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Abstract: A binary Fe2O3/Fe3O4 mixed nanocomposite was prepared by phyto-mediated avenue to
be suited in the photo-Fenton photodegradation of methylene blue (MB) in the presence of H2O2.
XRD and SEM analyses illustrated that Fe2O3 nanoparticles of average crystallite size 8.43 nm
were successfully mixed with plate-like aggregates of Fe3O4 with a 15.1 nm average crystallite
size. Moreover, SEM images showed a porous morphology for the binary Fe2O3/Fe3O4 mixed
nanocomposite that is favorable for a photocatalyst. EDX and elemental mapping showed intense
iron and oxygen peaks, confirming composite purity and symmetrical distribution. FTIR analysis
displayed the distinct Fe-O assignments. Moreover, the isotherm of the developed nanocomposite
showed slit-shaped pores in loose particulates within plate-like aggregates and a mesoporous pore-
size distribution. Thermal gravimetric analysis (TGA) indicated the high thermal stability of the
prepared Fe2O3/Fe3O4 binary nanocomposite. The optical properties illustrated a narrowing in the
band gab (Eg = 2.92 eV) that enabled considerable absorption in the visible region of solar light.
Suiting the developed binary Fe2O3/Fe3O4 nanocomposite in the photo-Fenton reaction along with
H2O2 supplied higher productivity of active oxidizing species and accordingly a higher degradation
efficacy of MB. The solar-driven photodegradation reactions were conducted and the estimated rate
constants were 0.002, 0.0047, and 0.0143 min−1 when using the Fe2O3/Fe3O4 nanocomposite, pure
H2O2, and the Fe2O3/Fe3O4/H2O2 hybrid catalyst, respectively. Therefore, suiting the developed
binary Fe2O3/Fe3O4 nanocomposite and H2O2 in photo-Fenton reaction supplied higher productivity
of active oxidizing species and accordingly a higher degradation efficacy of MB. After being subjected
to four photo-Fenton degradation cycles, the Fe2O3/Fe3O4 nanocomposite catalyst still functioned
admirably. Further evaluation of Fe2O3/Fe3O4 nanocomposite in photocatalytic remediation of
contaminated water using a mixture of MB and pyronine Y (PY) dyestuffs revealed substantial dye
photodegradation efficiencies.

Keywords: phytosynthesis; hematite/magnetite nanocomposite; solar photocatalysis; photo Fenton
reaction; wastewater remediation

1. Introduction

Water contamination is one of the most urgent environmental problems we face
today. Products containing dyes are an example of hazardous industrial waste. If that
is the case, the water cannot simply be dumped into water bodies; it is necessary that
the contaminants are first removed or chemically decomposed [1]. Meanwhile, human
activities and the quantity of energy used to power those endeavors have both increased
dramatically. Reducing energy consumption and the associated negative effects on the
environment can be achieved through the use of sustainable alternatives, for example,
using natural sources [2]. As a result, there is an urgent need for the design of practical
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wastewater treatment systems that use less power. Sunlight-driven photocatalysis is an
important green technology in this context because it allows for the safe and inexpensive
elimination of toxic organic pollutants. As far as advanced oxidation technologies (AOPs)
go, photocatalysis and Fenton reactions utilizing transition metal oxides are the most
cutting-edge methods for cleaning up wastewater. These AOPs function in a wide range
of conditions, employ various mechanisms, and are appealing for a number of reasons,
including superior stability, facile-driven conditions, reasonable price, and reusability [3,4].
The most interesting and promising of these transition metal oxides were iron oxides,
which had special properties like being cheap, easy to separate at the end of the reaction
for later use because they are magnetic, have an appropriate band gap, and are chemically
stable [5]. Most of the iron oxide minerals that are found are hematite (α-Fe2O3), maghemite
(γ-Fe2O3), and magnetite (Fe3O4). Chemically produced nanosized iron oxides showed
strong decomposition abilities for a wide range of organic dyes [6,7].

Unfortunately, photocatalysis is insufficiently effective for the remediation of highly
concentrated and nontransparent dyes because light has a limited penetrating capacity [3,8].
Heterogeneous Fenton catalysis can be used to circumvent this shortcoming. A wide
variety of inorganic compounds can be oxidized via Fenton reactions due to the presence of
nonselective active species [9]. Heterogeneous photocatalysis actually makes it possible to
harness the sun’s energy without resorting to fossil fuels. The Fenton oxidation method is
a famous and well-studied example of a technique for treating wastewater. Magnetite [10],
ferrihydrite [11], and hematite [12] are the most studied and straightforward examples of
Fenton-like oxidation reactions.

Single-metal oxide solar photocatalysts, however, have lower photocatalytic efficacy
because charge recombination is not favored. Water purification, antibacterial effectiveness,
water splitting, and carbon dioxide reduction are all examples of photocatalytic applications
where the stability of structuralism and quantum effectiveness can be improved by obtain-
ing a heterojunction system via the coupling of metal oxides [13]. Recently, the industrial
waste iron oxide dust composed of α-Fe2O3 was chemically reduced, producing Fe3O4@α-
Fe2O3, which showed an improved response to visible light for the enhanced photodegrad-
ability of dyes [14] and the solar-driven photoreduction of hexavalent chromium (Cr(VI))
from aquatic media [15]. In addition, various synthesis methods, including solvothermal,
solid-state, hydrothermal, and solution combustion techniques, can be used to create these
composites. In contrast to physical and chemical methods, plant extract-mediated synthesis
of metal nanoparticles currently offers a green, practical, and simple methodology [16,17].

Dye degradation is aided by hydroxyl radicals (•OH), which are produced as a byprod-
uct of the photo-Fenton reaction, in which H2O2 is catalytically reacted with iron ions in
the presence of light [18]. With the goal of increasing the reaction rate and the yield of
mineralization, a modern strategy involving the utilization of a hybrid system consisting
of a heterojunction photocatalyst along with a heterogeneous photo-Fenton approach has
proven to be very fruitful [19,20]. The photo-Fenton process is superior to either process
alone for degrading organic pollutants due to the synergistic influence of photo-Fenton
and photocatalysis. Increased interest in these techniques [21,22] can be attributed to the
fact that iron nanoparticles with peroxidase-like activity improve Fenton properties by
activating H2O2 for a high mineralization yield.

MB is a versatile chemical that has many applications in the pharmaceutical, aqua-
culture, and synthesis industries. One of the xanthene dyes is pyronin Y (PY), which is
a water-soluble chromogen that is currently used as an optical probe for the assaying of
glucose in human serum and uric acid/formaldehyde in blood plasma. It was successfully
degraded over surfaces of titania-mixed cement composites under UV illumination [23].
Exposure to polluted water could raise some of the possible symptoms, like vomiting,
bladder inflammation, abdominal discomfort, and excessive urination [24].

In this work, we developed a facile one-pot green approach to synthesize binary
Fe2O3/Fe3O4 mixed nanocomposite that is highly efficacious in absorbing solar light as
a readily accessible and sustainable natural source of energy in waste water treatment
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for the cleanup of organic contaminants. The structural, morphological, and optical char-
acteristics were addressed. The photocatalytic efficacy of the synthesized Fe2O3/Fe3O4
nanocomposite was tested for degradation of MB along with PY in aqueous solutions.
The photocatalytic efficacy of the synthesized Fe2O3/Fe3O4 nanocomposite was firstly
examined in the photo-Fenton degradation of pure MB in aqueous solution at natural pH
under solar illumination. Then, the solar-driven photo-Fenton degradation efficacy of the
developed nanocomposite was further tested for degradation of MB along with PY that
were spiked in real lake water samples.

2. Results and Discussion
2.1. X-ray Diffraction (XRD)

A comparative powder XRD analysis was employed to identify the composition, phase
purity and crystal lattice of the developed iron oxide sample. As seen in Figure 1A, the XRD
data of the developed iron oxide revealed intense diffraction peaks allocated at 2θ = 30.2,
35.6, 43.4, 53.8, 57.4, 63, and 74.4o that could be indexed to the (220), (311), (400), (422),
(511), (440), and (533) planes, respectively, corresponding to the cubic phase of Fe3O4 [25].
This is in agreement with the standard value of Fe3O4 (JCPDS file no: 65-3107). In addition,
three diffraction peaks of lower intensity were depicted at 2θ = 33, 40.8, and 49.6o that
could be indexed to the (104), (113), and (024) planes of Fe2O3 [13]. The mean crystallite
size of the obtained Fe2O3 and Fe3O4 particulates was calculated based on the full width at
half-maximum (FWHM) and the Debye–Sherrer formula, the following equation has been
derived: D = K λ/β cos θ, where θ is the Bragg angle, K is the shape factor of value 0.89, λ
is the X-ray wavelength, and β is the FWHM line broadening in radians. The average size
of Fe2O3 was around 8.43 nm while that of Fe3O4 was markedly greater with an estimate
amounting to 15.1 nm.
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2.2. Fourier Transform Infrared (FTIR) Characterization

The FTIR spectrum of the developed binary-mixed Fe2O3/Fe3O4 NPs was measured
(Figure 1B). Two prominent peaks, at 524.1 and 432.6 cm−1, in addition to a shoulder
assigned at 624 cm−1, are displayed. Oxygen bonds with metal cations (Fe-O stretching)
are responsible for these intrinsic stretching vibrations [26–28] referring to the A2u/Eu
vibrational overlap with the dipolar moments that are parallel to and perpendicular to the
c axis which is specified in hematite [29] along with the IR active T1u mode characteristic
for magnetite [30]. While the assigned shoulder at 624 cm−1 is due to the symmetry
degeneration on octahedral B-sites [30].

2.3. Thermal Gravimetric Analysis (TGA)

TGA was performed to ascertain the thermal stability of the newly phyto-synthesized
Fe2O3/Fe3O4 binary nanocomposite. Figure 1C shows the TGA thermogram of Fe2O3/Fe3O4
binary nanocomposite. The results indicated a slight weight loss of about 0.96% at ≈139 ◦C
that could be attributed to some adsorbed water content. While the subsequent incremental
temperature till reaching 600 ◦C further accompanied by weight loss of about 2.16% that
can be correlated to the breakdown of biomolecules, such as phenolics and flavonoids, that
were left over after the developed phyto-synthetic avenue. This indicates high thermal
stability of the prepared Fe2O3/Fe3O4 binary nanocomposite.

2.4. Scanning Electron Microscopy (SEM) Characterization

The surface morphology of the developed Fe2O3/Fe3O4 nanocomposite was studied
using SEM analysis. Figure 2A displays a dominant of an assemblage of irregularly coarse
plate-like shaped Fe3O4 nanoparticles that are adorned with very fine Fe2O3 particulates.
The observed irregular and porous construction is suggestive of the successful adorning
and hetero-structuralism of Fe2O3 and Fe3O4. This porous morphology is advantageous
for photodegradation because it increases the contact surface area and absorbs more light
which enhances the photodegradation efficiency [31].
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Energy-dispersive X-ray (EDX) and elemental mapping were analyzed to characterize
the elements Fe and O in the developed nanocomposite to better address their content and
distribution. The EDX spectrum shown in Figure 2B illustrates highly intense peaks of
iron, and oxygen verifying that the developed composite of iron oxide nanoparticle was
of the highest purity. Moreover, the EDX analysis in Figure 2B shows that the percentage
of Fe and O were found to be 70.5% and 29.5%, respectively, confirming that there are no
other elements besides Fe and O in the composite. As seen from the elemental mapping
(Figure 2C–E), the iron distribution (red coloration) and the oxygen distribution (green
coloration) are highly symmetrical and uniform.

Contemplating the results revealed from XRD, FTIR, SEM, and EDS analyses indicate
that the developed iron oxide sample is a binary Fe2O3/Fe3O4 nanocomposite in which the
minor Fe2O3 adorned the massive Fe3O4 particulates.

2.5. Textural Features

The N2 adsorption–desorption measurements (Figure 3) were used to evaluate the tex-
tural properties of the heterostructure Fe2O3/Fe3O4 nanocomposite. As seen in Figure 3A,
the depicted isotherm exhibited a hysteresis loop from which the shape of the pore struc-
tures could be inferred [32]. The isotherm has characteristics typical of slit-shaped pores
within loose particulates in plate-like aggregates, so it may be classified as type IV with
a type H3 hysteresis loop [33]. The morphological characteristics addressed by the SEM
imaging are consistent with these findings. The pore size distribution was illustrated in
Figure 3B that signifies distinct peaks in the mesoporous range (2–50 nm). Additionally, the
surface area calculation using BET equation yields an estimate of 41.45 m2g−1. Therefore,
the one-pot biogenic-mediated reaction exhibits high quality and meets all requirements
in terms of larger pore volumes as well as higher specific surface areas, conducing for a
large number of surface active sites [34]. These features are greatly demanded for efficient
performance of photocatalysts.
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Figure 3. N2 adsorption–desorption isotherm (A) and pore size distribution (B) of the developed
binary Fe2O3/Fe3O4 nanocomposite.

2.6. UV-Vis Spectroscopy and Calculations of Band Gab

Nanostructure materials’ utility in fields like optoelectronics and photocatalysis is
largely determined by their optical energy gap (Eg) [35,36]. Ultraviolet/visible absorption
spectroscopy measurements are performed between 200 and 800 nm to calculate the optical
energy gap for the developed binary Fe2O3/Fe3O4 nanocomposite. Figure 4A shows the
electronic excitation spectra of the synthesized binary Fe2O3/Fe3O4 nanocomposite. As
seen, the absorption spectrum recorded an absorption maxima at 400 nm and a shoulder
at 290 nm in addition to tailing off of considerable absorption in the visible region. This
anticipates a narrow band gab and efficient absorptivity of solar light.
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Figure 4. UV–Visible electronic spectra of Fe2O3/Fe3O4 nanocomposite (A) and the corresponding
plot of (αhυ)1/2 versus hυ (B).

Otherwise, Figure 4B shows Kubelka–Munk function plotting (Equation (1)) to deter-
mine the band gap of the developed Fe2O3/Fe3O4 nanocomposite.

αhν = A (hv − Eg)1/2 (1)

where h is the Planck constant; α is the extinction coefficient; A is the absorption constant;
v is the frequency of vibration; and Eg is the energy gap in eV. The estimated value of Eg

for Fe2O3/Fe3O4 nanocomposite is 2.92 eV based on the linear extrapolating of (αhν)1/2

relative to (hν). The band gap of a material is influenced by its crystal structure and the size
of its particles. An additional critical factor influencing the materials’ optical properties is
the shape-dependent effect, which arises from the possibility of orientation along a single
axis. According to the literature, the band gaps of Fe2O3 and Fe3O4 are about 2.15 eV and
2.4 eV, respectively [37,38].

2.7. Photo-Fenton Activity of the Constructed Binary Fe2O3/Fe3O4 Nanocomposite

MB was selected as a model pollutant to assess the photodegradation efficacy of the
developed catalysts using Equation (2) [35]:

E% =
A0 − At

A0
× 100 (2)

where E% denotes the photodegradation efficacy for MB removal; A0 represents the highest
MB absorbance (λmax 663 nm) before running irradiation process; and At denotes the
absorbance measured at specified illumination time (t).

Prior to the MB illumination in the presence of various catalysts, 30 min of contacting
the catalysts with MB discloses a weak adsorption-based MB removal process. Furthermore,
Figure 5A depicts the temporal correlated monitoring of MB absorption profile in presence
of the Fe2O3/Fe3O4/H2O2 hybrid catalyst.

Applying the equation of first-order kinetics [39,40] with depiction of ln(A/A0) versus
illumination time (t), as shown in Figure 5B, revealed good linear fitting (r2 > 0.9). The rate
constants of the photodegradation reactions are 0.002, 0.0047, and 0.0143 min−1 when using
Fe2O3/Fe3O4 nanocomposite, pure H2O2, and the Fe2O3/Fe3O4/H2O2 hybrid catalyst,
respectively. Therefore, the latter improved the photocatalytic degradation of MB by
3.04 folds when compared to the usage of H2O2 homogenous catalyst while it was by
7.15 folds of improving MB photodegradation compared to the usage of pure Fe2O3/Fe3O4.
These results illustrate the synergism between the developed Fe2O3/Fe3O4 nanocomposite
and H2O2 in suiting the photo-Fenton reactions that supply higher productivity of active
oxidizing species and accordingly higher degradation efficacy (Figure 6A). The optimal
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conditions for the photo-Fenton reaction and the degradation% of MB under various
irradiation sources and catalysts are compared in Table 1. When compared to other reported
photocatalysts [41–44], the Fe2O3/Fe3O4 nanocomposite synthesized in this study stands
out as particularly effective with higher efficacy under solar irradiation compared to bulb
light illumination. This is reasonable as sunlight has a wide spectrum from UV to NIR that
plays a dual role in exciting the photoactive Fe2O3/Fe3O4 nanocomposite and offering a
temperature that is appropriate for increasing the rate of photodegradation [45,46]. The
Fe3O4 particles fared better than the Fe2O3 ones in the photo-Fenton process. There
were more ferrous ions than Fe(III) ions in the magnetite material, and the Fe(II) ions
were able to strongly facilitate the photo-Fenton reaction. Also, unlike the conventionally
used lower pH with other catalysts, our study achieved a considerable percentage of MB
removal in an aqueous solution at its natural pH 7.1. Moreover, the present study utilizes
a smaller amount of catalyst, but it is easily separated with a magnet to be reused in
consecutive runs of photo-Fenton reaction within efficient performance. The effectiveness
of the Fe2O3/Fe3O4 nanocomposite in the solar-driven photo-Fenton mineralization of
MB was further evaluated using TOC measurements. The initial TOC measurement of
MB at zero solar illumination recorded 19.3 ppm and decreased to 5.7 ppm after 75 min
of illumination.
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Figure 5. Time-dependent variations in absorption spectrum of MB during the solar-driven
photo-Fenton catalytic degradation in presence of Fe2O3/Fe3O4/H2O2 hybrid catalyst (A) and
the first order photodegradation kinetics for detoxification of MB using Fe2O3/Fe3O4, H2O2, and
Fe2O3/Fe3O4/H2O2 catalysts (B).

Table 1. Comparison of the catalytic performance in the removal of MB after photodegradation
reactions using different catalysts.

Sample Synthetic Route mcat (g
L−1) pH [MB] (mg

L−1)

Removal%
or Degradation
Rate (min−1)

Irradiation Ref

Fe3O4-RGO Green method
(Sargassum thunbergii alga) 0.25 6.0 34 17% 300 W

(Xenon lamp) [41]

α-Fe2O3-GO Chemical hydrolysis
(Urea-reducing agent) 0.25 3.0 37 65% 100 W

(Mercury lamp) [42]

Fe3O4-
ZeoliteA

Chemical method
(Post-precipitation) 0.4 3.0 17 32% 6 W

(UV-C lamp) [43]
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Table 1. Cont.

Sample Synthetic Route mcat (g
L−1) pH [MB] (mg

L−1)

Removal%
or Degradation
Rate (min−1)

Irradiation Ref

LaFeO3
LaFe0.9Ni0.1O3
LaFe0.7Ni0.3O3
LaFe0.5Ni0.5O3

Sol–gel 0.33 7 133

0.0086 min−1

0.003 min−1

0.0039 min−1

0.002 min−1

simulated
AM 1.5G
solar light

[44]

Fe2O3/Fe3O4
Biogenic method

(guajava leaves extract) 0.20 7.1 20 71.9%
0.0143

Sun light
(760 W/m2) This work

Fe2O3/Fe3O4
Biogenic method

(guajava leaves extract) 0.20 7.1 20 54.7%
0.0102

Bulb light
(100 W) This work
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If catalysts are to have any practical applicability, the ability to reuse the catalytic
materials is essential. Four consecutive cycles of photo-Fenton reactions start with 0.2 g L−1

of Fe2O3/Fe3O4 nanocomposite and in each run, 20 mg L−1 of H2O2 and 20 mg L−1 of MB
was added which showed that MB could be degraded effectively. Figure 6B demonstrates
that even after four cycles, the Fe2O3/Fe3O4 nanocomposite catalyst maintained a signifi-
cant level of performance, demonstrating its reusability. After each cycle of the reaction,
the rate of degradation slowed slightly, suggesting that some iron oxide was being leached
out of solution or aggregating.

2.8. Application in Photodegrading Dye-Enriched Lake Water

To add realism and demonstrate the viability of the developed Fe2O3/Fe3O4 nanocom-
posite, the photocatalytic degradation of two dyestuffs, MB and PY, was studied in samples
taken from Dumat Aljandal Lake, a lake in the Aljouf region of Saudi Arabia. The working
system was 100 mL of lake water containing a mixture of MB (20 ppm) and PY (20 ppm), in
which 20 mg of Fe2O3/Fe3O4 catalyst was ultrasonicated and H2O2 (20 mg L−1) was added.
This mixture was left in the dark to address adsorption equilibrium. After that, the photo-
catalytic reaction was conducted under solar illumination where the PY and MB residues
were spectrophotometrically recorded at λmax 546 nm and 663 nm, respectively. As shown
in Figure 7A, the absorbance of PY and MB in the UV–visible range decreases as the illumi-
nation time reaches 85 min. The performance of the photocatalytic degradation of MB and
PY amounts to 70.8% and 92.7%, respectively (Figure 7B). These fascinating results show
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that the synthesized Fe2O3/Fe3O4 nanocomposite is highly effective in photodegrading
dyes that contaminated natural water sources.
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2.9. Plausible Mechanism for the Photocatalytic Degradation Process

The catalytic mechanism for the solar-driven photo-Fenton degradation of MB in
presence of the biosynthesized Fe2O3/Fe3O4 nanocomposite is shown in Figure 8. At first,
the developed Fe2O3/Fe3O4 nanocomposite can efficiently absorb photons from solar light
forming photogenerated electron–hole pairs, and Equation (3) shows the band gap energy
of the nanocomposite is 2.92 eV. The photogenerated electrons and holes could react with
H2O2 and H2O, respectively, to produce •OH/−OH species, see Equations (4) and (5). Also,
the photogenerated holes could react with −OH to produce •OH radicals, see Equation (6).
Notably, excited electrons have the potential to reduce the Fe(III) on the Fe2O3 particulates
to Fe(II). Subsequently, Fe(II) could react with H2O2 to form the Fenton system, leading to
the generation of •OH radicals. Note that due to the high conductivity of Fe3O4, certain
Fe3O4 particulates may serve as a conduit for the photogenerated electrons and holes to
travel along the surface of the nanocomposite, significantly reducing the probability of their
recombination [47]. This will result in more electrons and holes forming reactive species
that could be engaged in the photodegradation of MB. This photo-Fenton system relies on
reactive species, specifically •OH and h+ that all act as reactive species exhibiting a pivotal
role in photomineralizing MB, see Equation (7).

Fe2O3/Fe3O4 NPs + hυ −→ Fe2O3/Fe3O4 NPs (e− CB + h+
VB) (3)

H2O2 + Fe2O3/Fe3O4NPs(e−CB) −→ •OH + −OH (4)

H2O + Fe2O3/Fe3O4NPs(h+
vb) −→ •OH + −OH (5)

Fe2O3/Fe3O4NPs(h+
vb) + −OH −→ •OH (6)

MB + •OH/h+
vb −→ Degradation products (CO2 + H2O) (7)
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3. Materials and Methods
3.1. Materials

Leaves of guajava were taken from one of the farms in Egypt’s Fayoum governorate.
Methylene blue was obtained from Merck. Pyronine Y, ferric nitrate nonahydrate (>98%),
ethanol, and H2O2 were purchased from Sigma-Aldrich. All of the reagents and chemicals
have been utilized exactly as they were received, with no further purification. During the
preparation, bi-distilled water was used.

3.2. Methods
3.2.1. Preparation of Guajava Leaves Aqueous Extract

After collecting the leaves of guajava, they were washed in tap water and then bi-
distilled water before being dried in the shade for three weeks. The aqueous extract of
guajava leaves was made by first rinsing 10 g of the leaves with bi-distilled water, and then
boiling the leaves in 100 mL of bi-distilled water at 70 ◦C for 25 min. After filtering out any
remaining leaf fragments, the remaining extract was used as a stabilizing, capping, and
reducing agent in the production of iron oxide nanoparticles.

3.2.2. Preparation of Iron Oxide Nanoparticles Using Guajava Leaves Aqueous Extract

Ferric nitrate nonahydrate (4.0 g) was dissolved in 100 mL of aqueous extract of
guajava leaves/bi-distilled water mix (v/v = 1/2). For 4.0 h, the above solution was heated
to 80 ◦C while stirring constantly. After an hour of phyto-mediated reaction, the color of
working solution darkened. The color shift may be owing to the formation of iron oxide.
After separating the solids, they were washed three times in ethanol, then in bi-distilled
water before being dried at 250 ◦C for 12 h.

3.2.3. Photocatalytic Experiments

The photocatalytic activity of the phytosynthesized iron oxide nanocomposite was
examined by calculating the rate of breakdown of the ubiquitous MB dye. Initial testing
showed that the catalytic system could handle concentrations of MB in aqueous solution
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(20 mg/L) that were higher than those reported in the majority of the previous studies
in the literature. A typical methodology entails ultrasonicating 20 mg of the developed
iron oxide nanocomposite with (100 mL) of MB for 5 min in the presence of 20 mg L−1

H2O2 (at natural pH). Then, the concoction was left to stir in the dark for 30 min at room
temperature so that the MB could adsorb to the catalyst surface at equilibrium. After that,
760 W/m2 of solar irradiance (as determined by a pyranometer) was shone on it. After
centrifuging about 5 mL of the mixed solution at a certain illumination time, the absorbance
of the MB clear solution at λmax 663 nm was measured to determine the photodegradation
efficiency. A pure Fe2O3/Fe3O4 nanocomposite or H2O2 homogenous catalyst was used in
a photodegradation suit as a control test.

3.3. Instrumental

The analysis of X-ray diffraction was performed utilizing D/Max2500VB2+/Pc X-ray
diffractometer (Rigaku Company, Tokyo, Japan) within detector of Cu of 1.54 Å wavelength.
Thermal gravimetric analysis (TGA) measurement was conducted using Shimadzu TGA-51
analyzer. FTIR readings were taken using a Shimadzu (Tokyo, Japan) IR Tracer-100 spec-
trophotometer. The Brunauer–Emmett–Teller (BET) equation and Barrett–Joyner–Halenda
(BJH) technique were used to assess the surface area and pore size distribution. Sample mor-
phology was recorded via JEOL, JEM-2100 electron microscopy (Tokyo, Japan). Absorption
spectroscopic measurements were monitored in the UV-Vis range using Agilent Cary 60 spec-
trophotometer. Using a Phoenix (Blomberg, Germany) 8000 Analyzer, the total organic
carbon (TOC) was measured to assess the efficacy of the dye photomineralization procedure.

4. Conclusions

In conclusion, a facile one-pot phyto-mediated avenue was successfully employed to
prepare a binary Fe2O3/Fe3O4 heterostructure. XRD and SEM characterizations addressed
the porous morphology of the prepared composite in which Fe2O3 of average crystallite
size 8.43 nm was successfully mixed with plate-like aggregates of Fe3O4 of 15.1 nm average
crystallite size. FTIR analysis displayed the distinct Fe-O assignments. EDX and elemental
mapping indicated highly intense peaks of iron and oxygen verifying high purity of the
composite with highly symmetrical and uniform distribution as revealed from elemental
mapping. The prepared Fe2O3/Fe3O4 binary nanocomposite is thermally stable. The
isotherm of Fe2O3/Fe3O4 nanocomposite catalyst shows slit-shaped pores in loose particu-
lates in plate-like aggregates and a mesoporous pore size distribution which are consistent
with SEM imaging morphology. The optical properties of the catalyst reveal a narrow band
gap (2.92 eV) that efficiently absorbs visible photons of solar light. Moreover, the solar-
driven photo-Fenton catalytic activity of the constructed Fe2O3/Fe3O4 heterostructure in
photodegrading MB that was investigated in the presence of H2O2 illustrates superior
activity. This photo-Fenton system provided the highest rate constant (0.0143 min−1) and
superior activity in degrading MB by 7.15 times greater than Fe2O3/Fe3O4 or H2O2 alone.
The Fe2O3/Fe3O4 nanocomposite catalyst performed well after four solar-driven photo-
Fenton photodegradation cycles, proving its reusability. This anticipates the synergism
between the developed heterostructure in delimiting the electron–hole recombination and
H2O2 oxidizing agent to generate a higher density of reactive oxidizing species. Further-
more, when using a combination of MB and pyronine Y (PY) dyestuffs, the Fe2O3/Fe3O4
nanocomposite demonstrated high dye photodegradation efficiencies in the subsequent
photocatalytic remediation of polluted lake water.
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