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Abstract: TiO2-supported Pd NPs-based materials were prepared following two distinct approaches:
For the first set of materials 1–8, modification of the TiO2 support was performed prior to Pd
NPs deposition, while the second set (9–15) was synthesized by deposition of modifiers over pre-
synthesized Pd-PPh3/TiO2. These catalysts were applied in the hydrogenation of CO2 to formate,
and their performance was compared with that of the unmodified Pd-PPh3/TiO2. Modification of the
TiO2 support by organosilanes provided a beneficial effect in catalysis compared with the catalyst
containing unmodified TiO2 or TiO2 modified by organophosphonic acids. In contrast, in most cases,
the deposition of modifiers over previously synthesized Pd NPs supported on TiO2 was not beneficial
to the activity of the catalyst. Interestingly, upon recycling, the first set of catalysts suffered a rapid
decrease in activity, while the anchoring of modifiers over previously formed Pd NPs showed an
improved stability (TON > 500 after the third recycling).

Keywords: CO2 hydrogenation; palladium; nanoparticles; catalyst modifications

1. Introduction

The high concentration of CO2 in the atmosphere is nowadays regarded as a critical
issue and has generated a strong interest in research for the development of non-fossil-
based feedstocks. As such, in spite of its inertness, CO2 is viewed as a very attractive C1
source to produce fuels and chemicals [1–4]. Among the potential transformations of CO2,
its hydrogenation into formic acid and derivatives has become a priority in view of the
recent progress made in the production of H2 via water splitting [5]. Indeed, formic acid
offers high hydrogen storage capacity and stability and provides a methodology for CO2
storage in a chemically stable form, closing a hydrogen energy cycle [6–8].

Among the heterogeneous catalysts reported for the hydrogenation of CO2 into for-
mates, Pd was described as one of the most active metals [7,9–12], and the combination of
Pd with other metals such as Au [8,13], Ag [14–16], and Ni was also described as efficient
for this transformation [17]. The selection of the support is also significant in this process,
and for instance, Pd catalysts on carbon-based supports such as reduced graphene oxide
(rGO), N-doped carbon (N-C), or mesoporous graphitic carbon nitride (g-C3N4) provided
excellent results for the hydrogenation of bicarbonates to formates [13,18]. In 2018, Mori
et al. reported highly efficient CO2 hydrogenation using Pd-based catalysts supported onto
TiO2 [16].

Heterogeneous catalysts have become a crucial part of many industrial activities, such
as organic synthesis, oil refining, and pollution control [19–24]. Modern heterogeneous
catalysts consist of several elements in precise proportions [21] and are optimized to ob-
tain the greatest reaction rate, which in turn results in optimal selectivity [20–22]. The
heterogeneous catalyst performance can be improved by modifying the support using ap-
proaches such as nanotechnology and nanoscience or controlling the pore structure [23–25].
However, the support must retain its specific properties, such as porosity, surface area,
dispersion, selectivity, and activity [26–30].
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In the design of new catalysts, the appropriate metal–support interactions (MSI) must
be achieved, and their tuning can be completed through adjustments of either the compo-
sition and/or morphology of the support and active phase or through the modifications
of their surface (Scheme 1) [31–34]. However, changes in composition and morphology
can affect their nature [35,36]. Surface modifications can enhance steric control or provide
hydrophilic/hydrophobic characteristics that can be suitable for the target substrates and
catalysis media [37]. In this area, the use of organic self-assembled monolayers (SAMs)
is of particular interest since these organic modifiers can act as spacers between NPs to
minimize sintering and improve the stability/recyclability of the catalyst [38,39]. Moreover,
depending on the functional groups in these modifiers, the catalyst activity can be enhanced
through interactions with the substrate [40–42] or by conferring a hydrophobic/hydrophilic
character to the system to favor catalyst–substrate interactions [43].
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Modification of carbon- and silica-supported catalysts with organic molecules were pre-
viously reported to cover metallic nanoparticles with an alkylic chain [44,45] or with groups
containing amine functionalities [14,46] to produce catalytic materials for CO2 hydrogena-
tion into formate. Organosilanes are among the most used molecules to modify supports,
and they constitute a type of inorganic/organic hybrid materials [47]. Aminoalkylsilanes
such as (3-aminopropyl)triethoxysilane (APTES) are the most commonly reported organosi-
lanes [48]. Modification occurs through silanization, which is a process that covers a surface
such as metal oxide with chloro or alkoxysilane [49]. Using APTES, this process starts with
the hydrolysis of the ethoxy groups that are catalyzed by water, leading to the formation
of silanols that condense with the surface hydroxyls to form a monolayer [50]. The most
accepted chemisorption of APTES onto TiO2 implies one or two Si−O−Ti bonds [48,51,52].
Moreover, APTES can also be applied directly over metallic nanoparticles for their stabi-
lization and functionalization [53–55].

Liu et al. reported that APTES directly participates in the synthesis of a protonated
Schiff base that covers Au NPs during the dehydrogenation of FA into CO2 and H2 [56].
Later, the same authors developed a new Au-based catalyst for the hydrogenation of CO2
into formic acid in which the SiO2 support was modified by APTES and a Schiff base, reach-
ing a TON of 14,470 over 12 h at 90 ◦C [57]. The same year, Mori et al. reported PdAg NPs
supported over amine-functionalized mesoporous silica for reversible CO2 hydrogenation
and release of H2 [58]. DFT calculations revealed that the presence of amine affects the O-H
dissociation of FA and favors the adsorption of CO2 in hydrogenation. Additionally, the
catalyst could be recovered and reused for three runs without loss of activity.

Srivastava reported the preparation of Ru NPs supported over various amine
organosilane-modified SBA-15 mesoporous silica and their application as a catalyst in
the hydrogenation of CO2 into formic acid [59]. Primary, secondary, and tertiary amines
were tested, and the use of the primary amine provided the highest catalytic activity.
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Ionic liquids (ILs) constitute another type of interesting molecules for support modifi-
cation [60,61], and in catalytic reactions involving CO2, it was reported that the interactions
between IL and CO2 usually depend on the anion. Indeed, basic anions such as acetate
in combination with 1,3-dialkylimidazolium enhanced such interactions [62], and this
type of ILs was used in the hydrogenation of CO2 to formic acid [63,64]. In recent years,
Leitner and co-workers reported the preparation of metallic nanoparticles in ionic liquids
covalently grafted onto SiO2 by silanization [65–74]. They recently reported a Ru-based
catalyst supported over an imidazolium-based supported ionic liquid phase (SILP) for the
hydrogenation of CO2 into formate in the presence of NEt3 [75]. The authors first covalently
modified the SiO2 surface with ILs via silanization, while the synthesis of the Ru NPs was
performed in a second step using the organometallic approach [76]. Modifications of the
alkyl chain and anion proved very important to modulate the NPs properties and resulted
in an increase in the TON by 2- or 10-fold when compared with unmodified Ru/SiO2
catalyst. Using H/D exchange experiments, the authors determined that the modification
favored the desorption of formate from the catalyst surface. However, in recycling exper-
iments, a significant loss of activity was observed, which was attributed to the leaching
of IL from the support due to the use of NEt3 + H2O as the solvent system. Other authors
reported Pd NPs supported over poly(ionic liquid)s (PILs) for the hydrogenation of CO2
into formic acid [77,78]. Using this catalytic system, a TOF of 1190 h−1 was obtained in the
presence of NEt3 aqueous solution, and good recyclability was observed during several
runs [77].

Organophosphonic acids (PAs) constitute another common type of molecules used for
the modification of support surfaces. These RPO(OH)2 compounds were especially used to
modify metal oxide surfaces [79]. However, when PAs are used for surface modification,
an additional annealing or aging treatment is necessary to produce condensation reactions
and form strong bonds between PAs and metal oxide [39].

In a previous report from our group, ligand-capped nanocatalysts were prepared over
supports of different natures (metal oxides and carbon based) and tested in Pd-catalyzed
hydrogenation of CO2 to formate. The presence of stabilizing ligands proved crucial to
obtain small and well-defined Pd NP. In this study, the best performance was achieved
using TiO2-based catalysts [80]. However, upon recycling, a rapid decrease of activity
was observed.

Here, modifications of the TiO2 support/PPh3-capped catalyst are described using
Si- and P-based molecular modifiers for the first time. These new materials were char-
acterized and tested in the catalytic hydrogenation of CO2 into formate. The effect of
these modifications on the activity and recyclability of these catalysts was particularly
investigated.

2. Results and Discussion

The modified catalysts were prepared according to two distinct approaches using
triethoxysilanes (TESs) and organophosphonic acids (PAs) as modifiers (Figure 1).
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In the first approach, the TiO2 support was modified prior to Pd NP deposition,
whereas in the second approach, the Pd NPs were initially supported onto TiO2 [80], and
the modifiers were reacted subsequently (Scheme 2).
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The grafting of the RSi(OEt)3 modifiers onto TiO2 was carried out following the
literature procedures (Figure 1) [52,81]. In a typical synthesis, the reaction was performed
in an EtOH:H2O solution or absolute EtOH. The mixture was then centrifuged, and the solid
was washed several times with H2O and EtOH and dried under a vacuum for several hours.

The optimization of synthesis parameters such as concentration of APTES, APTES/TiO2
ratio, temperature, and time was initially performed (Table S1). Organophosphonic acids
(PAs) containing a butyl chain or a 3-propylamine group were also used as modifiers
(Figure 1). The preparations were carried out using a modifier concentration of 0.01 M at
room temperature. For these modifiers, an additional annealing or aging treatment of the
material at 120 ◦C was performed.

To confirm the successful modification of TiO2, the samples were first analyzed by
FT-IR analysis (Figures S2, S5 and S7), which corroborated that the condensation between
surface TiO2 hydroxyl groups and silanol groups had taken place via the detection of CH2
and C-N stretching bands.

Quantification of the anchoring of the modifiers was carried out via TGA analysis
through analysis of the weight losses observed in every case (Figures S3, S6, S8 and Table S2).
Apart from the low-temperature (<200 ◦C) weight loss associated with the removal of water,
a new weight loss between 200 and 450 ◦C was detected for the modified TiO2 samples and
was attributed to the loss of anchored modifiers. Variations between 1 and 3.5 wt% were
measured depending on the nature and concentration of modifier used.

In view of these results, it was concluded that a series of functionalized TiO2 supports
was successfully prepared using organosilanes and organophosphonic acids as modifiers.
FT-IR analysis confirmed the presence of these modifiers at the surface of the TiO2 supports
(Figures S2, S5 and S7), and TGA (Figures S3, S6, S8 and Table S2) provided quantitative
information about these systems.

2.1. Synthesis and Characterization of Supported PPh3-Capped Pd NPs over Modified TiO2

The synthesis of Pd NPs was carried out over the modified TiO2 supports in the
presence of PPh3 as the stabilizing ligand (Scheme 3). The materials were prepared by
decomposition of Pd(dba)2 under H2 pressure at room temperature using THF as the
solvent. A nominal Pd loading of 4 wt% was targeted.

The newly prepared systems were characterized by TEM, HR-TEM, ICP, XPS, FT-IR,
and TGA.

Samples were analyzed by TEM to obtain information about the size and morphology
of the nanoparticles. TEM images of the newly synthesized materials are displayed in
Figure 2. In all cases, small and crystalline Pd NPs were formed. The sizes and distributions
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obtained from TEM measurements and ICP results are summarized in Table S3. In all cases,
Pd loadings between 2.7 and 3.5 wt% were measured.
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Scheme 3. Synthesis of nanoparticles stabilized with PPh3 supported over modified TiO2.

For catalyst 1 bearing PTES as the TiO2 modifier (Figure 2a), the resulting NPs exhib-
ited a size of 5.75 nm with a broad distribution. Some agglomerations of Pd NPs were also
observed. When TiO2 modified with APTES was employed as support (Figure 2b–d), the
Pd NPs sizes ranged from 2.04 nm to 2.52 nm, while the Pd content was between 2.75% and
3.36 wt%. The material 2 was also analyzed by HR-TEM (Figure S10) to confirm the size
of the Pd NPs and obtain information on their crystallinity. EDS mapping (Figure S10c)
provided information about the composition of the catalyst active phase and revealed the
presence of Si at the surface of TiO2, which confirmed the presence of APTES. The catalyst
3b (Figure 2d), synthesized in the absence of a ligand, was also analyzed by HR-TEM
(Figure S11). For this catalyst, the same edge of Si is appreciated (Figure S11c). The dif-
ference in Pd NP size observed for the PTES-modified support and those modified with
APTES clearly indicated the role of the amine function in the NP stabilization. The largest
NPs were obtained when the synthesis was performed in the absence of PPh3, indicating
that this ligand also played a role in the NP stabilization, although to a much lesser extent
than the amine group from the support.

When the support was functionalized by organosilanes containing an IL moiety,
particle sizes between ca. 1.9 and 2.4 nm were measured (Figure 2e–h). The catalyst 4
containing a support modified by IL was also analyzed by HR-TEM and EDS (Figure S12).
Due to the low concentration of IL-Cl employed for synthesis of this catalyst, the layer
of Si around TiO2 was narrow. The presence of P was also observed, indicating that the
ligand remained on the NPs. Interestingly, for the materials 5 and 6a, which contain TiO2
modified by the same organosilane but differ by the loading of organosilane at the support
surface, only a slight difference in size was observed (2.43 vs. 1.99 nm). Moreover, when
the synthesis of 6a was repeated in the absence of PPh3 6b (Entry 8), similar size and Pd
loading were observed, indicating that the ligand was not playing an important role in the
Pd NP stabilization when the IL-containing modifiers were used.
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1 (a), 2 (b), 3a (c), 3b (d), 4 (e), 5 (f), 6a (g), 6b (h), 7 (i), and 8 (j).

When the PA containing an alkylic chain was used for the modification of the support
(Figure 2i), large Pd agglomerations were observed, and nanoparticles were detected out
of the support. This indicates that using this modified support, the NP stabilization was
not efficient. When the PA containing an amine group was used as the support modifier
(Figure 2j), the sizes of the resulting Pd NPs were 3.41 nm, while similar Pd contents
were obtained by ICP (ca. 3.3 wt%) (Table S3). Both samples revealed Pd NPs with broad
distributions. The material 8, containing TiO2 modified by PAs, was analyzed by HR-TEM
(Figure S13). Small agglomerations were observed by HR-HAADF STEM. The presence
of phosphorus was detected over the support and over the Pd NPs due to the presence of
NH2-PA and PPh3.

These results therefore indicated that when organosilanes (TESs) were used to modify
TiO2, the NP stabilization was efficient, resulting in smaller Pd NPs with narrower dis-
tributions than for PA-modified supports. However, in terms of Pd loading, no relevant
differences were observed. The presence of functional groups in the TESs modifiers also
affected the NP stabilization since the materials containing an organosilane with a simple
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alkyl chain provided larger Pd NPs with broader distribution than with TESs containing
either an amine function or an imidazolium group.

Moreover, when the synthesis was performed using the support with a higher con-
centration of APTES, smaller nanoparticles were obtained. The same effect was observed
when IL-containing modifiers were used.

XPS analysis was also performed for some of the Pd-PPh3/mod@TiO2 1–8 catalysts
(Table S4 and Figures S14–S16) to obtain the surface composition data, chemical state,
and electronic state of different elements present in these catalysts. The data obtained
were compared with those of the unmodified Pd-PPh3/TiO2 catalyst. All the spectra were
referenced using the C1s signal and set at 285.0 eV. The presence of Si2p, N1s, and P2p for
4 catalyst and N1s and P2p for 8 was detected. For Pd3d, no significant differences were
observed with the unmodified Pd-PPh3/TiO2 catalyst (335.0 eV). For all the samples, the
relative amount of Pdδ+ also revealed similar (ca. 10%).

To conclude, the synthesis and characterization of the series of catalysts 1–8 based
on PPh3-capped Pd NPs were carried out using modified supports. When organosilanes
were employed to modify the support, smaller Pd NPs were obtained than when the
supports were modified with organophosphonic acids. The presence of the -NH2 group in
organosilanes and organophosphonic acids influences the structure/composition of the
materials since in the absence of the -NH2 group, large NPs as well as unsupported NPs
and agglomerations were observed.

2.2. Deposition of Modifier over TiO2-Supported PPh3-Capped Pd NPs

A new series of catalysts was synthetized by deposition of TESs and PAs modifiers
over the previously synthesized Pd-PPh3/TiO2 material (Scheme 4). The newly prepared
systems were characterized by TEM and ICP, and FT-IR, TGA, HR-TEM, and XPS analyses
were also performed for representative examples.
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Scheme 4. Deposition of TESs and PAs modifiers over previously synthesized Pd-PPh3 supported
over TiO2.

PTES or APTES was reacted with the previously synthesized Pd-PPh3/TiO2 either at
r.t. overnight in a mixture of 95% EtOH, 5% H2O, or at 120 ◦C during 4 h using EtOH as
solvent. At the end of the reaction, the samples were centrifugated, washed with milli-Q
H2O and EtOH, and dried overnight at 100 ◦C.

The samples were initially analyzed by TEM (Figure S17) and ICP, and the data are
summarized in Table 1.
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Table 1. Characterization data for the deposition of TESs and PAs over the previously synthesized
Pd-PPh3/TiO2 system 1.
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1 9 2.65 ± 0.80 3.38 -
2 10 2.69 ± 0.92 3.04 0.21
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4 12 2.38 ± 0.95 1.81 -
5 13 1.87 ± 0.61 2.98 -

6 4 14 4.45 ± 1.68 3.10 0.82
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1 Synthesis conditions: Pd-PPh3/TiO2 previously synthesized was added to a solution of TESs (for determined
mmol TESs/mg Pd-PPh3/TiO2 ratio) on mixture EtOH:milli-Q H2O (95:5, v/v), and it was left to react at r.t.
overnight. 2 Determined by TEM. 3 Determined by ICP. 4 Pd-PPh3/TiO2 system was added to a solution of PA on
THF, and it was left to react r.t. overnight. 5 Pd-PPh3/TiO2 system was added to a solution of APA on milli-Q
H2O, and it was left to react r.t. overnight.

As described previously, the Pd NPs in the Pd-PPh3/TiO2 catalyst exhibited a mean
size of 2.37 ± 0.19 nm [80]. When the catalyst was modified by deposition of PTES (Entry
1), the size of Pd NPs slightly increased to 2.65 ± 0.80 nm, and a Pd content of 3.38 wt%
was measured by ICP. When APTES was used as the modifier, the mean size of the NPs
varied from ca. 1.9 (Entry 3) to 2.7 nm (Entry 2), indicating little effect of the treatment
on the Pd NPs. However, relevant decreases in Pd content were observed, indicating that
the deposition of modifiers containing an amine group could induce the leaching of Pd
from the previously synthesized material. The presence of P (from PPh3) and Si (from the
organosilane) was confirmed by ICP.

When modifiers containing imidazolium groups in the alkyl chain were tested, the
NPs mean diameters were between ca. 1.9 (Entry 5) and 2.4 nm (Entry 4), with distributions
narrower than 1 nm. However, the Pd content was lower than expected. Surprisingly, when
PAs were deposited over Pd-PPh3/TiO2, larger NP sizes were observed, as mean diameters
of 4.45 ± 1.68 nm (Entry 6) and 3.00 ± 1.14 nm (Entry 7) were measured when PA and
APA were employed, respectively. This therefore indicated that the deposition of PAs over
Pd-PPh3/TiO2 caused a restructuration of the Pd NPs. In contrast, for these catalysts, the
Pd content was almost the same as that in the original material, thus suggesting that the
reaction of the previously synthesized material with PAs does not induce Pd leaching but
could produce some restructuration, such as Ostwald’s ripening.

Comparing the NP sizes obtained via the two approaches described in this work,
modification over the pre-synthesized Pd-PPh3/TiO2 NPs (Table S3) yielded smaller Pd
NPs and narrower distributions than when the TiO2 support was modified in the first step
(Table 1). However, lower Pd contents were obtained.

FT-IR and TGA analyses were also performed on 11 (Figure S18). Comparing the
FT-IR spectra of this sample with that of TiO2-3 (Figure S18a) (same concentrations and
conditions), the same IR signals were detected. However, the TGA analysis revealed a
greater amount of organic material at the surface of TiO2-3 (Figure S18b).

From HR-TEM analysis of 11 (Figure 3 and Figure S20a), a thin layer was detected at
the surface of the material. A similar observation was reported by Liu et al. using APTES as
the modifier [56]. This layer was ca. 2 nm thick and wrapped both support and Pd particles.
EDS mapping (Figure S20c) revealed the Si-based nature of this layer at the surface of
both TiO2 and Pd NPs. Therefore, this evidenced a structural difference for the materials
obtained by this approach when compared with those synthesized by reverse deposition.
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When HR-TEM analysis of 12 was performed (Figure S21), agglomerations were
detected in some regions of the support (Figure S21a,b). Microanalysis also confirmed the
presence of P originating from the PPh3 ligands.

XPS was also employed for the analysis of some of these catalysts (Figures S24–S26).
The data obtained were compared with those of the unmodified Pd-PPh3/TiO2 catalyst.
All the spectra were referenced using the C1s signal and set at 285.0 eV. The presence of
Si2p, N1s, and P2p for 11 catalyst and N1s and P2p for 15 was detected. The Pd spectra
were studied with more detail (Figure S26b). When a P-based modifier was used (15),
no significant differences with the unmodified catalyst were observed. However, for
the sample containing the Si-based modifiers, the BEs observed were higher. For 11, a
difference of 1 eV was observed (336.0 eV) with the reference catalyst, which could be due
to the interaction with the amine functional group from APTES, as previously reported by
Kim et al. [82]. They also observed an increase of BE for Pd when APTES was used on the
synthesis of Pd NPs over CNTs, and this difference was attributed due to the interaction
of Pd with amine functional groups and to the particle size (1.85 nm). A combination of
interaction of amine and small size could produce the BE observed for 11.

The relative amount of Pdδ+ also revealed differences in samples (Table S6). In
unmodified Pd-PPh3/TiO2, a value of 12.5% was measured. When the aminophosphonic
acid was used in the synthesis of 15, the proportion of Pdδ+ was 21.9%. These values
remained similar to that of the reference Pd-PPh3/TiO2 catalyst. However, a value as
high as 64% was obtained for 11 that was attributed to the oxidation of the samples
during manipulations.

To conclude, these new catalysts were obtained by deposition of organosilane and
organophosphonic acid modifiers over previously synthesized Pd NPs supported on TiO2.
When organosilanes were employed as modifiers, smaller Pd NPs were obtained compared
with those modified by organophosphonic acids. Using APTES at different concentrations,
the use of a greater amount of APTES led to lower Pd contents, which was attributed to
Pd leaching.

2.3. Hydrogenation of CO2 into Formates Using Modified Catalysts

First, a screening was performed to evaluate the effect of the different modifications
carried out on catalysts. These tests were performed at 80 ◦C using 36 bar of CO2/H2 (1:1)
pressure during 15 h in the presence of KHCO3 as a base and using water as solvent. The
results obtained using the Pd-PPh3/modifier@TiO2 1–8 and modifier@Pd-PPh3/@TiO2
9–15 catalysts are summarized in Tables 2 and 3.

2.3.1. Hydrogenation of CO2 into Formates Using Catalysts Formed by Deposition of Pd
NPs over Modified TiO2 Supports

In Table 2, the results obtained with systems 1–8 are displayed and compared with
those provided by the unmodified Pd-PPh3/TiO2 catalyst (TON of 881, Entry 1) under the
same conditions [80]. When 2 was used as catalyst, a TON of 1057 was reached (Entry 3),
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whereas using material 8, modified by organophosphonic acid (Entry 11), a decrease in
activity was observed, and the lowest TON value of the series was measured (694). These
results therefore indicated that when the catalyst is formed by deposition of the Pd NPs
over the modified support, the nature of the modifier affects the catalyst activity.

Table 2. Catalytic activity of Pd-PPh3/modifier@TiO2 1–8 with different anchor atoms for CO2

hydrogenation to formate 1.
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1 Reaction conditions: 20 mg of catalyst, 4 M KHCO3, 5 mL milli-Q H2O, 80 ◦C, pTotal = 36 bar, p(CO2) = p(H2),
and 15 h. 2 TON = mmol formate/mmol total of Pd, calculated by NMR using 1,4-dioxane as internal standard.
3 In absence of PPh3.

Next, the effect of the reaction conditions used for the support modification using
APTES was investigated. The results obtained show three distinct effects compared with
the unmodified catalyst (Entry 1). When low concentrations of APTES (0.01 M and
0.003 mmol/mg TiO2) were used to modify the support, a positive effect on the activ-
ity of the resulting catalyst 2 was observed (Entry 3). When the concentration of APTES
was increased up to 0.1 M (up to 0.013 mmol/mg TiO2) (catalyst 3a, Entry 4), the TON
obtained was similar to that obtained with the unmodified catalyst (868), suggesting that
the excess of APTES “cancelled out” the positive effect observed at lower concentrations.
These results are in contrast with those reported by Mori et al. [58] using a phenylamine
containing organosilane to modify SiO2 since they observed an increase in catalytic activity
when the amount of phenylamine was increased.

Next, the effect of the functional group at the end of the alkyl chain of the modifier was
evaluated. For the catalysts formed by modifications with organosilanes, the presence of a
functional group (either NH2 or imidazolium group) was clearly beneficial to the catalyst
activity since an increase in TON was observed from 588 (for PTES, Entry 2) to ca. 850 for
APTES and IL-OAc-modified catalysts (Entries 4 and 8). A similar effect was observed for
PAs-modified catalysts (Entry 10 vs. 11), although to a lesser extent (635 vs. 694).

For the Pd NPs over TiO2 previously modified by organosilanes containing an IL
functionality, the highest TON was obtained with the catalyst 5 (1030, Entry 7).

Based on previous results using organosilane modifiers (Table 2), the concentration
could be the parameter responsible for this difference. This was confirmed by the results
obtained with the catalysts 5 and 6a, which only differ in the concentrations used during
their support synthesis (Entry 7 vs. Entry 8). Indeed, the catalyst 5 containing the support
modified at the lower concentration provided a TON of 1030, while when 6a was used,
a TON of 776 was obtained. These results are therefore in agreement with the trend
previously observed.

The presence of the PPh3 ligand during the synthesis of the Pd NPs over supports
modified with APTES and IL-OAc was evaluated (Table 2). In both cases, slightly higher
TON values were obtained in the absence of PPh3 (Entry 4 vs. Entry 5 and Entry 8 vs.
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Entry 9). When 3a was used, a TON of 868 was obtained (Entry 4), while in the system
without PPh3, 3b provided a TON of 917 (Entry 5). IL-OAc, 6a, which was synthesized in
the presence of PPh3, reached a TON of 776 (Entry 8), while its analogue without PPh3, 6b,
yielded a TON of 826 (Entry 9).

These catalytic results therefore show that the modification of the TiO2 support by
oganosilanes provided a beneficial effect compared with the catalyst containing unmodified
TiO2 or TiO2 modified by organophosphonic acids. Moreover, the modifier concentration
is a key parameter during the support modification, and lower values provide catalysts
with higher activities. The presence of a functional group (either NH2 or imidazolium) in
the modifiers also improved the activity of the catalysts compared with those containing a
simple alkyl chain.

2.3.2. Hydrogenation of CO2 into Formates Using Catalysts Formed by Modifications of
Pre-Synthesized Pd-PPh3/TiO2

The catalysts synthesized by the deposition of the modifier over previously synthesized
Pd-PPh3/TiO2 were evaluated in the hydrogenation of CO2 into formate (Table 3).

Table 3. Catalytic activity of modifier@Pd-PPh3/TiO2 9–15 with different anchor atoms for CO2

hydrogenation to formate 1.

Catalysts 2024, 14, 487 11 of 21 
 

 

Next, the effect of the functional group at the end of the alkyl chain of the modifier 
was evaluated. For the catalysts formed by modifications with organosilanes, the presence 
of a functional group (either NH2 or imidazolium group) was clearly beneficial to the cat-
alyst activity since an increase in TON was observed from 588 (for PTES, Entry 2) to ca. 
850 for APTES and IL-OAc-modified catalysts (Entries 4 and 8). A similar effect was ob-
served for PAs-modified catalysts (Entry 10 vs. 11), although to a lesser extent (635 vs. 
694). 

For the Pd NPs over TiO2 previously modified by organosilanes containing an IL 
functionality, the highest TON was obtained with the catalyst 5 (1030, Entry 7). 

Based on previous results using organosilane modifiers (Table 2), the concentration 
could be the parameter responsible for this difference. This was confirmed by the results 
obtained with the catalysts 5 and 6a, which only differ in the concentrations used during 
their support synthesis (Entry 7 vs. Entry 8). Indeed, the catalyst 5 containing the support 
modified at the lower concentration provided a TON of 1030, while when 6a was used, a 
TON of 776 was obtained. These results are therefore in agreement with the trend previ-
ously observed. 

The presence of the PPh3 ligand during the synthesis of the Pd NPs over supports 
modified with APTES and IL-OAc was evaluated (Table 2). In both cases, slightly higher 
TON values were obtained in the absence of PPh3 (Entry 4 vs. Entry 5 and Entry 8 vs. Entry 
9). When 3a was used, a TON of 868 was obtained (Entry 4), while in the system without 
PPh3, 3b provided a TON of 917 (Entry 5). IL-OAc, 6a, which was synthesized in the pres-
ence of PPh3, reached a TON of 776 (Entry 8), while its analogue without PPh3, 6b, yielded 
a TON of 826 (Entry 9). 

These catalytic results therefore show that the modification of the TiO2 support by 
oganosilanes provided a beneficial effect compared with the catalyst containing unmodi-
fied TiO2 or TiO2 modified by organophosphonic acids. Moreover, the modifier concen-
tration is a key parameter during the support modification, and lower values provide cat-
alysts with higher activities. The presence of a functional group (either NH2 or imidazo-
lium) in the modifiers also improved the activity of the catalysts compared with those 
containing a simple alkyl chain. 

2.3.2. Hydrogenation of CO2 into Formates Using Catalysts Formed by Modifications of 
Pre-Synthesized Pd-PPh3/TiO2 

The catalysts synthesized by the deposition of the modifier over previously synthe-
sized Pd-PPh3/TiO2 were evaluated in the hydrogenation of CO2 into formate (Table 3). 

Table 3. Catalytic activity of modifier@Pd-PPh3/TiO2 9–15 with different anchor atoms for CO2 hy-
drogenation to formate 1. 

 
Entry System TON 2 

1 Pd-PPh3/TiO2 881 
2 9 862 
3 10 581 
4 11 992 
5 12 388 
6 13 551 
7 14 912 
8 15 844 

1 Reaction conditions: 20 mg of catalyst, 4 M KHCO3, 5 mL milli-Q H2O, 80 °C, pTotal = 36 bar, 
p(CO2) = p(H2), and 15 h. 2 TON = mmol formate/mmol total of Pd, calculated by NMR using 1,4-
dioxane as internal standard. 

Entry System TON 2

1 Pd-PPh3/TiO2 881
2 9 862
3 10 581
4 11 992
5 12 388
6 13 551
7 14 912
8 15 844

1 Reaction conditions: 20 mg of catalyst, 4 M KHCO3, 5 mL milli-Q H2O, 80 ◦C, pTotal = 36 bar, p(CO2) = p(H2),
and 15 h. 2 TON = mmol formate/mmol total of Pd, calculated by NMR using 1,4-dioxane as internal standard.

When the results obtained by the deposition of organosilane and organophosphonic
acid under the same conditions (same concentration, mmol modifier/mg TiO2 ratio, and
amine substituent on the organosilane and organophosphonic acid) were compared, the
system containing a Si as anchoring atom, 10, provided a TON of 581 (Entry 3), whereas
when APA was used as modifier, in 15, a TON of 844 was reached (Entry 8).

As the unmodified catalyst provided a TON of 881, it was concluded that the deposi-
tion of the organosilane over the pre-synthesized catalyst had a detrimental effect on the
CO2 hydrogenation, while the deposition of PA had no significant effect. These results are
in contrast with those obtained using the catalyst where Pd NPs were deposited over the
modified support, and they highlight the importance of the synthetic strategy when such
catalysts are modified with organic molecules.

The results obtained for hydrogenation of CO2 to formate using catalysts formed by
the deposition of APTES at different concentrations are also summarized in Table 3. As
previously mentioned, the system 10 obtained at low concentration (0.01 M of APTES;
0.003 mmol/mg TiO2), and the TON obtained was 581. However, when the same modifier
was deposited using a 0.13 M solution, the resulting catalyst 11 provided much higher
activity with a TON of 992 (Entry 4).

The performance of catalysts modified by organosilanes containing a propyl, a propy-
lamine, or a propyl-imidazolium groups and those modified by PAs containing a butyl and
a propylamine substituent was also evaluated (Table 3). Interestingly, all these catalysts
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exhibited activities similar to that of the unmodified catalyst, except that modified by an
organosilane containing an imidazolium function. It is noteworthy that, as described in the
previous section, the catalyst 11 showed a slight positive effect compared to the reference
catalyst (Entry 4 vs. Entry 1). The results described here are in clear contrast with those
obtained when the support was first modified prior to the deposition of Pd NPs, for which
the presence of a functional group (either amine or imidazolium) in the modifier clearly
improved the performance of the resulting catalysts. This might be due to the beneficial
effect of this group in the anchoring of the NPs when present at the support surface prior
to the NP deposition, while such a group does not influence the catalytic activity when
deposited after NP formation. This thus suggests that the presence of this group does not
influence the catalysis but only the preparation of the catalyst.

The catalytic performances of the catalysts 12 and 13, modified by ionic liquid-
containing modifiers with distinct anions, are summarized Table 3. The two catalysts
tested provided lower TONs (388 and 551, Entries 5 and 6, respectively) than the unmodi-
fied catalyst, indicating that the deposition of IL-containing organosilanes over the Pd NPs
was detrimental to the catalytic performance of the Pd-PPh3/TiO2 material.

These catalytic results therefore show that the deposition of organosilane and
organophosphonic acid modifiers over previously synthesized Pd NPs supported on TiO2
was not beneficial, in most cases, to the activity of the resulting catalysts.

The TON values obtained using the catalysts described here are among the highest
reported for Pd-based catalysts (range ca. 800–1200) [42,58,83,84].

2.3.3. Reusability Tests

After evaluating the activity of the newly synthesized catalysts, recyclability tests
were performed using the most active systems. During these experiments, the catalysts
were recovered by filtration over a Nylon membrane after each cycle, washed several times
with milli-Q H2O, and dried under vacuum for several hours prior to their reuse. All the
experiments described in the manuscript were carried out at least twice to confirm the
reproducibility of the data.

Initially, the catalysts 2, 3b, 4, and 8 were employed to evaluate the effect of the
modifiers on the reusability of the materials performing the hydrogenation reactions at
80 ◦C. The results obtained are summarized in Figure 4. In all cases, a strong decrease
in activity was observed after two cycles. However, the catalysts 2 and 3b containing
the support previously modified by APTES suffered a minimal loss of activity during
the first cycle and a large decrease during the second cycle. In contrast, the catalysts 4
and 8 containing the support modified by NH2-PA and an organosilane containing an
imidazolium group suffered a large loss of activity during the first recycling but maintained
their activity during the second recycling. After the third recycling, a new drop in activity
for these catalysts was observed. TEM analysis of the spent catalysts revealed large
agglomerations in all samples, while no dramatic changes in mean size were measured on
non-agglomerated Pd NPs (Figures S40, S41, S43 and S44).

Next, recyclability experiments were performed using the catalysts 11, 12, 14, and 15
under the same conditions (Figure 5). It was found that 11 was the most active system of
this series, with an initial TON of 904. This catalyst provided a TON of 724 after the first
recycling, 662 after the second recycling, and 524 after the third recycling.

For the catalysts in which deposition of an organophosphonic acid was performed over
the previously synthesized Pd-PPh3/TiO2, distinct behaviors were observed depending on
the functional groups contained in the modifiers. For 15 containing an PA with an amine
function, a drastic decrease in activity was observed during the first recycling, with a drop
of TON value from 873 to 332. No relevant decrease in activity was observed during the
second recycling, while a drop of TON to 201 was measured for the third recycling. In
contrast, when the catalyst contained a PA modifier with a butyl chain 14, the activity loss
during the first recycling was less pronounced (from a TON of 827 to 723), while a sudden
drop to 369 was observed during the second recycling. For the catalyst 12 modified by
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an organosilane containing an imidazolium group, much lower activities were measured
(TONs of 405 initially and 209 after three runs).
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mate. Conditions: 20 mg of catalyst, 4 M KHCO3, 5 mL milli-Q H2O, pTotal = 36 bar, p(CO2) = p(H2),
80 ◦C, and 15 h. TON = mmol formate/mmol total of Pd, calculated by NMR using 1,4-dioxane as
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TEM analysis of the spent catalysts after two recyclings (Figure S45) revealed that
the mean sizes of the Pd NPs in these materials was in all cases in the range 3.5–4 nm
(Table S19), and different degrees of agglomeration were observed. In the case of catalyst
12, for which an increase in Pd NPs mean size from 2.4 nm to ca. 4 nm was observed, the
presence of agglomerations was pronounced. For the catalysts modified with PAs 14 and
15, no large variation in size was observed, but large agglomerations were detected.

These recycling experiments therefore show that the synthetic procedure used for
the modification of the Pd-PPh3/TiO2 catalyst affects the reusability of these materials in
the CO2 hydrogenation into formate. Indeed, the catalysts formed by modification of the
support prior to Pd NP deposition suffer a rapid decrease in activity during their recycling
and reuse in spite of the initial beneficial effect. In contrast, some of the materials where the
modifiers were deposited over the previously anchored Pd NPs onto TiO2 show a much
more gradual decrease in activity and reached a TON > 500 after the third recycling. To
evidence the improvement in reusability obtained by catalyst modification in this work,
the TON values obtained with the unmodified catalyst Pd-PPh3/TiO2 during the recycling
experiments are compared with those of 11 in Figure 6. Despite a superior initial activity
of the unmodified catalyst, both materials exhibited similar TON values after the first
recycling and in the second and third recyclings, and the modified catalyst clearly showed
a better performance.
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Figure 6. Comparation of recycling experiments with 11 and Pd-PPh3/TiO2 for CO2 hydrogena-
tion to formate. Conditions: 20 mg of catalysts, 4 M KHCO3, 5 mL milli-Q H2O, pTotal = 36 bar,
p(CO2) = p(H2), and 15 h. Temperatures employed for 11 and Pd-PPh3/TiO2 were 80 and 60 ◦C,
respectively. TON = mmol formate/mmol total of Pd, calculated by NMR using 1,4-dioxane as
internal standard.

Important differences were observed by TEM analyses of the spent catalysts since
for 11, an increasing of size from 1.86 ± 0.69 nm to 3.53 ± 1.23 nm was measured after
two cycles, but only a few agglomerations were observed. In contrast, the Pd NPs in
Pd-PPh3/TiO2 were largely agglomerated after the recyclings and exhibited a mean size of
ca. 5 nm. These results suggest that the presence of APTES provided additional stabilization
and limited the degree of agglomerations of the Pd NPs. This is in agreement with the
previously reported results where modifications of the heterogeneous catalyst by APTES
improved the stability of the catalysts and hence their recovery [53,54,56,58,59].

3. Materials and Methods

Pd(dba)2, PPh3, TiO2 (Titanium (IV) oxide nanopowder, 21 nm primary particle size
(TEM), ≥99.5% trace metals basis, rutile–anatase mixture, specific surface area 35–65 m2/g),
and the rest of compounds employed for modification were purchased from Sigma-Aldrich
(St. Louis, MO, USA) and used without any further purification. All solvents were dried
from a solvent purification system (SPS) and deoxygenated. Tetrahydrofuran was further
dried by refluxing in the presence of sodium/acetophenone. Milli-Q water purchased
from Merck (Madrid, Spain) was employed in catalytic experiments. Any other solvent
or reagent employed was reagent-grade. Hydrogen (5.0) was purchased from Carburos
Metálicos (Barcelona, Spain), and CO2 (5.3) was purchased from Abelló Linde (Valencia,
Spain). All the synthesis were performed using Schlenk techniques under argon and
glovebox using nitrogen as the inert gas. The synthesis of nanoparticles were carried
in Fischer–Porter bottles, and catalytic tests were performed in the stainless-steel high-
pressure reactor Hel CAT-7 (7 × 10 mL). Characterization techniques that were employed
included TEM, HR-TEM, ESEM, FESEM, ICP-OES, TGA, NMR, FT-IR, and XPS. All details
and corresponding figures can be found in the Supporting Information.

3.1. Modification of TiO2 with n-Propyltriethoxysilane (PTES) and
(3-Aminopropyl)triethoxysilane (APTES)

In a general synthesis of TiO2-1–3, a solution (mixture EtOH:milli-Q H2O 95:5 v/v) of
the accorded concentration of PTES or APTES was prepared in a Schlenk (under Ar). Then,
the corresponding amount of TiO2 (mmol (A)PTES/mg TiO2) (Table S1) was added to the
solution under vigorous stirring. The reaction was stirred at room temperature overnight.
Then, the mixture was centrifuged. The supernatant was removed, and the solid was
washed several times with milli-Q H2O and EtOH and was dried at 80 ◦C under vacuum
for several hours.
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3.2. Modification of TiO2 with Ionic Liquids (ILs)

First, synthesis of the ILs was performed according to the literature with some vari-
ations [75,85–89]. The synthesis of TiO2-4 was performed according to reported proce-
dures [86]. A suspension of 2 g of TiO2 in 80 mL of milli-Q H2O was added to a previously
prepared solution of 659.08 mg (1.8 mmol) of IL-Cl in 2 mL of milli-Q H2O. The mixture
was stirred at 80 ◦C for 12 h (Table S1). After reaction, the mixture was centrifuged and
washed twice with milli-Q and once with EtOH. After that, it was dried under vacuum
at 60 ◦C.

For the ILs with AcO− (TiO2-5 and TiO2-6) as anion, TiO2 was added to a solution
of IL-OAc (mixture EtOH:milli-Q H2O 95:5 v/v), and the mixture was heated at 80 ◦C
overnight (Table S1). The product was washed with EtOH several times and dried under
vacuum at 60 ◦C.

3.3. Modification of TiO2 with Phosphonic Acids (PAs)

The modification of TiO2 with PAs (TiO2-7 and TiO2-8) was performed according
to the literature procedures with some variations [90–92] (Table S1). Solutions contained
83.35 µmol of modifier per each square meter of TiO2 nanopowder, which corresponded
approximately to a 10-fold excess in respect to building a monolayer on the surface of
the support.

A solution of 10 mM of 3-aminopropylphosphonic acid (APA) (TiO2-8) (1.46 mmol,
202.84 mg) in 146 mL of milli-Q H2O was prepared. Then, 0.5 g of TiO2 was added, and the
mixture was stirred at r.t. overnight. After this time, the suspension was centrifuged and
washed with abundant milli-Q water, EtOH, and acetone. The solid was dried at 120 ◦C in
an oven. It is necessary to produce condensation reactions to yield strong bonds between
PAs and metal oxide [39]. So, in this case, after the reaction, the solid was separated by
centrifugation, the solvent was removed, and the solid was placed into an oven at 100 ◦C
overnight. After that, the solid was aged in a Quartz furnace at 120 ◦C under air flow during
6 h. Then, it was washed with abundant milli-Q water and centrifuged every time (5 times).
The solid was dried overnight at 100 ◦C. When butylphosphonic acid was employed (PA)
(TiO2-7), the synthesis was performed under the same conditions (Table S1). The only
difference was that THF was used as the reaction media and for washing and centrifugation.

3.4. Synthesis of Pd NPs with PPh3 as Ligand over Different Modified TiO2 Supports through
Organometallic Approach (1–8)

The catalysts were prepared following a previously reported methodology [80] to
obtain a 4 wt% theorical content of Pd over TiO2. In a common experiment, the metal
precursor (Pd(dba)2), 0.2 eq. of stabilizer (PPh3), and modified TiO2 were weighted in the
glove box and charged in a Fischer–Porter bottle. Then, solvent (THF) was added; the
Fischer–Porter was closed and purged with hydrogen several times and then charged with
3 bar of H2. The mixture was then heated at 60 ◦C and stirred at 700 rpm overnight. After
the reaction, the mixture was cooled to room temperature and degassed. Samples for TEM
analysis were prepared by the deposition of several drops of the reaction crude onto a
copper grid. The rest of the reaction crude was concentrated and washed several times
with abundant hexane. The catalyst was dried under vacuum during several hours.

3.5. Deposition of Modifier over Previously Synthesized Pd-PPh3/TiO2 Systems (9–15)

PTES and APTES (9–11): A specified concentration of PTES or APTES (and determined
mmol (A)PTES/mg:Pd-PPh3/TiO2 ratio) and Pd-PPh3/TiO2 that was previously synthe-
sized were mixed (Table S5). At r.t., the synthesis was carried out overnight in Schlenk
using a mixture of 95% EtOH and 5% milli-Q H2O, while reactions at 120 ◦C reaction
temperature were performed in an autoclave during 4 h using EtOH as solvent. In both
cases, samples were dried overnight in an oven at 105 ◦C and stored inside the glove box.
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ILs (12–13): A mixture of a specified concentration of IL–anion and the previously
synthesized Pd-PPh3/TiO2 system was prepared at r.t. using a mixture of 95% EtOH and
5% milli-Q H2O, overnight (Table S5).

PAs (14–15): A mixture of a specified concentration of PAs and the previously synthe-
sized Pd-PPh3/TiO2 system was prepared at r.t. using milli-Q H2O as solvent (for synthesis
with APA) or THF (for synthesis with PA), overnight (Table S5).

3.6. Catalytic Experiments for CO2 Reduction to Formate

The stainless-steel high-pressure reactor HEL CAT-7 (7 × 10 mL) was charged with
TiO2-supported palladium nanoparticles (20 mg), 20 mg of 1,4-dioxane, and 5 mL of a
4 M base solution employing milli-Q water. The reactor was first flushed with 3 cycles of
hydrogen to remove the air. Then, the reactor was charged with 10 bar of H2 and heated
at 40 ◦C under stirring for twenty minutes. At this point, the reactor was depressurized,
purged several times with CO2, and charged with 18 bar of CO2 and left under stirring for
20 min. Then, the reactor was charged with 18 bar of H2 (1:1, CO2:H2) and heated to reach
the temperature under 600 rpm of stirring. The experiment was left 15 h, and after this
time, the reactor was allowed to cool in an ice bath. When the reactor was cooled, it was
depressurized and opened. A small amount of the sample was centrifuged, and 100 µL of
supernatant was analyzed by NMR using D2O as the deuterated solvent.

3.7. Recycling Experiments

After every catalytic experiment, the mixture was filtered through a Nylon membrane.
The solid was washed several times with abundant milli-Q H2O and dried under vacuum
for several hours. At this point, the solid was reused in an identical catalytic experiment.

4. Conclusions

A series of supported Pd NPs-based materials were successfully synthesized using
modifiers of different natures (organosilanes, ILs, and PAs) following two distinct ap-
proaches. The so-called reverse deposition approach requires in the first place to modify
the TiO2 support prior to Pd NPs deposition, while the second approach involves the modi-
fication of a pre-synthesized Pd-PPh3/TiO2 by deposition of the modifier over its surface.
The newly prepared materials, including the modified TiO2 supports, were characterized
by various techniques, such as TEM, HRTEM, EDS, FT-IR, TGA, ICP, etc.

These catalysts were tested in the hydrogenation of CO2 to formate, and their perfor-
mance was compared with those of the unmodified catalyst Pd-PPh3/TiO2. The modifica-
tion of the TiO2 support by oganosilanes provided a beneficial effect in catalysis compared
with the catalyst containing unmodified TiO2 or TiO2 modified by organophosphonic acids,
and the modifier concentration is a key parameter during the support modification.

The presence of a functional group (either NH2 or imidazolium) in the modifiers
improved the activity of the catalysts. In contrast, the deposition of organosilane and
organophosphonic acid modifiers over previously synthesized Pd NPs supported on TiO2
was not beneficial, in most cases, to the activity of the catalyst.

The synthetic procedure used for the modification of the Pd-PPh3/TiO2 catalyst also
affected the reusability of these materials in the hydrogenation of CO2 into formate, and
when the modifiers were deposited over the previously anchored Pd NPs onto TiO2, a more
gradual decrease in activity was observed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal14080487/s1. Synthetic procedures, technics data, TEM, XRD,
XPS, EDX, HRTEM images, and results of catalysis experiment of hydrogenation of CO2 under
different conditions.
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