A First-Principles Study on the Reaction Mechanisms of Electrochemical CO2 Reduction to C1 and C2 Products on Cu(110)
Abstract
:1. Introduction
2. Results and Discussion
2.1. CO2 Reduction to CH4
2.2. The Activation Energies from CO* Hydrogenation to CHxO*
2.3. C-C Coupling Pathway
2.4. C2H5OH Production Pathway
2.5. The Analysis of Applied Potential
3. Computation Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barberis, L.; Versteeg, C.I.; Meeldijk, J.D.; Stewart, J.A.; Vandegehuchte, B.D.; de Jongh, P.E. K and Na promotion enables high-pressure low-temperature reverse water gas shift over copper-based catalysts. ACS Catal. 2024, 14, 9188–9197. [Google Scholar] [CrossRef]
- Zhong, C.Y.; Yang, Y.F.; Chen, J.; Feng, B.M.; Wang, H.B.; Yao, Y.X. Nickel nanoparticles supported on lanthanum oxycarbonate with interfacial oxygen vacancies as catalysts for CO2 hydrogenation to methane. ACS Appl. Nano Mater. 2024, 7, 14057–14068. [Google Scholar] [CrossRef]
- Khalil, M.; Gunlazuardi, J.; Ivandini, T.A.; Umar, A. Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance. Renew. Sustain. Energy Rev. 2019, 113, 109246. [Google Scholar] [CrossRef]
- Wu, H.L.; Li, X.B.; Tung, C.H.; Wu, L.Z. Semiconductor quantum dots: An emerging candidate for CO2 photoreduction. Adv. Mater. 2019, 31, 1900709. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, Y.; Wu, M.; Li, Y. The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement. Energy Econ. 2019, 78, 365–378. [Google Scholar] [CrossRef]
- Kar, S.; Goeppert, A.; Prakash, G.S. Combined CO2 capture and hydrogenation to methanol: Amine immobilization enables easy recycling of active elements. ChemSusChem 2019, 12, 3172–3177. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yu, H.; He, T.; Zuo, S.; Liu, X.; Yang, H.; Ni, B.; Li, H.; Gu, L.; Wang, D.; et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Jing, X.C.; Liu, R.H.; Guo, P.Q.; Yin, Z.Y. Plasmon-enhanced perovskite photocatalysts for CO2 reduction: A mini review. Energy Fuels 2024, 38, 4966–4979. [Google Scholar] [CrossRef]
- Foster, B.M.; Paris, A.R.; Frick, J.J.; Blasini-Pérez, D.A.; Cava, R.J.; Bocarsly, A.B. Catalytic mismatching of CuInSe2 and Ni3Al demonstrates selective photoelectrochemical CO2 reduction to methanol. ACS Appl. Energy Mater. 2020, 3, 109–113. [Google Scholar] [CrossRef]
- Wang, X.; Mao, Y.; Wang, Z.Y. Plasmonic-assisted electrocatalysis for CO2 reduction reaction. ChemElectroChem 2024, 11, e202300805. [Google Scholar] [CrossRef]
- Han, G.H.; Bang, J.; Park, G.; Choe, S.; Jang, Y.J.; Jang, H.W.; Kim, S.Y.; Ahn, S.H. Recent advances in electrochemical, photochemical, and photoelectrochemical reduction of CO2 to C2+ products. Small 2023, 19, 2205765. [Google Scholar] [CrossRef]
- Liu, B.; Wang, T.; Wang, S.J.; Zhang, G.; Zhong, D.Z.; Yuan, T.H.; Dong, H.; Wu, B.; Gong, J.L. Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction. Nat. Commun. 2022, 13, 7111. [Google Scholar] [CrossRef]
- Zhang, W.J.; Jin, Z.; Chen, Z.P. Rational-designed principles for electrochemical and photoelectrochemical upgrading of CO2 to value-added chemicals. Adv. Sci. 2022, 9, 2105204. [Google Scholar] [CrossRef]
- Wang, P.L.; Wang, S.C.; Wang, H.Q.; Wu, Z.B.; Wang, L.Z. Recent progress on photo-electrocatalytic reduction of carbon dioxide. Part. Part. Syst. Charact. 2018, 35, 1700371. [Google Scholar] [CrossRef]
- Kumaravel, V.; Bartlett, J.; Pillai, S.C. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 2020, 5, 486–519. [Google Scholar] [CrossRef]
- Gyawali, S.; Tirumala, R.T.A.; Loh, H.; Andiappan, M.; Bristow, A.D. Photocarrier recombination dynamics in highly scattering Cu2O nanocatalyst clusters. J. Phys. Chem. C 2024, 125, 2003–2011. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, S.; Tirumala, R.T.A.; Andiappan, M.; Bristow, A.D. Size- and shape-dependent charge-carrier dynamics in sub-micron cuprous oxide nanoparticles. Front. Opt. 2022, JTu4A.86. [Google Scholar]
- Liu, G.H.; Wang, K.Y.; Hoivik, N.; Jakobsen, H. Progress on free-standing and flow-through TiO2 nanotube membranes. Sol. Sol. Energy Mater. Sol. Cells 2012, 98, 24–38. [Google Scholar] [CrossRef]
- Schreier, M.; Luo, J.S.; Gao, P.; Moehl, T.; Mayer, M.T.; Grätzel, M. Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J. Am. Chem. Soc. 2016, 138, 1938–1946. [Google Scholar] [CrossRef]
- Tirumala, R.T.A.; Gyawali, S.; Wheeler, A.; Ramakrishnan, S.B.; Sooriyagoda, R.; Mohammadparast, F.; Khatri, N.; Tan, S.S.; Kalkan, A.K.; Bristow, A.D.; et al. Structure-property-performance relationships of cuprous oxide nanostructures for dielectric Mie resonance-enhanced photocatalysis. ACS Catal. 2022, 12, 7975–7985. [Google Scholar] [CrossRef]
- Liu, J.; Xia, C.F.; Zaman, S.; Su, Y.Q.; Tan, L.; Chen, S.H. Surface plasmon assisted photoelectrochemical carbon dioxide reduction: Progress and perspectives. J. Mater. Chem. A 2023, 11, 16918–16932. [Google Scholar] [CrossRef]
- Zhou, L.N.; Lou, M.H.; Bao, J.L.; Zhang, C.; Liu, J.G.; Martirez, J.M.P.; Tian, S.; Yuan, L.; Swearer, D.F.; Robatjazi, H.; et al. Hot carrier multiplication in plasmonic photocatalysis. PNAS 2021, 118, e2022109118. [Google Scholar] [CrossRef]
- Huang, L.; Zaman, S.; Tian, X.L.; Wang, Z.T.; Fang, W.S.; Xia, B.Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311–322. [Google Scholar] [CrossRef]
- Mohammadparast, F.; Tirumala, R.T.A.; Ramakrishnan, S.B.; Dadgar, A.P.; Andiappan, M. Operando UV-Vis spectroscopy as potential in-line PAT system for size determination of functioning metal nanocatalysts. Chem. Eng. Sci. 2020, 225, 115821. [Google Scholar] [CrossRef]
- Du, W.; Li, M.; Liu, Q.; Chen, R. Improving the electrocatalytic CO2 reduction performance of Bi catalysts for formic acid production via size control, morphology regulation and carbon complexation. New J. Chem. 2024, 48, 6000. [Google Scholar] [CrossRef]
- Cui, Y.J.; Cheng, Y.H.; Yang, C.L.; Su, Y.S.; Yao, D.F.; Liufu, B.P.; Li, J.L.; Fang, Y.W.; Liu, S.Y.; Zhong, Z.Y. High-performance electrocatalytic CO2 reduction for CO generation using hydrophobic porous carbon supported Au. ACS Sustain. Chem. Eng. 2023, 11, 11229–11238. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Li, Y.; Li, C. The origins of catalyst selectivity for the electrochemical conversion of carbon dioxide to methanol. Nano Res. 2024, 17, 5–17. [Google Scholar] [CrossRef]
- Lal, D.; Konnur, T.; Verma, A.M.; Shaneeth, M.; Rajan, A.G. Unraveling low overpotential pathways for electrochemical CO2 reduction to CH4 on pure and doped MoS2 edges. Ind. Eng. Chem. Res. 2023, 62, 21191–21207. [Google Scholar] [CrossRef]
- Liu, Y.M.; Chen, S.; Quan, X.; Yu, H.T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Luo, G.; Zhang, J.B.; Chen, M.H.; Wang, Z.Q.; Sham, T.K.; Zhang, L.J.; Li, Y.F.; Zheng, G.F. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 2021, 12, 1580. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.S.; Liang, X.Y.; Zhang, Q.; Ren, X.F.; Gao, L.G.; Ma, T.L.; Liu, A.M.; Pasti, I.A. Density functional theory study of CuAg bimetal electrocatalyst for CO2RR to produce CH3OH. Catalysts 2024, 14, 7. [Google Scholar] [CrossRef]
- Zhang, Z.; Bian, L.; Tian, H.; Liu, Y.; Bando, Y.; Yamauchi, Y.; Wang, Z.-L. Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol. Small 2022, 18, 2107450. [Google Scholar] [CrossRef]
- Borovinskaya, E.S.; Trebbin, S.; Alscher, F.; Breitkopf, C. Synthesis, modification, and characterization of CuO/ZnO/ZrO2 mixed metal oxide catalysts for CO2/H2 conversion. Catalysts 2019, 9, 1037. [Google Scholar] [CrossRef]
- Gao, D.; Arán-Ais, R.M.; Jeon, H.S.; Cuenya, B.R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210. [Google Scholar] [CrossRef]
- Song, Z.; Wang, X.; Ren, Z.; Fu, H. Relationships between structural design and synthesis engineering of Cu-based catalysts for CO2 to C2 electroreduction. Chem. Eng. J. 2024, 479, 147606. [Google Scholar] [CrossRef]
- Wu, Z.-Z.; Zhang, X.-L.; Niu, Z.-Z.; Gao, F.-Y.; Yang, P.-P.; Chi, L.-P.; Shi, L.; Wei, W.-S.; Liu, R.; Chen, Z.; et al. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 2022, 144, 259–269. [Google Scholar] [CrossRef]
- Jiang, K.; Sandberg, R.B.; Akey, A.J.; Liu, X.; Bell, D.C.; Nørskov, J.K.; Chan, K.; Wang, H. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111–119. [Google Scholar] [CrossRef]
- Guo, S.Y.; Liu, Y.C.; Murphy, E.; Ly, A.; Xu, M.J.; Matanovic, I.; Pan, X.Q.; Atanassov, P. Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance. Appl. Catal. B 2022, 16, 121659. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, B.S.; Zhang, L.H.; Sun, J. Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products. J. Energy Chem. 2022, 71, 63–82. [Google Scholar] [CrossRef]
- Schouten, K.J.P.; Gallent, E.P.; Koper, M.T.M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 2013, 3, 1292–1295. [Google Scholar] [CrossRef]
- Schouten, K.J.P.; Kwon, Y.; van der Ham, C.J.M.; Qin, Z.; Koper, M.T.M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2, 1902. [Google Scholar] [CrossRef]
- Karapinar, D.; Creissen, C.E.; de la Cruz, J.G.R.; Schreiber, M.W.; Fontecave, M. Electrochemical CO2 reduction to ethanol with copper-based catalysts. ACS Energy Lett. 2021, 6, 694–706. [Google Scholar] [CrossRef]
- Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf. Sci. 1995, 335, 258–263. [Google Scholar] [CrossRef]
- Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 2003, 199, 39–47. [Google Scholar] [CrossRef]
- Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 2006, 594, 1–19. [Google Scholar] [CrossRef]
- Perez-Gallent, E.; Figueiredo, M.C.; Calle-Vallejo, F.; Koper, M.T.M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 2017, 56, 3621–3624. [Google Scholar] [CrossRef]
- Ou, L.H.; He, Z.X.; Yang, H.; Chen, Y.D. Theoretical insights into potential-dependent C-C bond formation mechanisms during CO2 electroreduction into C2 products on Cu(100) at simulated electrochemical interfaces. ACS Omega 2021, 6, 17839–17847. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, X.; Wang, B. Insight into the preference mechanism of CHx(x = 1–3) and C-C chain formation involved in C2 oxygenate formation from syngas on the Cu(110) surface. J. Phys. Chem. C 2013, 117, 6594–6606. [Google Scholar] [CrossRef]
- Kuo, T.-C.; Chou, J.-W.; Shen, M.-H.; Hong, Z.-S.; Chao, T.-H.; Lu, Q.; Cheng, M.-J. First-principles study of C-C coupling pathways for CO2 electrochemical reduction catalyzed by Cu(110). J. Phys. Chem. C 2021, 125, 2464–2476. [Google Scholar] [CrossRef]
- Bagger, A.; Ju, W.; Varela, A.S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: Classifying Cu facets. ACS Catal. 2019, 9, 7894–7899. [Google Scholar] [CrossRef]
- Takahashi, I.; Koga, O.; Hoshi, N.; Hori, Y. Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes. J. Electroanal. Chem. 2002, 533, 135–143. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26. [Google Scholar] [CrossRef]
- Luo, W.J.; Nie, X.W.; Janik, M.J.; Asthagiri, A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 2016, 6, 219–229. [Google Scholar] [CrossRef]
- Jo, D.Y.; Ham, H.C.; Lee, K.Y. Facet-dependent electrocatalysis in the HCOOH synthesis from CO2 reduction on Cu catalyst: A density functional theory study. Appl. Surf. Sci. 2020, 527, 146857. [Google Scholar] [CrossRef]
- van Rensburg, W.J.; Petersen, M.A.; Datt, M.S.; van den Berg, J.A.; van Helden, P. On the kinetic interpretation of DFT-derived energy profiles: Cu-catalyzed methanol synthesis. Catal. Lett. 2015, 145, 559–568. [Google Scholar] [CrossRef]
- Liu, W.; Zhai, P.B.; Li, A.W.; Wei, B.; Si, K.P.; Wei, Y.; Wang, X.G.; Zhu, G.D.; Chen, Q.; Gu, X.K.; et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 2022, 13, 1877. [Google Scholar] [CrossRef]
- Xue, Q.; Qi, X.; Li, K.; Zeng, Y.; Xu, F.; Zhang, K.; Yang, T.; Qi, X.; Jiang, J. DFT study of CO2 reduction reaction to CH3OH on low-index Cu surfaces. Catalysts 2023, 13, 722. [Google Scholar] [CrossRef]
- Shin, D.Y.; Jo, J.H.; Lee, J.Y.; Lim, D.H. Understanding mechanisms of carbon dioxide conversion into methane for designing enhanced catalysts from first-principles. Comput. Theor. Chem. 2016, 1083, 31–37. [Google Scholar] [CrossRef]
- Montoya, J.H.; Shi, C.; Chan, K.; Norskov, J.K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 2015, 6, 2032–2037. [Google Scholar] [CrossRef]
- Guo, S.Y.; Liu, Y.C.; Huang, Y.; Wang, H.S.; Murphy, E.; Delafontaine, L.; Chen, J.L.; Zenyuk, I.V.; Atanassov, P. Promoting electrolysis of carbon monoxide toward acetate and 1-propanol in flow electrolyzer. ACS Energy Lett. 2023, 8, 935–942. [Google Scholar] [CrossRef]
- Jouny, M.; Hutchings, G.S.; Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2019, 2, 1062–1070. [Google Scholar] [CrossRef]
- Karamad, M.; Hansen, H.A.; Rossmeisl, J.; Nørskov, J.K. Mechanistic pathway in the electrochemical reduction of CO2 on RuO2. ACS Catal. 2015, 5, 4075–4081. [Google Scholar] [CrossRef]
- Kuhl, K.P.; Cave, E.R.; Abram, D.N.; Jaramillo, T.F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmuüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, L.; Zhang, Z.; Cui, P. Prediction of a kinetic pathway for fabricating the narrowest zigzag graphene nanoribbons on Cu(111). J. Phys. Chem. C 2021, 125, 21933–21942. [Google Scholar] [CrossRef]
- Mo, Y.; Zhu, W.; Kaxiras, E.; Zhang, Z. Electronic nature of step-edge barriers against adatom descent on transition-metal surfaces. Phys. Rev. Lett. 2018, 101, 216101. [Google Scholar] [CrossRef] [PubMed]
- Phatak, A.A.; Delgass, W.N.; Ribeiro, F.H.; Schneider, W.F. Density functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and Pt. J. Phys. Chem. C 2009, 113, 7269–7276. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Li, Z.Y.; Li, N.; Wang, N.; Zhou, B.; Yin, P.; Song, B.Y.; Yu, J.; Yang, Y.S. Mechanism investigations on water gas shift reaction over Cu(111), Cu(100), and Cu(211) surfaces. ACS Omega 2022, 7, 3514–3521. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.C.; Chen, J.C.; Zhao, M.D.; Yu, Q.; Wang, Y.G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9901. [Google Scholar] [CrossRef]
- Nie, X.W.; Jiang, X.; Wang, H.Z.; Luo, W.J.; Janik, M.J.; Chen, Y.G.; Guo, X.W.; Song, C.S. Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catal. 2018, 8, 4873–4892. [Google Scholar] [CrossRef]
- Bai, H.; Ma, M.M.; Bai, B.; Zuo, J.P.; Cao, H.J.; Zhang, L.; Zhang, Q.F.; Vinokurov, V.A.; Huang, W. The active site of syngas conversion into ethanol over Cu/ZnO/Al2O3 ternary catalysts in slurry bed. J. Catal. 2019, 380, 68–82. [Google Scholar] [CrossRef]
- Durand, W.J.; Peterson, A.A.; Studt, F.; Abild-Pedersen, F.; Nørskov, J.K. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci. 2011, 605, 1354–1359. [Google Scholar] [CrossRef]
- Vegge, T.; Rasmussen, T.; Leffers, T.; Pedersen, O.B.; Jacobsen, K.W. Atomistic simulations of cross-slip of jogged screw dislocations in copper. Philos. Mag. Lett. 2001, 81, 137–144. [Google Scholar] [CrossRef]
- Dong, H.L.; Li, Y.Y.; Jiang, D.E. First-principles insight into electrocatalytic reduction of CO2 to CH4 on a copper nanoparticle. J. Phys. Chem. C 2018, 122, 11392–11398. [Google Scholar] [CrossRef]
- Maulana, A.L.; Putra, R.I.D.; Saputro, A.G.; Agusta, M.K.; Nugrahaab; Dipojono, H.K. DFT and microkinetic investigation of methanol synthesis via CO2 hydrogenation on Ni(111)-based surfaces. Phys. Chem. Chem. Phys. 2019, 21, 20276. [Google Scholar] [CrossRef]
- Reichenbach, T.; Mondal, K.; Jäger, M.; Vent-Schmidt, T.; Himmel, D.; Dybbert, V.; Bruix, A.; Krossing, I.; Walter, M.; Moseler, M. Ab initio study of CO2 hydrogenation mechanisms on inverse ZnO/Cu catalysts. J. Catal. 2018, 360, 168–174. [Google Scholar] [CrossRef]
- Chang, C.C.; Ku, M.S. Role of high-index facet Cu(711) surface in controlling the C2 selectivity for CO2 reduction reaction—A DFT study. J. Phys. Chem. C 2021, 125, 10919–10925. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.G.; Bodappa, N.; Yang, W.M.; Liang, Q.; Radjenovica, P.M.; Wang, Y.H.; Zhang, Y.J.; Dong, J.C.; Tian, Z.Q.; et al. Elucidating electrochemical CO2 reduction reaction processes on Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy. Energy Environ. Sci. 2022, 15, 3968–3977. [Google Scholar] [CrossRef]
- Gao, S.T.; Xiang, S.Q.; Shi, J.L.; Zhang, W.; Zhao, L.B. Theoretical understanding of the electrochemical reaction barrier: A kinetic study of CO2 reduction reaction on copper electrodes. Phys. Chem. Chem. Phys. 2020, 22, 9607–9615. [Google Scholar] [CrossRef] [PubMed]
- Grabow, L.C.; Mavrikakis, M. Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation. ACS Catal. 2011, 1, 365–384. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, G.C. A Systematic Theoretical study of water gas shift reaction on Cu(111) and Cu(110): Potassium effect. ACS Catal. 2019, 9, 2261–2274. [Google Scholar] [CrossRef]
- Mandal, S.C.; Rawat, K.S.; Garg, P.; Pathak, B. Hexagonal Cu(111) Monolayers for selective CO2 hydrogenation to CH3OH: Insights from density functional theory. ACS Appl. Nano Mater. 2020, 2, 7686–7695. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, Z.; Fan, G.; Li, F. Critical role of Cu nanoparticle-loaded Cu(100) surface structures on structured copper-based catalysts in boosting ethanol generation in CO2 electroreduction. ACS Appl. Mater. Interfaces 2024, 16, 35143–35154. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zhang, L. A First-Principles Study on the Reaction Mechanisms of Electrochemical CO2 Reduction to C1 and C2 Products on Cu(110). Catalysts 2024, 14, 468. https://doi.org/10.3390/catal14070468
Xu Y, Zhang L. A First-Principles Study on the Reaction Mechanisms of Electrochemical CO2 Reduction to C1 and C2 Products on Cu(110). Catalysts. 2024; 14(7):468. https://doi.org/10.3390/catal14070468
Chicago/Turabian StyleXu, Yangyang, and Lixin Zhang. 2024. "A First-Principles Study on the Reaction Mechanisms of Electrochemical CO2 Reduction to C1 and C2 Products on Cu(110)" Catalysts 14, no. 7: 468. https://doi.org/10.3390/catal14070468
APA StyleXu, Y., & Zhang, L. (2024). A First-Principles Study on the Reaction Mechanisms of Electrochemical CO2 Reduction to C1 and C2 Products on Cu(110). Catalysts, 14(7), 468. https://doi.org/10.3390/catal14070468