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Abstract

:

Tuning the chemical and structural environment of Ru-based nanomaterials is a major challenge for achieving active and stable hydrogen evolution reaction (HER) electrocatalysis. Here, we anchored ultrafine Ru nanoparticles (with a size of ~4.2 nm) on a hierarchical Ni2P array (Ru/Ni2P) to enable highly efficient HER. The Ni2P promoter weakened the adsorption of proton on Ru sites by accepting electrons from Ru nanoparticles. Moreover, the hierarchical Ni2P endowed Ru catalysts with a large surface area and stable open structure. Consequently, the as-fabricated Ru/Ni2P electrode displayed a low overpotential of 57 and 164 mV at the HER current densities of 10 and 50 mA cm−2, respectively, comparable to the state-of-the-art Pt catalysts. Moreover, the Ru/Ni2P electrode can operate stably for 96 h at 50 mA cm−2 without performance degradation. After pairing with a commercial RuO2 anode, the Ru/Ni2P anode catalyzed overall water splitting at 1.73 V with a current density of 10 mA cm−2, which was 0.16 V lower than its commercial Ni counterpart. In situ Raman studies further revealed the optimized proton adsorption at the Ru-active sites on Ni2P promoter, thus enhancing the electrocatalytic HER performance.
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1. Introduction


Electrocatalytic water splitting has shown its promise for sustainable hydrogen production at large scale [1,2,3,4,5,6,7,8,9,10,11,12]. Pt-based materials are the-state-of-the-art catalysts for hydrogen evolution reaction (HER), but their high cost has limited their practical applications [13,14,15,16,17,18,19,20]. Instead, Ru-based materials with considerable HER activity and much lower costs (USD 32,735 kg−1Pt vs. USD 13,503 kg−1Ru) have been regarded as a potential alternative for Pt [21,22,23]. However, the proton adsorption on Ru active sites is stronger than that on Pt, which is not conducive to the desorption of hydrogen, limiting their HER activity improvement [24,25,26]. To date, the development of Ru electrocatalysts with Pt-like performance for HER is still a grand challenge.



Reducing the size of Ru-based materials to nanoscale is an effective method for increasing their specific surface area and enhancing their catalytic activity. For a typical instance, Khan et al. dispersed RuO2 on CuO/Al2O3 and prepared ternary Ru-based nanocatalysts, which exhibited nanosized particle morphology and significantly enhanced electrocatalytic activity [27,28]. However, the electrocatalytic stability of most Ru-based nanocatalysts remains unsatisfied due to the unfavorable chemical and structural environment [29,30,31,32,33,34].



To stabilize Ru nanocatalysts, various methods such as liquid-phase reduction and atomic layer deposition have been proposed to load Ru components on favorable substrate such as oxide, hydroxide, and phosphide [35,36,37,38]. In particular, metal phosphides with a three-dimensional structure should be a preeminent substrate, serving as an ideal promoter to tune the chemical/structural environments of Ru-based nanomaterials and provide a robust open structure for stable electrocatalytic operation. Therefore, dispersing Ru nanocatalysts on a three-dimensional metal phosphide promoter is highly promising for the improvement in both activity and stability towards electrocatalytic HER, but is rarely studied.



In this work, ultrafine Ru nanoparticles were anchored on a hierarchical Ni2P promoter to fabricate a Ru/Ni2P electrode with both excellent HER activity and stability. The Ni2P promoter received electrons from Ru and weakened the proton adsorption at Ru sites during HER. Moreover, the hierarchical Ni2P promoter endowed the Ru catalysts with an enlarged surface area and stable electrode structure. As a result, the as-achieved Ru/Ni2P electrode displayed a low overpotential of 57 and 164 mV at HER current densities of 10 and 50 mA cm−2, respectively, comparable to commercial Pt catalysts. Moreover, the Ru/Ni2P electrode can operate steadily at a high current density of 50 mA cm−2 for over 96 h. After pairing with a commercial RuO2 anode, the Ru/Ni2P anode drove water splitting at 1.73 V with a current density of 10 mA cm−2, which was 160 mV lower than its commercial Ni counterpart. These findings indicated the importance of the hierarchical phosphide promoter on enhancing Ru nanocatalysts for water splitting hydrogen production.




2. Results


The fabrication of Ru/Ni2P electrode involved a hydrothermal method to prepare Ni(OH)2 nanosheet array on Ni foam, followed by a phosphorization method to prepare a hierarchical Ni2P promoter, and a electrodeposition method to load ultrafine Ru nanoparticles on the hierarchical Ni2P (Figure 1a). The scanning electron microscope (SEM) image in Figure S1 shows the nanosheet morphology of as-prepared Ni(OH)2 with a thickness of ~46 nm. After phosphorization and electrodeposition, the nanosheet morphology of Ni2P was maintained (Figure 1b and Figure S2). The transmission electron microscope (TEM) image of Ru/Ni2P clearly revealed a hierarchical structure, which included a secondary structure of Ni2P nanosheets with a thickness of ~9.8 nm and a tertiary structure of ultrafine Ru nanoparticles with a size of ~4.2 nm (Figure 1c). The energy-dispersive spectrometer (EDS) result in Figure S3 demonstrates a Ru/Ni ratio of 5.9%, suggesting the introduction of Ru species during electrodeposition. The X-Ray diffraction (XRD) patterns of the Ni2P promoter and Ru/Ni2P electrode (Figure 1d) show distinct diffraction peaks of crystalline Ni2P (PDF#03-0953) [39]. The high-resolution TEM image of Ru/Ni2P in Figure 1e shows the lattice fringes with spacings of 0.221 and 0.234 nm, corresponding to Ni2P (111) and Ru (100), respectively. All these results indicate the successful preparation of an as-designed Ru/Ni2P electrode.



To study the chemical environment and electronic structure of Ru sites for the Ru/Ni2P electrode, X-ray photoelectron spectroscopy (XPS) was employed (Figure 2a). The Ni 2p XPS spectra of Ni2P in Figure 2b demonstrated the fitting peak at 855.9 eV, attributed to the oxidized Ni species (Niδ+), which shifted to 0.2 eV higher binding energy after the introduction of Ru. The P 2p XPS spectra of Ni2P showed fitting peaks at 132.6 and 133.9 eV, corresponding to the P anions and oxidized phosphorus species, respectively [40]. Besides, the P 2p peak of Ru/Ni2P shifted to 0.5 eV lower binding energy compared with the Ni2P in Figure 2c. More importantly, the Ru 3p XPS peaks of Ru/Ni2P were located 0.8 eV higher than those of Ru metal (Figure 2d), suggesting an electron transfer from Ru particles to Ni2P promoter at the Ru/Ni2P electrode. Furthermore, as demonstrated in Figure S4, the O 1s XPS spectra was deconvoluted to distinguish the adsorption of oxygen (Oads) and P-O bond from the phosphorus oxoanion (P-O). The P-O peak of the Ru/Ni2P (530.9 eV) shifted negatively compared to that of Ni2P (531.9 eV) [41], suggesting an electron transfer from Ru to O species, which should weaken the adsorption of proton at Ru sites and promote the HER activity. Additionally, the peak ratio of P-O to Oads for Ru/Ni2P electrode (1.6) turned out to be higher than that for Ni2P (1.1), which may be due to the oxidation of Ni2P during aqueous Ru electrodeposition. As reported by Hoster et al., the metallic Ru showed a stronger proton adsorption than the Pt [42]. Therefore, the loss of electron for the Ru sites should help weaken the adsorption of proton, thus enabling Pt-like HER performance for the Ru/Ni2P electrode.



To investigate the electrocatalytic HER performance of the as-designed Ru/Ni2P electrode, a three-electrode system was established. The polarization curves in Figure 3a indicated a low overpotential of 57 mV at a HER current density of 10 mA cm−2 for the Ru/Ni2P electrode, very close to Pt (46 mV), 112 mV and 197 mV lower than the Ni2P and Ni foam, respectively. Notably, the Ru/Ni2P electrode displayed a HER overpotential of 164 mV at 50 mA cm−2, the same as that for commercial Pt/C. The lowest Tafel slope of the Ru/Ni2P electrode (95.4 mV dec−1, Figure 3b) further demonstrated the improved HER activity compared with Ni2P (114.7 mV dec−1) and Ni foam (179.0 mV dec−1). The Ru/Ni2P electrode outperformed most noble metal-based HER electrodes in recent publications (Table S1). The electrochemical surface area (ECSA) of the Ru/Ni2P electrode was investigated by evaluating the double-layer capacitance (Cdl) based on cyclic voltammetry (CV) measurements (Figure 3c and Figure S5). The Ru/Ni2P electrode showed the highest Cdl value of 2.3 mF cm−2 compared with the Ni2P (1.7 mF cm−2) and Ni foam (0.6 mF cm−2), suggesting an enlarged ECSA (Figure 3d), which should benefit the charge transfer on the Ru/Ni2P electrode. Electrochemical impedance spectroscopy (EIS) was measured at −0.1 V to study the charge transfer of the electrodes during HER. As shown in Figure 3e and Table S2, the Ru/Ni2P electrode exhibited a lower charge transfer resistance (2.5 Ω) than the Ni2P (3.3 Ω) and Ni foam (7.5 Ω), suggesting accelerated reaction kinetics during HER [43]. Moreover, the Ru/Ni2P electrode also showed no decay for 96 h at a high HER current density of 50 mA cm−2 (Figure 3f), indicating the high electrocatalytic stability. To further examine the excellent HER performance, the overall water splitting polarization curve of Ru/Ni2P electrode was studied by pairing a commercial RuO2 OER electrode. As shown in Figure S6, the Ru/Ni2P electrode displayed a low working potential of 1.73 V at a water splitting current density of 10 mA cm−2, 160 mV lower than the commercial Ni foam counterpart, suggesting the high practicality of the Ru/Ni2P electrode.




3. Discussion


The synergetic effect between Ru and Ni2P components should contribute to the outstanding HER performance of the Ru/Ni2P electrode. Considering noble metal Ru is far more active than Ni2P for HER, Ru is proposed as the catalytic active site. The key HER intermediate proton adsorption on Ru is a bit stronger than that on Pt, making the Ru less active than the state-of-the-art Pt catalysts. In this study, ultrafine Ru nanoparticles were anorchid on Ni2P substrate, which acted as a promoter by receiving electrons from Ru and weakening the proton adsorption (Figure S7), thus making Ru Pt-like and enhancing the HER performance. To obtain deeper insights into the enhanced HER performance of the as-designed Ru/Ni2P electrode, in situ Raman studies were carried out. The optical microscope (OM) images of Ru metal on Ni foam (Figure 4a) and Ru/Ni2P electrode (Figure 4b) captured during Raman measurements demonstrated generated bubbles under HER working conditions (at −0.1 V). The Raman vibration of absorbed proton on Ru sites (Ru-H) was located at ~1825 cm−1 [44,45]. The Ru metal catalyst showed significant Ru-H vibrations at both −0.1 and −0.2 V (vs. RHE) in Figure 4c, which disappeared for the open circuit voltage (OCV), suggesting strong proton adsorption on Ru metal during HER. In sharp contrast, no Ru-H vibration could be detected for the Ru/Ni2P electrode at the OCV and −0.1 V (vs. RHE); only a very weak Ru-H vibration signal could be detected as the HER overpotential increased to 200 mV (Figure 4d), indicating a weakness in the proton adsorption at the Ru sites at Ru/Ni2P electrode, which was due to the electronic structures of Ru being regulated the Ni2P promoter, making these Ru sites Pt-like, which was beneficial for the HER performance enhancement.




4. Materials and Methods


4.1. Materials


Ni(NO3)2·6H2O, NH4F, NaH2PO4 and CO(NH2)2 were purchased from Sinopharm chemical reagent Co., Ltd. (Beijing, China). RuCl3 was purchased from Bidepharm Co., Ltd. (Shanghai, China). The Ni Foam (purity:> 99.5%, 0.5 mm thick) was obtained from Longshenbao Co., Ltd. (Linyi, China). The 5% Nafion solution and 20% Pt/C catalysts were purchased from Dupont China Holding Co., Ltd. (Shenzhen, China). and Premetek Company (Shanghai, China), respectively. All chemicals used in this work were of analytical grade and used without further purification.




4.2. Synthesis of the Ni(OH)2 Nanosheets, Ni2P Promoter and Ru/Ni2P Electrode


The Ni(OH)2 nanosheets were prepared by a hydrothermal method. Typically, a Ni foam with a size of 2 × 3 cm2 was immersed in the 3 M HCl for 15 min under sonication and then rinsed with deionized water several times. Afterwards, 1.05 g Ni(NO3)2·6H2O, 0.96 g urea, and 0.24 g NH4F were dissolved in 70 mL deionized water under stirring. The resultant homogenous solution together with the clean Ni foam were transferred into a Teflon-lined stainless-steel autoclave and kept at 120 °C for 10 h.



The Ni2P promoter was fabricated by phosphating the Ni(OH)2 nanosheets. Typically, 75 g NaH2PO2 in a porcelain boat was placed on the upstream side of a tube furnace, with the Ni(OH)2 nanosheets in another porcelain boat placed on the other side. Subsequently, the tube furnace was heated to 350 °C at a heating rate of 5 °C min−1 under Ar flow with a flow rate of 10 mL min−1 and kept at 350 °C for 1 h.



The Ru/Ni2P electrode was prepared by an electrodeposition method within a three-electrode system, where the Ni2P promoter, a graphite rod, and an Ag/AgCl electrode were used as the working electrode, counter electrode, and reference electrode, respectively. We employed 0.1 mM RuCl3 + 0.01 mM HCl aqueous solution as the electrolyte. A cathodic deposition procedure was conducted under galvanostatic conditions at a current density of −20 mA cm−2 for 600 s. The mass loading of Ru/Ni2P active components on the as-achieved electrodes was ~1.1 mg cm−2, with a Ru content of 5.9 at% based on EDS.




4.3. Structural Characterizations


The morphology of the materials was investigated by SU8010 scanning electron microscopy (Hitachi, Tokyo, Japan) and Tecnai G2 F20 transmission electron microscopy (FEI, Hillsboro, OR, USA). The crystal structure of the materials was analyzed by a AXSD8-FOCUSX X-ray diffraction instrument (Bruker, Saarbrücken, Germany) with Cu-Kα radiation (λ = 0.15406 nm). The valence state of the materials was evaluated by an AXIS-UILTA DLD X-ray photoelectron spectroscopy (SHIMADZU, Tokyo, Japan). In situ Raman analysis was carried out on an Alpha 300R Raman system (WITec, Ulm, Germany) with 532 nm excitation.




4.4. Electrochemical Measurements


The electrochemical properties of the electrodes were investigated on a CHI660E electrochemical workstation (Chenhua, Shanghai, China) with a two- or three-electrode system. A graphite rod and a Hg/HgO electrode were used as the counter electrode and reference electrode, respectively. Additionally, 1.0 M KOH aqueous solution was employed as the electrolyte. The linear sweep voltammetry was performed with a low scan rate of 5 mV s−1. The EIS was evaluated over a frequency range of 10 mHz to 100 kHz with an amplitude of 5 mV.





5. Conclusions


In this work, ultrafine Ru nanoparticles were anchored on a hierarchical Ni2P promoter to fabricate a Ru/Ni2P electrode with enhanced HER performance. The hierarchical Ni2P promoter not only regulated the electronic structures of Ru active sites to weaken the proton adsorption, but also endowed the electrode with an enlarged surface area and stable open structure. As a result, the Ru/Ni2P electrode displayed a Pt-like HER performance with a low overpotential of 57 mV at 10 mA cm−2 and a stable electrocatalytic operation for 96 h at 50 mA cm−2. These results not only demonstrated the Ru/Ni2P electrode as an active and stable water electrolysis cathode, but also paved a new way to design advanced electrodes based on hierarchical phosphide promoters.
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Figure 1. (a) Synthesis schematic of the Ru/Ni2P electrode. (b) SEM and (c) TEM images of the Ru/Ni2P electrode. (d) XRD analysis of the Ni2P promoter and Ru/Ni2P electrode. (e) High-resolution TEM images of the Ru/Ni2P electrode. 
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Figure 2. (a) XPS spectra of the Ni2P promoter and Ru/Ni2P electrode. High-resolution (b) Ni 2p and (c) P 2p XPS spectra of the Ni2P promoter and Ru/Ni2P electrode. (d) High-resolution Ru 3p XPS spectra of the Ru metal and Ru/Ni2P electrode. 
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Figure 3. (a) HER polarization curves of the Ni foam, Ni2P promoter, Ru/Ni2P electrode, and commercial Pt/C catalysts. (b) Tafel slopes of the Ni foam, Ni2P promoter, and Ru/Ni2P electrode. (c) CV profiles of the Ru/Ni2P HER electrode. (d) Cdl calculations and (e) EIS analysis of the Ni foam, Ni2P promoter, and Ru/Ni2P electrode. (f) The OER stability of the Ru/Ni2P electrode at −0.16 V. 
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Figure 4. OM images of the (a) Ru metal and (b) Ru/Ni2P electrodes at a HER overpotential of 100 mV. In situ Raman analysis of the (c) Ru metal and (d) Ru/Ni2P electrodes under HER working conditions. 
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