The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.1.1. XRD
2.1.2. N2 Physisorption
2.1.3. TEM
2.1.4. XPS
2.1.5. NH3-TPD
2.2. Catalytic Activity
2.2.1. HDO of Phenol in Aqueous Phase (APHDO) and Oil Phase (OPHDO)
2.2.2. Kinetic Analysis in Aqueous Phase and Oil Phase HDO of Phenol
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalyst Characterization
3.4. Catalytic Performance in HDO
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, P.M.; Grunwaldt, J.D.; Jensen, P.A.; Knudsen, K.G.; Jensen, A.D. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 2011, 407, 1–19. [Google Scholar] [CrossRef]
- Laurent, E.; Delmon, B. Influence of Oxygen-Containing, Nitrogen-Containing, and Sulfur-Containing-Compounds on the Hydrodeoxygenation of Phenols over Sulfided Como/Gamma-Al2O3 and Nimo/Gamma-Al2O3 Catalysts. Ind. Eng. Chem. Res. 1993, 32, 2516–2524. [Google Scholar] [CrossRef]
- Elliott, D.C. Historical developments in hydroprocessing bio-oils. Energy Fuels 2007, 21, 1792–1815. [Google Scholar] [CrossRef]
- Viljava, T.R.; Komulainen, R.S.; Krause, A.O.I. Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation. Catal. Today 2000, 60, 83–92. [Google Scholar] [CrossRef]
- Zhao, C.; Kou, Y.; Lemonidou, A.A.; Li, X.; Lercher, J.A. Highly Selective Catalytic Conversion of Phenolic Bio-Oil to Alkanes. Angew. Chem. Int. Ed. 2009, 48, 3987–3990. [Google Scholar] [CrossRef]
- Wang, M.; Shi, H.; Camaioni, D.M.; Lercher, J.A. Palladium-Catalyzed Hydrolytic Cleavage of Aromatic C−O Bonds. Angew. Chem. Int. Ed. 2017, 56, 2110–2114. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, Y.; Gong, Y.; Zhang, P.; Li, H.; Wang, Y. Synthesis of Palladium Nanoparticles Supported on Mesoporous N-Doped Carbon and Their Catalytic Ability for Biofuel Upgrade. J. Am. Chem. Soc. 2012, 134, 16987–16990. [Google Scholar] [CrossRef] [PubMed]
- Crossley, S.; Faria, J.; Shen, M.; Resasco, D.E. Solid Nanoparticles that Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface. Science 2010, 327, 68–72. [Google Scholar] [CrossRef]
- Strapasson, G.B.; Sousa, L.S.; Báfero, G.B.; Leite, D.S.; Moreno, B.D.; Rodella, C.B.; Zanchet, D. Acidity modulation of Pt-supported catalyst enhances C-O bond cleavage over acetone hydrodeoxygenation. Appl. Catal. B Environ. 2023, 335, 122863. [Google Scholar] [CrossRef]
- Saleheen, M.; Mamun, O.; Mohan Verma, A.; Sahsah, D.; Heyden, A. Understanding the influence of solvents on the Pt-catalyzed hydrodeoxygenation of guaiacol. J. Catal. 2023, 425, 212–232. [Google Scholar] [CrossRef]
- Aqsha, A.; Katta, L.; Mahinpey, N. Catalytic Hydrodeoxygenation of Guaiacol as Lignin Model Component Using Ni-Mo/TiO2 and Ni-V/TiO2 Catalysts. Catal. Lett. 2015, 145, 1351–1363. [Google Scholar] [CrossRef]
- Yakovlev, V.A.; Khromova, S.A.; Sherstyuk, O.V.; Dundich, V.O.; Ermakov, D.Y.; Novopashina, V.M.; Lebedev, M.Y.; Bulavchenko, O.; Parmon, V.N. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal. Today 2009, 144, 362–366. [Google Scholar] [CrossRef]
- He, J.Y.; Zhao, C.; Lercher, J.A. Ni-Catalyzed Cleavage of Aryl Ethers in the Aqueous Phase. J. Am. Chem. Soc. 2012, 134, 20768–20775. [Google Scholar] [CrossRef] [PubMed]
- Abreu Teles, C.; Ciotonea, C.; Le Valant, A.; Canaff, C.; Dhainaut, J.; Clacens, J.-M.; Bellot Noronha, F.; Richard, F.; Royer, S. Optimization of catalyst activity and stability in the m-cresol hydrodeoxygenation through Ni particle size control. Appl. Catal. B Environ. 2023, 338, 123030. [Google Scholar] [CrossRef]
- Jiang, C.; Cai, Y.; Xu, T.; Xiao, B.; Hu, Z.; Wang, X. Vapor-phase hydrodeoxygenation of guaiacol for phenol production using bifunctional Ni/Cu-Beta zeolite catalysts. J. Energy Inst. 2023, 109, 101273. [Google Scholar] [CrossRef]
- Han, J.; Duan, J.; Chen, P.; Lou, H.; Zheng, X.; Hong, H. Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chem. 2011, 13, 2561–2568. [Google Scholar] [CrossRef]
- Chen, C.-J.; Bhan, A. Mo2C Modification by CO2, H2O, and O2: Effects of Oxygen Content and Oxygen Source on Rates and Selectivity of m-Cresol Hydrodeoxygenation. Acs Catal. 2017, 7, 1113–1122. [Google Scholar] [CrossRef]
- Sosa, L.F.; de Souza, P.M.; Rafael, R.A.; Wojcieszak, R.; Briois, V.; Francisco, L.R.; Rabelo-Neto, R.C.; Marceau, E.; Paul, S.; Toniolo, F.S.; et al. Study of the performance of SiO2-supported Mo2C and metal-promoted Mo2C catalysts for the hydrodeoxygenation of m-cresol. Appl. Catal. B Environ. 2023, 331, 122720. [Google Scholar] [CrossRef]
- Ghampson, I.T.; Sepúlveda, C.; Garcia, R.; Radovic, L.R.; Fierro, J.L.G.; DeSisto, W.J.; Escalona, N. Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: Effects of nitriding methods and support properties. Appl. Catal. A Gen. 2012, 439–440, 111–124. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Li, D.; Bui, P.; Oyama, S.T. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl. Catal. A Gen. 2011, 391, 305–310. [Google Scholar] [CrossRef]
- Ted Oyama, S.; Onkawa, T.; Takagaki, A.; Kikuchi, R.; Hosokai, S.; Suzuki, Y.; Bando, K. Production of Phenol and Cresol from Guaiacol on Nickel Phosphide Catalysts Supported on Acidic Supports. Top. Catal. 2015, 58, 201–210. [Google Scholar] [CrossRef]
- Moon, J.-S.; Lee, Y.-K. Support Effects of Ni2P Catalysts on the Hydrodeoxygenation of Guaiacol: In Situ XAFS Studies. Top. Catal. 2015, 58, 211–218. [Google Scholar] [CrossRef]
- Wu, S.-K.; Lai, P.-C.; Lin, Y.-C.; Wan, H.-P.; Lee, H.-T.; Chang, Y.-H. Atmospheric Hydrodeoxygenation of Guaiacol over Alumina-, Zirconia-, and Silica-Supported Nickel Phosphide Catalysts. ACS Sustain. Chem. Eng. 2013, 1, 349–358. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Zhang, G.; Sun, Z.; Liu, Y.-Y.; Shi, C.; Wang, W.; Wang, A. A highly dispersed Ni3P/HZSM-5 catalyst for hydrodeoxygenation of phenolic compounds to cycloalkanes. J. Catal. 2022, 410, 294–306. [Google Scholar] [CrossRef]
- Song, H.; Gong, J.; Song, H.; Li, F. A novel surface modification approach for synthesizing supported nickel phosphide catalysts with high activity for hydrodeoxygenation of benzofuran. Appl. Catal. A Gen. 2015, 505, 267–275. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Sun, Z.; Li, X.; Wang, A.; Camaioni, D.M.; Lercher, J.A. Ni3P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds. Green Chem. 2018, 20, 609–619. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, S.; Wang, B.; Mayoral, A.; Liu, W.; Wang, Y.; Liu, Y.; Shi, J.; Yang, G.; Luo, J.; et al. Breaking the Si/Al Limit of Nanosized β Zeolites: Promoting Catalytic Production of Lactide. Chem. Mater. 2020, 32, 751–758. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, H.; Kong, L.; Zhao, X.; Miao, G.; Zhu, L.; Li, S.; Sun, Y. Highly efficient production of lactic acid from xylose using Sn-beta catalysts. Green Chem. 2020, 22, 7333–7336. [Google Scholar] [CrossRef]
- Tian, Y.; Duan, H.; Zhang, B.; Gong, S.; Lu, Z.; Dai, L.; Qiao, C.; Liu, G.; Zhao, Y. Template Guiding for the Encapsulation of Uniformly Subnanometric Platinum Clusters in Beta-Zeolites Enabling High Catalytic Activity and Stability. Angew. Chem. Int. Ed. 2021, 60, 21713–21717. [Google Scholar] [CrossRef]
- An, J.; Wang, Y.; Lu, J.; Zhang, J.; Zhang, Z.; Xu, S.; Liu, X.; Zhang, T.; Gocyla, M.; Heggen, M.; et al. Acid-Promoter-Free Ethylene Methoxycarbonylation over Ru-Clusters/Ceria: The Catalysis of Interfacial Lewis Acid–Base Pair. J. Am. Chem. Soc. 2018, 140, 4172–4181. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Mendoza, F.A.; Pernett-Bolaño, L.; Cardona-Martínez, N. Effect of catalyst deactivation on the acid properties of zeolites used for isobutane/butene alkylation. Thermochim. Acta 1998, 312, 47–61. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.; Weng, D.; Shi, L. Modification of Cu/ZSM-5 catalyst with CeO2 for selective catalytic reduction of NOx with ammonia. J. Rare Earths 2016, 34, 1004–1009. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, X.; Xia, Y.; Sun, C.; Zhao, C.; Li, S.; Li, W. Promotional effect of CeO2 on the propene poisoning resistance of HBEA zeolite catalyst for NH3-SCR of NOx. Mol. Catal. 2017, 433, 265–273. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Liu, S.; Yao, Y.; Sun, Z.; Li, X.; Liu, Y.; Wang, W.; Wang, A.; Camaioni, D.M.; et al. Aqueous Phase Hydrodeoxygenation of Phenol over Ni3P-CePO4 Catalysts. Ind. Eng. Chem. Res. 2018, 57, 10216–10225. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Zacher, A.H.; Wang, L.; Ren, S.; Liang, J.; Wei, Y.; Liu, Y.; Tang, J.; Zhang, Q.; et al. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour. Technol. 2012, 124, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Carenco, S.; Portehault, D.; Boissiere, C.; Mezailles, N.; Sanchez, C. Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives. Chem. Rev. 2013, 113, 7981–8065. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.; Li, W.; Oyama, S. Synthesis and Activity of a New Catalyst for Hydroprocessing: Tungsten Phosphide. J. Catal. 2001, 200, 140–147. [Google Scholar] [CrossRef]
- Blanchard, P.E.R.; Grosvenor, A.P.; Cavell, R.G.; Mar, A. X-ray Photoelectron and Absorption Spectroscopy of Metal-Rich Phosphides M2P and M3P (M = Cr-Ni). Chem. Mater. 2008, 20, 7081–7088. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, K.; Wang, Y.; Yao, Y.; Sun, Z.; Liu, Y.; Shi, C.; Wang, W.; Wang, A. Kinetic investigation of phenol hydrodeoxygenation over unsupported nickel phosphides. Catal. Today 2021, 371, 179–188. [Google Scholar] [CrossRef]
- Sawhill, S.J.; Layman, K.A.; Van Wyk, D.R.; Engelhard, M.H.; Wang, C.; Bussell, M.E. Thiophene hydrodesulfurization over nickel phosphide catalysts: Effect of the precursor composition and support. J. Catal. 2005, 231, 300–313. [Google Scholar] [CrossRef]
- Fuks, D.; Vingurt, D.; Landau, M.V.; Herskowitz, M. Density Functional Theory Study of Sulfur Adsorption at the (001) Surface of Metal-Rich Nickel Phosphides: Effect of the Ni/P Ratio. J. Phys. Chem. C 2010, 114, 13313–13321. [Google Scholar] [CrossRef]
- Sun, Z.; Li, X.; Wang, A.; Wang, Y.; Chen, Y. The Effect of CeO2 on the Hydrodenitrogenation Performance of Bulk Ni2P. Top. Catal. 2012, 55, 1010–1021. [Google Scholar] [CrossRef]
- Osorio-Vargas, P.; Flores-González, N.A.; Navarro, R.M.; Fierro, J.L.G.; Campos, C.H.; Reyes, P. Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction. Catal. Today 2016, 259, 27–38. [Google Scholar] [CrossRef]
Catalyst | SBET (m2·g−1) | XRD Phase | Particle Size (nm) 1 | Amount of Acid Sites (mmol·g−1) 2 | |||
---|---|---|---|---|---|---|---|
Weak | Medium | Strong | Total | ||||
Hβ | 358.3 | - | - | ||||
Ce-β | 230.4 | - | - | ||||
s-Ni-P/Hβ(3) | 295.8 | Ni-Ni3P-Ni12P5 | 17.3 | 0.63 | 0.77 | 0.39 | 1.79 |
s-Ni-P/Ce-β(3) | 153.7 | Ni-Ni3P-Ni12P5 | 11.6 | 1.29 | - | 0.15 | 1.44 |
Catalyst | Rate Constants (mol·g−1·min−1) 1 | Apparent Activation Energy (kJ·mol−1) 2 | |||
---|---|---|---|---|---|
250 | 275 | 300 | 325 | ||
s-Ni-P/Hβ(3) | 3.0 | 4.8 | 6.1 | 8.9 | 36.8 |
s-Ni-P/Ce-β(3) | 4.4 | 6.5 | 7.9 | 11.0 | 30.7 |
Catalyst | Rate Constants (mol·g−1·min−1) | Apparent Activation Energy (kJ·mol−1) | |||
---|---|---|---|---|---|
150 | 175 | 200 | 225 | ||
s-Ni-P/Hβ(3) | 5.5 | 10.4 | 15.1 | 23.7 | 33.5 |
s-Ni-P/Ce-β(3) | 6.9 | 12.0 | 16.9 | 24.9 | 29.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Li, Y.; Yu, Z.; Zou, J.; Jing, Y.; Wang, W. The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity. Catalysts 2024, 14, 475. https://doi.org/10.3390/catal14080475
Ma L, Li Y, Yu Z, Zou J, Jing Y, Wang W. The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity. Catalysts. 2024; 14(8):475. https://doi.org/10.3390/catal14080475
Chicago/Turabian StyleMa, Lin, Yan Li, Zhiquan Yu, Jie Zou, Yingying Jing, and Wei Wang. 2024. "The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity" Catalysts 14, no. 8: 475. https://doi.org/10.3390/catal14080475
APA StyleMa, L., Li, Y., Yu, Z., Zou, J., Jing, Y., & Wang, W. (2024). The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity. Catalysts, 14(8), 475. https://doi.org/10.3390/catal14080475