In Situ XRD Study on Stability and Performance of Co3C Catalyst in Fischer–Tropsch Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Co3C Catalyst
2.2. Stability of Co3C Catalyst
2.3. Catalytic Performance
2.4. Discussion
3. Experimental Section
3.1. Reagents
3.2. Catalyst Preparation
3.3. Catalyst Characterizations
3.3.1. X-ray Diffraction
3.3.2. Scanning Electron Microscopy and Transmission Electron Microscopy
3.3.3. In Situ XRD Experiments
3.4. Catalyst Evolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chong, J.W.; Chemmangattuvalappil, N.G.; Thangalazhy-Gopakumar, S. Aviation Biofuels: Conversion Routes and Challenges. In Sustainable Technologies for the Oil Palm Industry: Latest Advances and Case Studies; Foo, C.Y.D., Tun Abdul Aziz, M.K., Yusup, S., Eds.; Springer Nature: Singapore, 2023; pp. 33–85. [Google Scholar]
- Olah, G.A. Towards oil independence through renewable methanol chemistry. Angew. Chem. Int. Ed. Engl. 2013, 52, 104–107. [Google Scholar] [CrossRef] [PubMed]
- van de Loosdrecht, J.; Botes, F.G.; Ciobica, I.M.; Ferreira, A.; Gibson, P.; Moodley, D.J.; Saib, A.M.; Visagie, J.L.; Weststrate, C.J.; Niemantsverdriet, J.W. Fischer–Tropsch Synthesis: Catalysts and Chemistry. In Comprehensive Inorganic Chemistry II; Elsevier: Amsterdam, The Netherlands, 2013; pp. 525–557. [Google Scholar]
- Qi, Z.; Chen, L.; Zhang, S.; Su, J.; Somorjai, G.A. A mini review of cobalt-based nanocatalyst in Fischer-Tropsch synthesis. Appl. Catal. A General. 2020, 602, 117701. [Google Scholar] [CrossRef]
- Gholami, Z.; Tišler, Z.; Rubáš, V. Recent advances in Fischer-Tropsch synthesis using cobalt-based catalysts: A review on supports, promoters, and reactors. Catal. Rev. 2020, 63, 512–595. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, C.; Liu, C.; Wei, Y.; Cheruvathur, A.V.; Dugulan, A.I.; Niemantsverdriet, J.W.; Liu, X.; He, Y.; Qing, M.; et al. Relationship between Iron Carbide Phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and Catalytic Performances of Fe/SiO2 Fischer–Tropsch Catalysts. ACS Catal. 2018, 8, 3304–3316. [Google Scholar] [CrossRef]
- Yin, J.; Wang, S.; Xu, D.; You, Y.; Liu, X.; Peng, Q. Surface modification of Fe5C2 by binding silica-based ligand: A theoretical explanation of enhanced C2 oxygenate selectivity. Mol. Catal. 2023, 547, 113333. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, L.; Yu, F.; An, Y.; Dai, Y.; Yang, Y.; Lin, T.; Li, S.; Wang, H.; Gao, P.; et al. Effects of Sodium on the Catalytic Performance of CoMn Catalysts for Fischer–Tropsch to Olefin Reactions. ACS Catal. 2017, 7, 3622–3631. [Google Scholar] [CrossRef]
- Lyu, S.; Wang, L.; Zhang, J.; Liu, C.; Sun, J.; Peng, B.; Wang, Y.; Rappé, K.G.; Zhang, Y.; Li, J.; et al. Role of Active Phase in Fischer–Tropsch Synthesis: Experimental Evidence of CO Activation over Single-Phase Cobalt Catalysts. ACS Catal. 2018, 8, 7787–7798. [Google Scholar] [CrossRef]
- Qin, C.; Hou, B.; Wang, J.; Wang, Q.; Wang, G.; Yu, M.; Chen, C.; Jia, L.; Li, D. Crystal-Plane-Dependent Fischer–Tropsch Performance of Cobalt Catalysts. ACS Catal. 2018, 8, 9447–9455. [Google Scholar] [CrossRef]
- ten Have, I.C.; Weckhuysen, B.M. The active phase in cobalt-based Fischer-Tropsch synthesis. Chem. Catal. 2021, 1, 339–363. [Google Scholar] [CrossRef]
- Liu, J.-X.; Su, H.-Y.; Sun, D.-P.; Zhang, B.-Y.; Li, W.-X. Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC. J. Am. Chem. Soc. 2013, 135, 16284–16287. [Google Scholar] [CrossRef]
- Claeys, M.; Dry, M.E.; van Steen, E.; du Plessis, E.; van Berge, P.J.; Saib, A.M.; Moodley, D.J. In situ magnetometer study on the formation and stability of cobalt carbide in Fischer–Tropsch synthesis. J. Catal. 2014, 318, 193–202. [Google Scholar] [CrossRef]
- Zhong, L.; Yu, F.; An, Y.; Zhao, Y.; Sun, Y.; Li, Z.; Lin, T.; Lin, Y.; Qi, X.; Dai, Y.; et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 2016, 538, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Yu, F.; An, Y.; Qin, T.; Li, L.; Gong, K.; Zhong, L.; Sun, Y. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. Acc. Chem. Res. 2021, 54, 1961–1971. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.-P.; Liu, J.-X.; Zhao, Y.-H.; Ding, Y.-J.; Liu, T.; Dong, W.-D.; Zhu, H.-J.; Su, H.-Y.; Yan, L.; Li, J.-L.; et al. High Alcohols Synthesis via Fischer-Tropsch Reaction at Cobalt Metal/Carbide Interface. ACS Catal. 2015, 5, 3620–3624. [Google Scholar] [CrossRef]
- Pei, Y.; Ding, Y.; Zhu, H.; Du, H. One-step production of C1-C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2. Chin. J. Catal. 2015, 36, 355–361. [Google Scholar] [CrossRef]
- Zhao, Z.; Lu, W.; Yang, R.; Zhu, H.; Dong, W.; Sun, F.; Jiang, Z.; Lyu, Y.; Liu, T.; Du, H.; et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas. ACS Catal. 2017, 8, 228–241. [Google Scholar] [CrossRef]
- Zheng, J.; Cai, J.; Jiang, F.; Xu, Y.; Liu, X. Investigation of the highly tunable selectivity to linear α-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization-reduction pretreatment. Catal. Sci. Technol. 2017, 7, 4736–4755. [Google Scholar] [CrossRef]
- Liu, B.; Li, W.; Xu, Y.; Lin, Q.; Jiang, F.; Liu, X. Insight into the Intrinsic Active Site for Selective Production of Light Olefins in Cobalt-Catalyzed Fischer–Tropsch Synthesis. ACS Catal. 2019, 9, 7073–7089. [Google Scholar] [CrossRef]
- Shen, X.; Luo, D.; Ma, C.; Suo, H.; Yan, L.; Zhang, T.; Liu, X.; Wen, X.; Li, Y.; Yang, Y. Carburized cobalt catalyst for the Fischer–Tropsch synthesis. Catal. Sci. Technol. 2021, 11, 6564–6572. [Google Scholar] [CrossRef]
- Shen, X.; Han, X.; Zhang, T.; Suo, H.; Yan, L.; Li, Y.; Yang, Y. Effects of Co3C formation on the catalytic performance for Fischer-Tropsch synthesis over Co/SiO2 catalysts. Mol. Catal. 2024, 555, 113889. [Google Scholar] [CrossRef]
- Shen, X.; Ma, C.; Suo, H.; Zhang, T.; Yan, L.; Huang, L.; Zhou, J.; Wen, X.; Li, Y.; Yang, Y. Wet-chemistry approach for the synthesis of single phase ferromagnetic Co3C nanoparticle. Nano Sel. 2021, 2, 1368–1371. [Google Scholar] [CrossRef]
- Ghogia, A.C.; Nzihou, A.; Serp, P.; Soulantica, K.; Pham Minh, D. Cobalt catalysts on carbon-based materials for Fischer-Tropsch synthesis: A review. Appl. Catal. A Gen. 2021, 609, 117906. [Google Scholar] [CrossRef]
- Rashed, A.E.; Nasser, A.; Elkady, M.F.; Matsushita, Y.; Abd El-Moneim, A. Temperature calibration effect on FTS activity and product selectivity using Fe-MOF catalyst. Case Stud. Chem. Environ. Eng. 2023, 7, 100300. [Google Scholar] [CrossRef]
- Honsho, T.-o.; Kitano, T.; Miyake, T.; Suzuki, T. Fischer–Tropsch synthesis over Co-loaded oxidized diamond catalyst. Fuel 2012, 94, 170–177. [Google Scholar] [CrossRef]
- Nohtani, R.; Mirzaei, A.A.; Eshraghi, A. Synthesis of Fe–Co–Ce/Zeolite A-3 Catalysts and their Selectivity to Light Olefins for Fischer–Tropsch Synthesis in Fixed-Bed Reactor. Catal. Lett. 2019, 149, 522–532. [Google Scholar] [CrossRef]
- Kwak, G.; Kim, D.-E.; Kim, Y.T.; Park, H.-G.; Kang, S.C.; Ha, K.-S.; Jun, K.-W.; Lee, Y.-J. Enhanced catalytic activity of cobalt catalysts for Fischer–Tropsch synthesis via carburization and hydrogenation and its application to regeneration. Catal. Sci. Technol. 2016, 6, 4594–4600. [Google Scholar] [CrossRef]
- Dong, W.; Liu, J.; Zhu, H.; Ding, Y.; Pei, Y.; Liu, J.; Du, H.; Jiang, M.; Liu, T.; Su, H.; et al. Co–Co2C and Co–Co2C/AC Catalysts for Hydroformylation of 1-Hexene under Low Pressure: Experimental and Theoretical Studies. J. Phys. Chem. C 2014, 118, 19114–19122. [Google Scholar] [CrossRef]
- Carroll, K.J.; Huba, Z.J.; Spurgeon, S.R.; Carpenter, E. Magnetic properties of Co2C and Co3C nanoparticles and their assemblies. Appl. Phys. Lett. 2012, 101, 012409. [Google Scholar] [CrossRef]
- Stolbov, S.; Hong, S.; Kara, A.; Rahman, T.S. Origin of the C-inducedp4greconstruction of Ni(001). Phys. Rev. B 2005, 72, 155423. [Google Scholar] [CrossRef]
- Wood, I.G.; Vočadlo, L.; Knight, K.S.; Dobson, D.P.; Marshall, W.G.; Price, G.D.; Brodholt, J. Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J. Appl. Crystallogr. 2004, 37, 82–90. [Google Scholar] [CrossRef]
- Shein, I.R.; Medvedeva, N.I.; Ivanovskii, A.L. Electronic and structural properties of cementite-type M3X (M = Fe, Co, Ni; X = C or B) by first principles calculations. Phys. B Condens. Matter 2006, 371, 126–132. [Google Scholar] [CrossRef]
- Aluha, J.; Gutierrez, S.; Gitzhofer, F.; Abatzoglou, N. Use of Plasma-Synthesized Nano-Catalysts for CO Hydrogenation in Low-Temperature Fischer(-)Tropsch Synthesis: Effect of Catalyst Pre-Treatment. Nanomaterials 2018, 8, 822. [Google Scholar] [CrossRef] [PubMed]
- Pendyala, V.R.R.; Shafer, W.D.; Jacobs, G.; Davis, B.H. Fischer–Tropsch Synthesis: Effect of Reaction Temperature for Aqueous-Phase Synthesis Over a Platinum Promoted Co/Alumina Catalyst. Catal. Lett. 2014, 144, 1088–1095. [Google Scholar] [CrossRef]
- Shen, X.; Luo, D.; Ni, J.; Wu, J.; Ma, C.; Suo, H.; Liu, X.; Lv, Z.; Wen, X.; Li, Y.; et al. The effect of surface carbon on ethylene dimerization. Appl. Surf. Sci. 2021, 570, 151210. [Google Scholar] [CrossRef]
- Zhang, R.; Wen, G.; Adidharma, H.; Russell, A.G.; Wang, B.; Radosz, M.; Fan, M. C2 Oxygenate Synthesis via Fischer–Tropsch Synthesis on Co2C and Co/Co2C Interface Catalysts: How to Control the Catalyst Crystal Facet for Optimal Selectivity. ACS Catal. 2017, 7, 8285–8295. [Google Scholar] [CrossRef]
- Niu, L.; Liu, X.; Liu, X.; Lv, Z.; Zhang, C.; Wen, X.; Yang, Y.; Li, Y.; Xu, J. In Situ XRD Study on Promotional Effect of Potassium on Carburization of Spray-dried Precipitated Fe2O3 Catalysts. ChemCatChem 2017, 9, 1691–1700. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, T.; Suo, H.; Yan, L.; Huang, L.; Ma, C.; Li, L.; Wen, X.; Li, Y.; Yang, Y. A facile one-pot method for synthesis of single phase Co2C with magnetic properties. Mater. Lett. 2020, 271, 127783. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Han, X.; Zhang, T.; Suo, H.; Yan, L.; Qing, M.; He, Y.; Li, Y.; Yang, Y. In Situ XRD Study on Stability and Performance of Co3C Catalyst in Fischer–Tropsch Synthesis. Catalysts 2024, 14, 483. https://doi.org/10.3390/catal14080483
Shen X, Han X, Zhang T, Suo H, Yan L, Qing M, He Y, Li Y, Yang Y. In Situ XRD Study on Stability and Performance of Co3C Catalyst in Fischer–Tropsch Synthesis. Catalysts. 2024; 14(8):483. https://doi.org/10.3390/catal14080483
Chicago/Turabian StyleShen, Xianfeng, Xiao Han, Tianfu Zhang, Haiyun Suo, Lai Yan, Ming Qing, Yi He, Yongwang Li, and Yong Yang. 2024. "In Situ XRD Study on Stability and Performance of Co3C Catalyst in Fischer–Tropsch Synthesis" Catalysts 14, no. 8: 483. https://doi.org/10.3390/catal14080483
APA StyleShen, X., Han, X., Zhang, T., Suo, H., Yan, L., Qing, M., He, Y., Li, Y., & Yang, Y. (2024). In Situ XRD Study on Stability and Performance of Co3C Catalyst in Fischer–Tropsch Synthesis. Catalysts, 14(8), 483. https://doi.org/10.3390/catal14080483