrossRef]
- Dai, L.; Liu, R.; Hu, L.; Si, C. Simple and green fabrication of AgCl/Ag-cellulose paper with antibacterial and photocatalytic activity. Carbohydr. Polym. 2017, 174, 450–455. [Google Scholar] [CrossRef]
- Hu, J.; Chen, F.; Mao, J.; Ni, L.; Lu, J. Direction regulation of interface carrier transfer and enhanced photocatalytic oxygen activation over Z-scheme Bi4V2O11/Ag/AgCl for water purification. J. Colloid Interface Sci. 2023, 641, 695–706. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Cyclodextrin-functionalized Ag/AgCl foam with enhanced photocatalytic performance for water purification. J. Colloid Interface Sci. 2018, 531, 11–17. [Google Scholar] [CrossRef]
- Chen, J.; Lu, X.; Wang, D.; Xiu, P.; Gu, X. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media. Chin. J. Chem. Eng. 2023, 57, 50–62. [Google Scholar] [CrossRef]
- Guan, J.; Wang, H.; Li, J.; Ma, C.; Huo, P. Enhanced photocatalytic reduction of CO2 by fabricating In2O3/CeO2/HATP hybrid multi-junction photocatalyst. J. Taiwan Inst. Chem. Eng. 2019, 99, 93–103. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, D. A novel catalyst of Fe-octacarboxylic acid phthalocyanine supported by attapulgite for degradation of Rhodamine B. Mater. Res. Bull. 2010, 45, 1728–1731. [Google Scholar] [CrossRef]
- Wu, F.; Li, X.; Zhang, H.; Zuo, S.; Yao, C. Z-Scheme photocatalyst constructed by natural attapulgite and upconversion rare earth materials for desulfurization. Front. Chem. 2018, 6, 477. [Google Scholar] [CrossRef]
- Deng, L.; Xie, Y.; Zhang, G. Synthesis of C-Cl-codoped titania/attapulgite composites with enhanced visible-light photocatalytic activity. Chin. J. Catal. 2017, 38, 379–388. [Google Scholar] [CrossRef]
- Wang, X.; Mu, B.; An, X.; Wang, A. Insights into the relationship between the color and photocatalytic property of attapulgite/CdS nanocomposites. Appl. Surf. Sci. 2018, 439, 202–212. [Google Scholar] [CrossRef]
- Qi, Y.; Zhao, S.; Jiang, X.; Kang, Z.; Gao, S.; Liu, W.; Shen, Y. Visible-Light-Driven BiOBr-TiO2-Attapulgite Photocatalyst with Excellent Photocatalytic Activity for Multiple Xanthates. Catalysts 2023, 13, 1504. [Google Scholar] [CrossRef]
- Zeng, J.; Han, C.; Wang, B.; Cao, G.; Yao, C.; Li, X. Construction of plasmonic CuS/attapulgite nanocomposites toward photothermal reforming of biomass for hydrogen production. J. Alloys Compd. 2024, 985, 174038. [Google Scholar] [CrossRef]
- Zhu, Z.; Yu, Y.; Dong, H.; Liu, Z.; Li, C.; Huo, P.; Yan, Y. Intercalation effect of attapulgite in g-C3N4 modified with Fe3O4 quantum dots to enhance photocatalytic activity for removing 2-mercaptobenzothiazole under visible light. ACS Sustain. Chem. Eng. 2017, 5, 10614–10623. [Google Scholar] [CrossRef]
- Li, X.; He, C.; Zuo, S.; Yan, X.; Dai, D.; Zhang, Y.; Yao, C. Photocatalytic nitrogen fixation over fluoride/attapulgite nanocomposite: Effect of upconversion and fluorine vacancy. Sol. Energy 2019, 191, 251–262. [Google Scholar] [CrossRef]
- Kong, X.; Li, L.; Feng, Q.; Liang, Z.; Huang, J.; Wang, X.; Zhang, J.; Li, J. Soft chemical synthesis and visible light photocatalytic performance of Ag@AgCl/H1.07Ti1.73O4 platelike composite with composition controlling. J. Alloys Compd. 2017, 727, 311–317. [Google Scholar] [CrossRef]
- Feng, Z.; Yu, J.; Sun, D.; Wang, T. Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance. J. Colloid Interface Sci. 2016, 480, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yin, S.; Shen, D.; Zhou, Y.; Li, J.; Li, X.; Wang, H.; Huo, P.; Yan, Y. Fabricating acid-sensitive controlled PAA@Ag/AgCl/CN photocatalyst with reversible photocatalytic activity transformation. J. Colloid Interface Sci. 2020, 580, 753–767. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, L.; Yin, M.; Xie, D.; Chen, J.; Yin, J.; Fu, Y.; Zhao, P.; Zhong, H.; Zhao, Y.; et al. Ultrathin g-C3N4 films supported on Attapulgite nanofibers with enhanced photocatalytic performance. Appl. Surf. Sci. 2018, 440, 170–176. [Google Scholar] [CrossRef]
- Zhao, S.; Qi, Y.; Lv, H.; Jiang, X.; Wang, W.; Cui, B.; Liu, W.; Shen, Y. Effect of clay mineral support on photocatalytic performance of BiOBr-TiO2 for efficient photodegradation of xanthate. Adv. Powder Technol. 2024, 35, 104431. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Li, S.; Xuan, K.; Guo, Y.; Li, J.; Wang, X.; Li, X.; Zhou, Z. Mesoporous sulfur-doped g-C3N4@attapulgite composite as an advanced photocatalyst for efficiently uranium(VI) recovery from aqueous solutions. J. Environ. Chem. Eng. 2024, 12, 112886. [Google Scholar] [CrossRef]
- Tang, X.; Shen, W.; Li, D.; Li, B.; Wang, Y.; Song, X.; Zhu, Z.; Huo, P. Research on cobalt-doping sites in g-C3N4 framework and photocatalytic reduction CO2 mechanism insights. J. Alloys Compd. 2023, 954, 170044. [Google Scholar] [CrossRef]
- Cao, G.; Xing, H.; Gui, H.; Yao, C.; Chen, Y.; Chen, Y.; Li, X. Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO2 coupled with biomass conversion. Nano Res. 2024, 17, 5061–5072. [Google Scholar] [CrossRef]
- Kaushik, V. XPS core level spectra and Auger parameters for some silver compounds. J. Electron. Spectrosc. 1991, 56, 273–277. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Taghizadeh, A.; Taghizadeh, M.; Abdi, J. In situ deposition of Ag/AgCl on the surface of magnetic metal-organic framework nanocomposite and its application for the visible-light photocatalytic degradation of Rhodamine dye. J. Hazard. Mater. 2019, 378, 120741. [Google Scholar] [CrossRef]
- Zeng, Y.; Yin, Q.; Liu, Z.; Dong, H. Attapulgite-interpenetrated g-C3N4/Bi2WO6 quantum-dots Z-scheme heterojunction for 2-mercaptobenzothiazole degradation with mechanism insight. Chem. Eng. J. 2022, 435, 134918. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, K. AgCl/Ag/g-C3N4 Hybrid Composites: Preparation, Visible Light-Driven Photocatalytic Activity and Mechanism. Nano-Micro Lett. 2015, 8, 182–192. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Meng, W.; Cui, E.; Zhang, Q.; Wang, Z.; Zheng, Z.; Liu, Y.; Cheng, H.; Dai, Y.; et al. Photococatalytic anticancer performance of naked Ag/AgCl nanoparticles. Chem. Eng. J. 2022, 428, 131265. [Google Scholar] [CrossRef]
Initial TC (mg L−1) | kobs (min−1) | 1/kobs (min) | R2 |
---|---|---|---|
10 | 0.01457 | 68.63 | 0.902 |
20 | 0.01461 | 68.45 | 0.906 |
30 | 0.01261 | 79.30 | 0.943 |
50 | 0.00925 | 108.11 | 0.972 |
100 | 0.00358 | 279.33 | 0.960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, H.; Yan, C. Facile Preparation of Attapulgite-Supported Ag-AgCl Composite Photocatalysts for Enhanced Degradation of Tetracycline. Catalysts 2024, 14, 464. https://doi.org/10.3390/catal14070464
Zhang X, Wang H, Yan C. Facile Preparation of Attapulgite-Supported Ag-AgCl Composite Photocatalysts for Enhanced Degradation of Tetracycline. Catalysts. 2024; 14(7):464. https://doi.org/10.3390/catal14070464
Chicago/Turabian StyleZhang, Xiaojie, Huiqin Wang, and Chenlong Yan. 2024. "Facile Preparation of Attapulgite-Supported Ag-AgCl Composite Photocatalysts for Enhanced Degradation of Tetracycline" Catalysts 14, no. 7: 464. https://doi.org/10.3390/catal14070464
APA StyleZhang, X., Wang, H., & Yan, C. (2024). Facile Preparation of Attapulgite-Supported Ag-AgCl Composite Photocatalysts for Enhanced Degradation of Tetracycline. Catalysts, 14(7), 464. https://doi.org/10.3390/catal14070464