Molecular TiO2 Modifications of Supported PPh3-Capped Pd Nanocatalysts for CO2 Hydrogenation into Formates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Supported PPh3-Capped Pd NPs over Modified TiO2
2.2. Deposition of Modifier over TiO2-Supported PPh3-Capped Pd NPs
2.3. Hydrogenation of CO2 into Formates Using Modified Catalysts
2.3.1. Hydrogenation of CO2 into Formates Using Catalysts Formed by Deposition of Pd NPs over Modified TiO2 Supports
Entry | Catalyst | TON 2 |
---|---|---|
1 | Pd-PPh3/TiO2 | 881 |
2 | 1 | 588 |
3 | 2 | 1057 |
4 | 3a | 868 |
5 3 | 3b | 917 |
6 | 4 | 1043 |
7 | 5 | 1030 |
8 | 6a | 776 |
9 3 | 6b | 826 |
10 | 7 | 635 |
11 | 8 | 694 |
2.3.2. Hydrogenation of CO2 into Formates Using Catalysts Formed by Modifications of Pre-Synthesized Pd-PPh3/TiO2
Entry | System | TON 2 |
---|---|---|
1 | Pd-PPh3/TiO2 | 881 |
2 | 9 | 862 |
3 | 10 | 581 |
4 | 11 | 992 |
5 | 12 | 388 |
6 | 13 | 551 |
7 | 14 | 912 |
8 | 15 | 844 |
2.3.3. Reusability Tests
3. Materials and Methods
3.1. Modification of TiO2 with n-Propyltriethoxysilane (PTES) and (3-Aminopropyl)triethoxysilane (APTES)
3.2. Modification of TiO2 with Ionic Liquids (ILs)
3.3. Modification of TiO2 with Phosphonic Acids (PAs)
3.4. Synthesis of Pd NPs with PPh3 as Ligand over Different Modified TiO2 Supports through Organometallic Approach (1–8)
3.5. Deposition of Modifier over Previously Synthesized Pd-PPh3/TiO2 Systems (9–15)
3.6. Catalytic Experiments for CO2 Reduction to Formate
3.7. Recycling Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centi, G.; Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 2009, 148, 191–205. [Google Scholar] [CrossRef]
- Centi, G.; Quadrelli, E.A.; Perathoner, S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711–1731. [Google Scholar] [CrossRef]
- Dibenedetto, A.; Angelini, A.; Stufano, P. Use of carbon dioxide as feedstock for chemicals and fuels: Homogeneous and heterogeneous catalysis. J. Chem. Technol. Biotechnol. 2014, 89, 334–353. [Google Scholar] [CrossRef]
- Koolen, C.D.; Oveisi, E.; Zhang, J.; Li, M.; Safonova, O.V.; Pedersen, J.K.; Rossmeisl, J.; Luo, W.; Züttel, A. Low-temperature non-equilibrium synthesis of anisotropic multimetallic nanosurface alloys for electrochemical CO2 reduction. Nat. Synth. 2024, 3, 45–57. [Google Scholar] [CrossRef]
- Raveendran, A.; Chandran, M.; Dhanusuraman, R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv. 2023, 13, 3843–3876. [Google Scholar] [CrossRef] [PubMed]
- Ohi, J. Hydrogen energy cycle: An overview. J. Mater. Res. 2005, 20, 3180–3187. [Google Scholar] [CrossRef]
- Lee, J.H.; Ryu, J.; Kim, J.Y.; Nam, S.-W.; Han, J.H.; Lim, T.-H.; Gautam, S.; Chae, K.H.; Yoon, C.W. Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. J. Mater. Chem. A 2014, 2, 9490–9495. [Google Scholar] [CrossRef]
- Zhong, H.; Iguchi, M.; Chatterjee, M.; Ishizaka, T.; Kitta, M.; Xu, Q.; Kawanami, H. Interconversion between CO2 and HCOOH under basic conditions catalyzed by PdAu nanoparticles supported by amine-functionalized reduced graphene oxide as a dual catalyst. ACS Catal. 2018, 8, 5355–5362. [Google Scholar] [CrossRef]
- Park, H.; Lee, J.H.; Kim, E.H.; Kim, K.Y.; Choi, Y.H.; Youn, D.H.; Lee, J.S. A highly active and stable palladium catalyst on a g-C3N4 support for direct formic acid synthesis under neutral conditions. Chem. Commun. 2016, 52, 14302–14305. [Google Scholar] [CrossRef]
- Shao, X.; Miao, X.; Yu, X.; Wang, W.; Ji, X. Efficient synthesis of highly dispersed ultrafine Pd nanoparticles on a porous organic polymer for hydrogenation of CO2 to formate. RSC Adv. 2020, 10, 9414–9419. [Google Scholar] [CrossRef]
- Su, J.; Lu, M.; Lin, H. High yield production of formate by hydrogenating CO2 derived ammonium carbamate/carbonate at room temperature. Green Chem. 2015, 17, 2769–2773. [Google Scholar] [CrossRef]
- Wang, W.-H.; Feng, X.; Bao, M. Transformation of CO2 to Formic Acid or Formate over Heterogeneous Catalysts; Chapter 3; Springer: Berlin/Heidelberg, Germany, 2017; pp. 43–52. ISBN 978-981-10-3250-9. [Google Scholar]
- Nakajima, K.; Tominaga, M.; Waseda, M.; Miura, H.; Shishido, T. Highly Efficient Supported Palladium–Gold Alloy Catalysts for Hydrogen Storage Based on Ammonium Bicarbonate/Formate Redox Cycle. ACS Sustain. Chem. Eng. 2019, 7, 6522–6530. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Fujie, Y.; Mihogi, T.; Yamashita, H. Hollow Mesoporous Organosilica Spheres Encapsulating PdAg Nanoparticles and Poly(Ethyleneimine) as Reusable Catalysts for CO2 Hydrogenation to Formate. ACS Catal. 2020, 10, 6356–6366. [Google Scholar] [CrossRef]
- Yang, G.; Kuwahara, Y.; Masuda, S.; Mori, K.; Louis, C.; Yamashita, H. PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO2 to formate. J. Mater. Chem. A 2020, 8, 4437–4446. [Google Scholar] [CrossRef]
- Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO2 to Formic Acid: Elucidating the Active Pd Atoms in Alloy Nanoparticles. J. Am. Chem. Soc. 2018, 140, 8902–8909. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.M.; Park, H.; Banu, M.; Kim, J.Y.; Youn, D.H.; Magesh, G.; Kim, W.Y.; Lee, J.S. Catalytic CO2 hydrogenation to formic acid over carbon nanotube-graphene supported PdNi alloy catalysts. RSC Adv. 2015, 5, 105560–105566. [Google Scholar] [CrossRef]
- Shao, X.; Xu, J.; Huang, Y.; Su, X.; Duan, H.; Wang, X.; Zhang, T. Pd@C3N4 nanocatalyst for highly efficient hydrogen storage system based on potassium bicarbonate/formate. AIChE J. 2016, 62, 2410–2418. [Google Scholar] [CrossRef]
- Wan, K.T.; Davis, M.E. Design and synthesis of a heterogeneous asymmetric catalyst. Nature 1994, 370, 449–450. [Google Scholar] [CrossRef]
- Shibasaki-Kitakawa, N.; Honda, H.; Kuribayashi, H.; Toda, T.; Fukumura, T.; Yonemoto, T. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresour. Technol. 2007, 98, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Jin, R.; An, J.; Zhao, Q.; Cheng, T.; Liu, G. Hollow-Shell-Structured Nanospheres: A Recoverable Heterogeneous Catalyst for Rhodium-Catalyzed Tandem Reduction/Lactonization of Ethyl 2-Acylarylcarboxylates to Chiral Phthalides. Chem. Asian J. 2014, 9, 1388–1394. [Google Scholar] [CrossRef]
- Leng, Y.; Liu, J.; Jiang, P.; Wang, J. Organometallic-polyoxometalate hybrid based on V-Schiff base and phosphovanadomolybdate as a highly effective heterogenous catalyst for hydroxylation of benzene. J. Chem. Eng. 2014, 239, 1–7. [Google Scholar] [CrossRef]
- Cong, P.; Doolen, R.D.; Fan, Q.; Giaquinta, D.M.; Guan, S.; McFarland, E.W.; Poojary, D.M.; Self, K.; Turner, H.W.; Weinberg, W.H. High-Throughput Synthesis and Screening of Combinatorial Heterogeneous Catalyst Libraries. Angew. Chem. Int. Ed. 1999, 38, 484–488. [Google Scholar] [CrossRef]
- Uysal, B.; Oksal, B.S. New heterogeneous B(OEt)3-MCM-41 catalyst for preparation of α,β-unsaturated alcohols. Res. Chem. Intermed. 2015, 41, 3893–3911. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Yoshida, C.; Uchida, S.; Mizuno, N. Peroxotungstate Immobilized on Ionic Liquid-Modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide. J. Am. Chem. Soc. 2005, 127, 530–531. [Google Scholar] [CrossRef] [PubMed]
- Planeix, J.M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P.S.; Dutartre, R.; Geneste, P.; Bernier, P.; Ajayan, P.M. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. J. Am. Chem. Soc. 1994, 116, 7935–7936. [Google Scholar] [CrossRef]
- Kent, P.D.; Mondloch, J.E.; Finke, R.G. A Four-Step Mechanism for the Formation of Supported-Nanoparticle Heterogeneous Catalysts in Contact with Solution: The Conversion of Ir(1,5-COD)Cl/γ-Al2O3 to Ir(0)~170/γ-Al2O3. J. Am. Chem. Soc. 2014, 136, 1930–1941. [Google Scholar] [CrossRef]
- Dobrzeniecka, A.; Kulesza, P.J. Electrocatalytic Activity toward Oxygen Reduction of RuSxNy Catalysts Supported on Different Nanostructured Carbon Carriers. ECS J. Solid State Sci. Technol. 2013, 2, M61–M66. [Google Scholar] [CrossRef]
- Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872. [Google Scholar] [CrossRef]
- Crudden, C.M.; Sateesh, M.; Lewis, R. Mercaptopropyl-Modified Mesoporous Silica: A Remarkable Support for the Preparation of a Reusable, Heterogeneous Palladium Catalyst for Coupling Reactions. J. Am. Chem. Soc. 2005, 127, 10045–10050. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, J.; Zhang, Y.; Pan, C.; Dong, Y.; Zhu, Y. Metal-support interaction for heterogeneous catalysis: From nanoparticles to single atoms. Mater. Today Nano 2020, 12, 100093. [Google Scholar] [CrossRef]
- van Deelen, T.W.; Hernández Mejía, C.; de Jong, K.P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Liao, Y.; Bai, S.-T.; Zheng, M.; Zhou, C.; Zhang, T.; Sels, B.F. Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: From nanoscale to single atom. Energy Environ. Sci. 2021, 14, 1247–1285. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, J.; Ma, K.; Zhang, Y.; Hu, Y.-M.; Kong, L.; Jia, A.-P.; Zhang, Z.; Huang, W.; Lu, J.-Q. Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate. J. Catal. 2021, 397, 116–127. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Hülsey, M.J.; Yan, N. Zirconia phase effect in Pd/ZrO2 catalyzed CO2 hydrogenation into formate. Mol. Catal. 2019, 475, 110461. [Google Scholar] [CrossRef]
- Mori, K.; Yamashita, H. Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate. In CO2 Hydrogenation Catalysis, 1st ed.; Chapter 7; Himeda, Y., Ed.; Wiley-VCH GmbH: Weinheim, Germany, 2021; pp. 179–205. [Google Scholar]
- Schoenbaum, C.A.; Schwartz, D.K.; Medlin, J.W. Controlling the Surface Environment of Heterogeneous Catalysts Using Self-Assembled Monolayers. Acc. Chem. Res. 2014, 47, 1438–1445. [Google Scholar] [CrossRef]
- Jenkins, A.H.; Medlin, J.W. Controlling Heterogeneous Catalysis with Organic Monolayers on Metal Oxides. Acc. Chem. Res. 2021, 54, 4080–4090. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cui, T.; Zhu, J.; Wang, X.; Ji, M. PdAg alloy nanoparticles immobilized on functionalized MIL-101-NH2: Effect of organic amines on hydrogenation of carbon dioxide into formic acid. New J. Chem. 2021, 45, 6293–6300. [Google Scholar] [CrossRef]
- Chen, B.; Dong, M.; Liu, S.; Xie, Z.; Yang, J.; Li, S.; Wang, Y.; Du, J.; Liu, H.; Han, B. CO2 Hydrogenation to Formate Catalyzed by Ru Coordinated with a N,P-Containing Polymer. ACS Catal. 2020, 10, 8557–8566. [Google Scholar] [CrossRef]
- Masuda, S.; Mori, K.; Futamura, Y.; Yamashita, H. PdAg Nanoparticles Supported on Functionalized Mesoporous Carbon: Promotional Effect of Surface Amine Groups in Reversible Hydrogen Delivery/Storage Mediated by Formic Acid/CO2. ACS Catal. 2018, 8, 2277–2285. [Google Scholar] [CrossRef]
- Hao, P.; Schwartz, D.K.; Medlin, J.W. Effect of Surface Hydrophobicity of Pd/Al2O3 on Vanillin Hydrodeoxygenation in a Water/Oil System. ACS Catal. 2018, 8, 11165–11173. [Google Scholar] [CrossRef]
- Sun, Q.; Fu, X.; Si, R.; Wang, C.-H.; Yan, N. Mesoporous Silica-Encaged Ultrafine Bimetallic Nanocatalysts for CO2 Hydrogenation to Formates. ChemCatChem 2019, 11, 5093–5097. [Google Scholar] [CrossRef]
- Umegaki, T.; Satomi, Y.; Kojima, Y. Catalytic Properties of Palladium Nanoparticles for Hydrogenation of Carbon Dioxide into Formic Acid. J. Jpn. Inst. Energy 2019, 96, 487–492. [Google Scholar] [CrossRef]
- Yang, G.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. PdAg alloy nanoparticles encapsulated in N-doped microporous hollow carbon spheres for hydrogenation of CO2 to formate. Appl. Catal. B Environ. 2011, 283, 119628. [Google Scholar] [CrossRef]
- Chen, Q.; Yakovlev, N.L. Adsorption and interaction of organosilanes on TiO2 nanoparticles. Appl. Surf. Sci. 2010, 257, 1395–1400. [Google Scholar] [CrossRef]
- Meroni, D.; Lo Presti, L.; Di Liberto, G.; Ceotto, M.; Acres, R.G.; Prince, K.C.; Bellani, R.; Soliveri, G.; Ardizzone, S. A Close Look at the Structure of the TiO2-APTES Interface in Hybrid Nanomaterials and Its Degradation Pathway: An Experimental and Theoretical Study. J. Phys. Chem. C 2017, 121, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C. Surface Modification of Oxide Nanoparticles Using Phosphonic Acids: Characterization, Surface Dynamics, and Dispersion in Sols and Nanocomposites. Material Chemistry. Ph.D. Thesis, Université Montpellier, Montpelier, France, 2015. [Google Scholar]
- Glaser, A.; Foisner, J.; Hoffmann, H.; Friedbacher, G. Investigation of the Role of the Interplay between Water and Temperature on the Growth of Alkylsiloxane Submonolayers on Silicon. Langmuir 2004, 20, 5599–5604. [Google Scholar] [CrossRef] [PubMed]
- Klaysri, R.; Tubchareon, T.; Praserthdam, P. One-step synthesis of amine-functionalized TiO2 surface for photocatalytic decolorization under visible light irradiation. J. Ind. Eng. Chem. 2017, 45, 229–236. [Google Scholar] [CrossRef]
- Cheng, F.; Sajedin, S.M.; Kelly, S.M.; Lee, A.F.; Kornherr, A. UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles. Carbohydr. Polym. 2014, 114, 246–252. [Google Scholar] [CrossRef]
- Sharma, R.K.; Yadav, M.; Gaur, R.; Gupta, R.; Adholeya, A.; Gawande, M.B. Synthesis of Iron Oxide Palladium Nanoparticles and Their Catalytic Applications for Direct Coupling of Acyl Chlorides with Alkynes. ChemPlusChem 2016, 81, 1312–1319. [Google Scholar] [CrossRef]
- Demirelli, M.; Karaoğlu, E.; Baykal, A.; Sözeri, H.; Uysal, E. Synthesis, characterization and catalytic activity of CoFe2O4-APTES-Pd magnetic recyclable catalyst. J. Alloys Compd. 2014, 582, 201–207. [Google Scholar] [CrossRef]
- Didas, S.A.; Choi, S.; Chaikittisilp, W.; Jones, C.W. Amine–Oxide Hybrid Materials for CO2 Capture from Ambient Air. Acc. Chem. Res. 2015, 48, 2680–2687. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, X.; Huang, Y.; Xu, S.; Su, X.; Pan, X.; Xu, J.; Wang, A.; Liang, C.; Wang, X.; et al. A Schiff base modified gold catalyst for green and efficient H2 production from formic acid. Energy Environ. Sci. 2015, 8, 3204–3207. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, X.; Li, L.; Miao, S.; Li, Y.; Li, Y.; Wang, X.; Huang, Y.; Zhang, T. Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst. Nat. Commun. 2017, 8, 1407. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Masuda, S.; Tanaka, H.; Yoshizawa, K.; Chee, M.; Yamashita, H. Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles: A dual heterogeneous catalyst for formic acid/CO2-mediated chemical hydrogen delivery/storage. Chem. Commun. 2017, 53, 4677–4680. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V. Amine-Functionalized SBA-15 Supported Ru Nanocatalyst for the Hydrogenation CO2 to Formic Acid. Catal. Surv. Asia 2021, 25, 192–205. [Google Scholar] [CrossRef]
- Gindri, I.M.; Frizzo, C.P.; Bender, C.R.; Tier, A.Z.; Martins, M.A.P.; Villetti, M.A.; Machado, G.; Rodriguez, L.C.; Rodrigues, D.C. Preparation of TiO2 Nanoparticles Coated with Ionic Liquids: A Supramolecular Approach. ACS Appl. Mater. Interfaces 2014, 6, 11536–11543. [Google Scholar] [CrossRef] [PubMed]
- Xin, B.; Hao, J. Imidazolium-based ionic liquids grafted on solid surfaces. Chem. Soc. Rev. 2014, 43, 7171–7187. [Google Scholar] [CrossRef] [PubMed]
- Gurau, G.; Rodríguez, H.; Kelley, S.P.; Janiczek, P.; Kalb, R.S.; Rogers, R.D. Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids. Angew. Chem. Int. Ed. 2011, 50, 12024–12026. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Y.; Wang, H.; Yu, B.; Yu, X.; Zhang, H.; Liu, Z. 110th Anniversary: Ionic Liquid Promoted CO2 Hydrogenation to Free Formic Acid over Pd/C. Ind. Eng. Chem. Res. 2019, 58, 6333–6339. [Google Scholar] [CrossRef]
- Qadir, M.I.; Weilhard, A.; Fernandes, J.A.; de Pedro, I.; Vieira, B.J.C.; Waerenborgh, J.C.; Dupont, J. Selective Carbon Dioxide Hydrogenation Driven by Ferromagnetic RuFe Nanoparticles in Ionic Liquids. ACS Catal. 2018, 8, 1621–1627. [Google Scholar] [CrossRef]
- Bordet, A.; Moos, G.; Welsh, C.; Licence, P.; Luska, K.L.; Leitner, W. Molecular Control of the Catalytic Properties of Rhodium Nanoparticles in Supported Ionic Liquid Phase (SILP) Systems. ACS Catal. 2020, 10, 13904–13912. [Google Scholar] [CrossRef]
- Moos, G.; Emondts, M.; Bordet, A.; Leitner, W. Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst. Angew. Chem. Int. Ed. 2020, 59, 11977–11983. [Google Scholar] [CrossRef]
- Rengshausen, S.; Van Stappen, C.; Levin, N.; Tricard, S.; Luska, K.L.; DeBeer, S.; Chaudret, B.; Bordet, A.; Leitner, W. Organometallic Synthesis of Bimetallic Cobalt-Rhodium Nanoparticles in Supported Ionic Liquid Phases (CoxRh100–x@SILP) as Catalysts for the Selective Hydrogenation of Multifunctional Aromatic Substrates. Small 2021, 17, 2006683. [Google Scholar] [CrossRef]
- Offner-Marko, L.; Bordet, A.; Moos, G.; Tricard, S.; Rengshausen, S.; Chaudret, B.; Luska, K.L.; Leitner, W. Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates. Angew. Chem. Int. Ed. 2018, 57, 12721–12726. [Google Scholar] [CrossRef] [PubMed]
- Luska, K.L.; Bordet, A.; Tricard, S.; Sinev, I.; Grünert, W.; Chaudret, B.; Leitner, W. Enhancing the Catalytic Properties of Ruthenium Nanoparticle-SILP Catalysts by Dilution with Iron. ACS Catal. 2016, 6, 3719–3726. [Google Scholar] [CrossRef]
- Goclik, L.; Offner-Marko, L.; Bordet, A.; Leitner, W. Selective hydrodeoxygenation of hydroxyacetophenones to ethyl-substituted phenol derivatives using a FeRu@SILP catalyst. Chem. Commun. 2020, 56, 9509–9512. [Google Scholar] [CrossRef]
- Luska, K.L.; Julis, J.; Stavitski, E.; Zakharov, D.N.; Adams, A.; Leitner, W. Bifunctional nanoparticle–SILP catalysts (NPs@SILP) for the selective deoxygenation of biomass substrates. Chem. Sci. 2014, 5, 4895–4905. [Google Scholar] [CrossRef]
- El Sayed, S.; Bordet, A.; Weidenthaler, C.; Hetaba, W.; Luska, K.L.; Leitner, W. Selective Hydrogenation of Benzofurans Using Ruthenium Nanoparticles in Lewis Acid-Modified Ruthenium-Supported Ionic Liquid Phases. ACS Catal. 2020, 10, 2124–2130. [Google Scholar] [CrossRef]
- Bordet, A.; El Sayed, S.; Sanger, M.; Boniface, K.J.; Kalsi, D.; Luska, K.L.; Jessop, P.G.; Leitner, W. Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO2-responsive support. Nat. Chem. 2021, 13, 916–922. [Google Scholar] [CrossRef]
- Bordet, A.; Leitner, W. Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis. Acc. Chem. Res. 2021, 54, 2144–2157. [Google Scholar] [CrossRef] [PubMed]
- Louis Anandaraj, S.J.; Kang, L.; DeBeer, S.; Bordet, A.; Leitner, W. Catalytic Hydrogenation of CO2 to Formate Using Ruthenium Nanoparticles Immobilized on Supported Ionic Liquid Phases. Small 2023, 19, 2206806. [Google Scholar] [CrossRef] [PubMed]
- Philippot, K.; Chaudret, B. Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticles. C. R. Chim. 2003, 6, 1019–1034. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, Z.; Wang, J.; Yang, D.; Li, Q.; Liu, Y.; Gai, H.; Huang, T.; Song, H. Synthesis of hydrophobic Pd-poly(ionic liquid)s with excellent CO2 affinity to efficiently catalyze CO2 hydrogenation to formic acid. Fuel 2022, 325, 124853. [Google Scholar] [CrossRef]
- Li, Q.; Huang, T.; Zhang, Z.; Xiao, M.; Gai, H.; Zhou, Y.; Song, H. Highly Efficient Hydrogenation of CO2 to Formic Acid over Palladium Supported on Dication Poly(ionic liquid)s. Mol. Catal. 2021, 509, 111644. [Google Scholar] [CrossRef]
- Queffélec, C.; Petit, M.; Janvier, P.; Knight, D.A.; Bujoli, B. Surface Modification Using Phosphonic Acids and Esters. Chem. Rev. 2012, 112, 3777–3807. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, M.D.; Godard, C. Hydrogenation of CO2 into Formates by Ligand-Capped Palladium Heterogeneous Catalysts. ChemCatChem 2023, 15, e202201408. [Google Scholar] [CrossRef]
- Wanag, A.; Sienkiewicz, A.; Rokicka-Konieczna, P.; Kusiak-Nejman, E.; Morawski, A.W. Influence of modification of titanium dioxide by silane coupling agents on the photocatalytic activity and stability. J. Environ. Chem. Eng. 2020, 8, 103917. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, H.; Yang, S.; Lee, J.; Kim, H.; Hwang, S.; Jeon, S.W.; Kim, D.H. Ultrafine Pd nanoparticles on amine-functionalized carbon nanotubes for hydrogen production from formic acid. J. Catal. 2021, 404, 324–333. [Google Scholar] [CrossRef]
- Masuda, S.; Mori, K.; Kuwahara, Y.; Yamashita, H. PdAg nanoparticles supported on resorcinol-formaldehyde polymers containing amine groups: The promotional effect of phenylamine moieties on CO2 transformation to formic acid. J. Mater. Chem. A 2019, 7, 16356–16363. [Google Scholar] [CrossRef]
- Wen, M.; Mori, K.; Futamura, Y.; Kuwahara, Y.; Navlani-García, M.; An, T.; Yamashita, H. PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production. Sci. Rep. 2019, 9, 15675. [Google Scholar] [CrossRef] [PubMed]
- Price, T.L., Jr.; Choi, U.H.; Schoonover, D.V.; Arunachalam, M.; Xie, R.; Lyle, S.; Colby, R.H.; Gibson, H.W. Ion Conducting ROMP Monomers Based on (Oxa)norbornenes with Pendant Imidazolium Salts Connected via Oligo(oxyethylene) Units and with Oligo(ethyleneoxy) Terminal Moieties. Macromolecules 2019, 52, 1371–1388. [Google Scholar]
- Dou, Q.; Liu, L.; Yang, B.; Lang, J.; Yan, X. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors. Nat. Commun. 2017, 8, 2188. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Chen, C.; Hu, Y.L. Novel and Efficient Knoevenagel Condensation over Mesoporous SBA-15 Supported Acetate-functionalized Basic Ionic Liquid Catalyst. ChemistrySelect 2020, 5, 14578–14582. [Google Scholar]
- Dai, Y.; Wang, S.; Wu, J.; Tang, J.; Tang, W. Dicationic AC regioisomer cyclodextrins: Mono-6A-ammonium-6C-alkylimidazolium-β-cyclodextrin chlorides as chiral selectors for enantioseparation. RSC Adv. 2012, 2, 12652–12656. [Google Scholar] [CrossRef]
- Roshan, K.R.; Mathai, G.; Kim, J.; Tharun, J.; Park, G.-A.; Park, D.-W. A biopolymer mediated efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. Green Chem. 2012, 14, 2933. [Google Scholar] [CrossRef]
- Brodard-Severac, F.; Guerrero, G.; Maquet, J.; Florian, P.; Gervais, C.; Mutin, P.H. High-Field 17O MAS NMR Investigation of Phosphonic Acid Monolayers on Titania. Chem. Mater. 2008, 20, 5191–5196. [Google Scholar] [CrossRef]
- Zhang, J.; Deo, S.; Janik, M.J.; Medlin, J.W. Control of Molecular Bonding Strength on Metal Catalysts with Organic Monolayers for CO2 Reduction. J. Am. Chem. Soc. 2020, 142, 5184–5193. [Google Scholar] [CrossRef]
- Helmy, R.; Fadeev, A.Y. Self-Assembled Monolayers Supported on TiO2: Comparison of C18H37SiX3 (X = H, Cl, OCH3), C18H37Si(CH3)2Cl, and C18H37PO(OH)2. Langmuir 2002, 18, 8924–8928. [Google Scholar] [CrossRef]
Entry | System | Size (nm) 2 | Pd wt% 3 | P wt% 3 |
---|---|---|---|---|
1 | 9 | 2.65 ± 0.80 | 3.38 | - |
2 | 10 | 2.69 ± 0.92 | 3.04 | 0.21 |
3 | 11 | 1.86 ± 0.69 | 2.57 | - |
4 | 12 | 2.38 ± 0.95 | 1.81 | - |
5 | 13 | 1.87 ± 0.61 | 2.98 | - |
6 4 | 14 | 4.45 ± 1.68 | 3.10 | 0.82 |
7 5 | 15 | 3.00 ± 1.14 | 3.15 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Martínez, M.D.; Godard, C. Molecular TiO2 Modifications of Supported PPh3-Capped Pd Nanocatalysts for CO2 Hydrogenation into Formates. Catalysts 2024, 14, 487. https://doi.org/10.3390/catal14080487
Fernández-Martínez MD, Godard C. Molecular TiO2 Modifications of Supported PPh3-Capped Pd Nanocatalysts for CO2 Hydrogenation into Formates. Catalysts. 2024; 14(8):487. https://doi.org/10.3390/catal14080487
Chicago/Turabian StyleFernández-Martínez, María Dolores, and Cyril Godard. 2024. "Molecular TiO2 Modifications of Supported PPh3-Capped Pd Nanocatalysts for CO2 Hydrogenation into Formates" Catalysts 14, no. 8: 487. https://doi.org/10.3390/catal14080487
APA StyleFernández-Martínez, M. D., & Godard, C. (2024). Molecular TiO2 Modifications of Supported PPh3-Capped Pd Nanocatalysts for CO2 Hydrogenation into Formates. Catalysts, 14(8), 487. https://doi.org/10.3390/catal14080487