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Abstract: Designing g-C3Ny-based nanostructured photocatalysts is crucial to boosting their ap-
plication in advancing clean energy and sustainable environmental solutions. In this study, cyano
groups and amorphous carbon self-modified P-doped g-C3Ny (PCNXx) photocatalysts were designed
and prepared by one-pot calcination. Melamine phosphate was employed as a multifunctional
precursor to simultaneously achieve P-doping and amorphous carbon/cyano group self-modification
in the g-C3Ny photocatalyst. The molar ratio of urea to melamine phosphate regulates the content
of amorphous carbon and cyano groups, which further enhances the conductivity of g-C3Ny. Due
to the high conductivity of amorphous carbon and cyano groups, the charge transfer process was
further accelerated. As a result, the optimized P-doping and amorphous carbon/cyano-group in
PCN2 photocatalyst led to an excellent H, production rate of 157.86 pmol-g~!-h~! under visible light,
which is approximately 2.4 times and 3 times higher than those of CN and PCN. The work developed
an alternative strategy for the construction of highly efficient g-C3Njy-based photocatalysts.

Keywords: g-C3Ny; cyano groups; amorphous carbon; self-modification; photocatalyst; hydrogen
production

1. Introduction

Hydrogen (H;) has been widely accepted to be an environmentally friendly and re-
newable energy source because merely water and energy are the oxidation products of
H,, which makes it a promising, clean, and efficient fuel option to reduce environmental
issues and fulfill the global energy demand [1]. Of the various options available, H, energy
sources can be generated from water and sunlight, which offers one of the most promising
pathways to achieve carbon neutrality by consuming two of the most abundant natural
resources on earth [2]. Photocatalytic hydrogen evolution uses free solar energy to excite a
semiconductor, generating photogenerated charges and catalyzing the H* reduction. The
key factor is to design a photocatalyst with excellent visible light response, cost-effective,
and stable in practical application. Various semiconductor materials have been extensively
researched to develop stable and high-performing photocatalysts for the production of hy-
drogen energy, including metal oxides, sulfides, and their composites, as well as non-metal
compounds [3-8]. Among them, graphitic carbon nitride (g-C3Ny)-based photocatalysts
have gained intensive investigation due to their low cost, high stability, non-metallic prop-
erties, and suitable band gap (~2.7 eV) [9-11]. Unfortunately, single-component g-C3Ny
shows lower photocatalytic H, production efficiency due to the rapid photocarrier recombi-
nation associated with its symmetry structure, which leads to the overlap of photogenerated
electrons and holes [12]. Therefore, the preparation of g-C3Ny-based photocatalysts with
high photocatalytic hydrogen production performance still faces a tremendous challenge.

Until now, numerous approaches have been employed to overcome the intrinsic
drawbacks, such as element doping and carbon material modification [13-16]. Element
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doping, especially P element doping, can change the electrical structure of g-C3N, due to
unique electronegativity and valence electron structure, which improves photocatalytic
performance. For example, Hammoud et al. prepared the P-doped g-C3N, photocatalyst
using NaH,PO, dopant precursor, which exhibited increased visible light absorption and
promoted charge-carrier separation [17]. Yu et al. prepared the P-doped photocatalyst
by pre-hydrothermal and calcination processes. The introduction of P element effectively
adjusted the band gap and accelerated the charge transfer separation. Furthermore, the
surface defects were formed because of the P element doping, which provided more active
sites for the photocatalytic hydrogen production reaction [18]. Sun et al. revealed that
tuning the content of P element doping could modulate the electronic donor concentration,
which regulated the Fermi level from below to above the doping level. Therefore, the
photocarrier lifetime was prolonged when the doping state neared the Fermi level [19]. P
element is preferred to replace a single C element to form a P-N bond. The formed P-N bond
can act as a charge transfer bridge, which results in enhanced visible light absorption, more
active sites, and efficient separation of photocarriers [20]. Recently, some research revealed
that the photocatalytic performance is significantly influenced by the positions of P-element
doped in the g-C3Ny network. For example, Yu et al. prepared dual P-doped site modified
g-C3Ny for H,O, production using two phosphorus dopants. The results indicated that
dual P-site doping g-C3Ny exhibited higher photocatalytic performance than its single
P-site counterpart because of its large surface area and more carrier transport channels [21].

Carbon materials with excellent conductivity have generally been used to strengthen
the photocatalytic activity of the photocatalysts. For instance, Tian et al. found that
amorphous carbon (a-C)-decorated g-C3Ny exhibited promoted performance for photocat-
alytic H, production, which was caused by the facilitated charge transfer efficiency due
to the excellent conductivity of a-C [22]. Li et al. synthesized a carbon particle-decorated
photocatalyst, which significantly accelerated the storage and transfer of electrons. The
photocatalytic hydrogen production performance of the modified photocatalyst was re-
markably enhanced [23]. Cyano groups can trap photogenerated electrons, which suppress
charge recombination. For instance, Chang et al. reported that cyano groups, as stronger
electron-withdrawing groups, could prevent the recombination of photocatalytic carriers,
enhance the electron excitation from n—7*, and accelerate the H* adsorption, which caused
improved photocatalytic hydrogen production activity [24]. Other researchers successfully
introduced the cyano groups on the backbone edge of g-C3Ny4. The cyano groups played
important roles in the photocatalytic hydrogen reaction, which worked as electron capture
centers to alter the band gap of g-C3Ny, reducing the recombination rate of electron-hole
pairs and accelerating the charge separation. Compared with single component g-C3Ny, the
photocatalytic hydrogen production activity was enhanced 13.5 times [25]. The modifica-
tion of amorphous carbon and cyano groups generally requires supernumerary precursors.
For instance, Xu et al. synthesized amorphous carbon-decorated g-C3Ny by calcining urea
with glucose. The amorphous carbon in the interlayer was grown in situ, which contributed
to more efficient charge transfer [26]. Huang et al. prepared cyano group-modified g-C3Ny
using trithiocyanuric acid and melamine by calcination. Cyano groups enhanced the for-
mation of medium basic sites and assisted the H; activation of Ru co-catalyst, leading to
higher photocatalytic performance [27]. It is expected that the regulation of amorphous
carbon and cyano groups could further enhance the photocatalytic activity of g-C3Ny, and
a detailed investigation is urgent.

In this study, urea and melamine phosphate were used as precursors to synthesize
a self-modified g-C3Ny photocatalyst, which is schematically illustrated in Scheme 1.
Melamine phosphate achieves P-site doping and self-modification of amorphous car-
bon/cyano groups. The in situ synthesized amorphous carbon and cyano groups promote
the bulk-to-surface charge transfer. The molar ratio of urea modulates the concentration of
amorphous carbon and cyano groups, which further promotes the conductivity of g-C3Ny.
Therefore, the g-C3Ny prepared from the dual precursors shows excellent photocatalytic
hydrogen production activity.
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Scheme 1. Schematic illustration for the preparation of PCNx photocatalysts.

2. Results and Discussions
2.1. Photocatalyst Characterization

To investigate the crystal structures of photocatalysts, the prepared samples were
subjected to powder X-ray diffraction (XRD). As presented in Figure 1A, the distinct
peak at around 27.9° observed in the CN, PCN, and PCN2 samples corresponded to the
typical (002) crystal plane of g-C3Ny [28]. In addition to the (002) diffraction of g-C3Ny,
a broad and weak peak around 22.5° in the PCN and PCN2 samples was observed more
clearly than in the CN sample, which may be caused by the P element doping and the
formation of amorphous structure carbon [23,26]. CN exhibited a stronger (002) peak
intensity, which represents the interfacial stacking reflection of the conjugated aromatic
structure. For PCN and PCN2, the (002) peak remained the dominant diffraction, indicating
the phase structure remained. However, the (002) peak intensity became weaker, which
corresponded to the broken interlayer arrangement in the photocatalysts. At the same
time, the peak intensity of amorphous carbon of PCN2 was slightly weaker than that of
PCN, suggesting that the concentration of amorphous carbon decreased. Meanwhile, the
characteristic peak of amorphous carbon in PCN2 was much broader than in PCN, which
assigned a smaller particle size. The results indicate that the molar ratio of urea to melamine
phosphate regulates the content of amorphous structures in the samples, which benefits
photocatalytic performance.
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Figure 1. (A) XRD pattern and (B) FT-IR spectra of CN, PCN, and PCN2.

Fourier transform infrared (FT-IR) spectra were applied to estimate the molecular
structures of CN, PCN, and PCN2. As reported in Figure 1B, a sharp peak in 802 cm ™!
originated from the typical vibration of triazine units of g-C3Ny [29]. The absorption at
3400-3000 cm ! was assigned to the stretching vibration of N-H. Additionally, the peak at
about 1700-1200 cm ! was ascribed to the typical C-N and C=N heterocycles characteristic
stretching vibration pattern [30,31]. These characteristic peaks illustrated the formation
of a typical g-C3Ny structure [32]. Impressively, a new peak at 2200 cm ™! was discovered
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in PCN and PCN2, which corresponded to the cyano groups [33]. The peak intensities
of cyano groups were reduced in PCN2, assessing that the tunable concentration could
be achieved by adding urea. Furthermore, the vibration mode at 950 cm ! discovered in
PCN and PCN2 corresponded to the P-N bond, which proved that P replaced C atoms in
the structure [34].

The morphology and nanostructure of PCN2 were determined by SEM, TEM, and
HRTEM images. As shown in Figure 2A, PCN2 showed a typical nano-sheet stacking
morphology. For the morphology comparison with PCN2, SEM images of both CN and
PCN have been provided in Figure S1. Figure Sla shows the sheet-like structure of bulk
g-C3Ny, while PCN in Figure S1b possesses ultra-thin sheet structures as that of PCN2.
TEM and HRTEM images further revealed the layered structure of PCN2, as shown in
Figure 2B,C, which was consistent with the SEM spectrum. The inset of Figure 2C clearly
presents the lattice fringe of g-C3N4 with a spacing of 0.33 nm [22,35]. The AFD image and
element mappings in Figure 2D indicate the uniform distribution of C, N, and P elements
in the PCN2 sample.

ADF1 C————— 200 nm CK = - 200 nm i : Nk 200 nm

Figure 2. (A) SEM, (B) TEM, and (C) HRTEM images of PCN2; (D) AFD image and element mappings
of PCN2.

In many instances, the catalytic activity of a photocatalyst is related to its specific
surface area and pore structure. Therefore, the N, adsorption/desorption isotherms of
PCN and PCN2 photocatalysts have been recorded. The specific surface areas were de-
termined using the BET (Brunauer-Emmet-Teller) method and the pore diameters were
analyzed through BJH (Barrett-Joyner—-Halenda) method. As displayed in Figure S2, both
photocatalysts present type-IV isotherms with a hysteresis loop, which implies the ex-
istence of mesopores in PCN and PCN2 [24]. The insets of Figure S2 confirm that both
of them have a pore size distribution ranging from 2 nm to 10 nm. Calculated from N,
adsorption/desorption isotherms, PCN possesses a surface area of 29.6 m? g~ and pore
diameters centered at 3.8 nm, while PCN2 has a surface area of 52.4 m? g~! and pore
diameters centered at 6.8 nm. It is evident that PCN possesses a higher BET surface area
and a larger dominant pore diameter. This type of mesoporous structure allows for more
effective penetration and absorption of light and offers more active sites for enhanced
photocatalytic Hy evolution activity of photocatalysts.

XPS measurements were applied to quantify the surface chemical composition of
photocatalysts. Adventitious carbon (284.8 eV) was conducted to calibrate the binding
energy scale. As shown in Figure 3A, the elements P, C, N, and O were detected in PCN
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and PCN2. The surface element contents of PCN and PCN2 photocatalysts are listed in
Table S1, further confirming the addition of urea could regulate the content of carbon and
P-doping in the samples. Three peaks at 284.8 eV, 286.3 eV, and 288.5 eV were observed
in C 1s spectra of PCN2 from Figure 3B, which could be assigned to amorphous carbon
(C-C groups) and -C=N and N-C=N bonds [36-39], indicating the formation of cyano
groups. The N 1s spectra could be deconvoluted into two diffraction peaks at 397.8 eV and
399.4 eV, as reported in Figure 3C, which belong to the C=N-C bond and sp? N in N-(C)3
bond [40,41]. The distinct characteristic peaks at around 133 eV and 134 eV in Figure 3D
were attributed to the P-N and P=N coordination in the PCN and PCN2 samples, indicating
that the P atoms have dual doping sites in aromatic rings [42,43]. The Ols spectra in
Figure S3 have been fitted into two components at around 533.8 and 532.0 eV, which could
be assigned to surface adsorbed oxygen species (such as water and oxygen) because the
relative intensity of these peaks is constant [44]. All the results confirm that cyano-group
self-modified P-doped g-C3N4 has been successfully prepared by employing urea and
melamine phosphate as multifunctional precursors. The XPS data are in agreement with
the above-discussed FI-IR results.
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Figure 3. (A) XPS survey spectra, (B) C 1s, (C) N 1s, and (D) P 2p spectra of PCN and PCN2.

2.2. Photocatalytic Performance of Catalysts

The photocatalytic hydrogen activities of PCN, CN, and PCNx were carried out
with 10% TEOA as the sacrificial agent. 2 wt% Pt, as co-catalyst, was loaded onto the
surface of the photocatalysts using a photo deposition method before the reaction. As
shown in Figure 4A, the hydrogen production rate of PCN was 313.3 pmol g~ !, while
that of CN was 395.1 umol g~!. The optimized PCNx exhibited the highest photocat-
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alytic hydrogen production rate compared to both CN and PCN after urea regulation,
which were 755.04 umol g~! for PCN1, 947.16 umol g~! for PCN2, and 874.74 pmol g~ !
for PCN3. PCN2 demonstrated the best photocatalytic hydrogen production rate of
157.86 umol g~! h~1, as shown in Figure 4B, which was about 2.4 times and 3 times higher
than those of CN and PCN, respectively. For comparison, the PCN2 without Pt co-catalyst
can achieve a photocatalytic hydrogen production of 616.8 umol g~! and a hydrogen pro-
duction rate of 102.8 umol g~! h~!, which are even much higher than those of the PCN
and CN with Pt co-catalyst.
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Figure 4. (A,B) Photocatalytic hydrogen production performances of PCN, CN, and PCNx;
(C) recycling hydrogen evolution of PCN2; (D) XRD spectra, (E) FTIR, and (F) SEM of PCN2 af-
ter the reaction.

The stability of the photocatalyst was an important factor for industrial production
and application. PCN2 was used as the photocatalyst to conduct the five cyclic experiments.
As shown in Figure 4C, the photocatalytic hydrogen production just shows a slight drop
and remains more than 95% after five-cycle experiments, indicating the good stability and
reusability of the PCN2 photocatalyst. The stability of PCN2 was further identified using
XRD, FTIR, and SEM. The characteristic peaks of g-C3N4 and amorphous carbon were
still clearly detected in the XRD spectra of PCN2 after the reaction (Figure 4D). The peaks
at 39.7° and 46.2° corresponded to the (111) and (200) crystal faces of the Pt co-catalyst,
indicating the successful deposition of the Pt co-catalyst. Cyano groups and characteristic P-
N bonds were also detected in the FTIR spectra, as shown in Figure 4E. PCN2 still retained
the nanosheet morphology after the reaction, as shown in Figure 4F, demonstrating the high
stability of the prepared photocatalyst. In order to further reveal the excellent performance
of the prepared PCN2 photocatalyst, a comparison with previous results was outlined in
Table 1. Obviously, the photocatalytic hydrogen production activity of PCN2 was superior
to that of most CN-based photocatalysts, indicating the outstanding performance of PCN2.
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Table 1. A comparison of the photocatalytic hydrogen production activity of PCN2 with that of other
reported photocatalysts.

Dosage of H; Evolution Rate

Catalysts Light Source Scavengers Photocatalyst (umol g1 h-1) Ref.

PCN2 300 W Xe lamp TEOA 100 mg 157.86 This work
g-C3Ny-Zn—1@Pt 250 W Xe lamp TEOA 75mg 78.7 [45]
g-C3N,/Ni,P 300 W Xe lamp TEOA 20 mg 82,5 [46]
LaFeO3;/g-C3Ny/NiS 300 W Xe lamp TEOA 100 mg 121 [47]
Eu/CN 300 W Xe lamp TEOA 50 mg 128.8 [48]
CuO/CN 300 W LED lamp TEOA 50 mg 130.1 [49]
WC/g-C3Ny 300 W Xe lamp TEOA 50 mg 146.1 [50]
g-C3N4/MeTMC-COP 300 W Xe lamp TEOA 10 mg 11.8 [51]
CuO/pCN 400 W Xe lamp TEOA 50 mg 30 [52]
p-CNGT 300 W Xe lamp TEOA 30 mg 33.1 [53]
Co304@g-C3N4/CNFs 300 W Xe lamp TEOA 5mg 67.17 [54]

2.3. Mechanism of Photocatalytic Hy Production

UV-vis diffuse reflectance spectra (UV-vis DRS) were recorded to evaluate the light
absorption properties of the photocatalysts. According to Figure 5A, CN, PCN, and PCN2
had intrinsic absorption edges around 450 nm. PCN2 showed more progressive visible light
absorption ability than CN and PCN, indicating more effective use of solar energy. The band
gap energies (Eg) of PCN, CN, and PCN2 were calculated by the following formula [55]:

(ahv)" = A(hv — Eg)

where « denotes the absorption coefficient, and / and v represent Planck’s constant and
incident light frequency, respectively. A is the proportionality constant, and Eg represents
band gap energy. n takes the value of 1/2 for indirect band gap semiconductor. Then,
the band gaps of CN, PCN, and PCN2 were estimated to be 2.28 eV, 2.23 eV, and 2.18 eV,
respectively, as shown in the inset of Figure 5A.
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Figure 5. (A) UV-vis DRS spectra and band gap (inset) of PCN, CN, and PCN2; (B) Mott-Schottky
spectra of PCN2; (C) Mott-Schottky spectra of CN; (D) Mott-Schottky spectra of PCN; (E) energy
band alignments of PCN, CN, and PCN2; (F) Np of PCN, CN, and PCN2.
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Mott-Schottky spectra were conducted to determine the semiconductor type and
flat band potentials of the photocatalysts. As depicted in Figure 5B-D, CN, PCN, and
PCN2 all showed an n-type slope, and the flat band potentials were estimated to be
—1.33eV, —1.38 eV, and —1.3 eV (V vs. Ag/AgCl, pH = 6.8), respectively. According to
the equation [56]

E(vs. NHE, pH=0) = E(vs. Ag/agcl) +0.059 x pH + E(ag/agc1)

The flat band potentials of CN, PCN, and PCN2 were converted to normal hydrogen
electrodes (vs. NHE) for —1.13 eV, —1.18 eV, and —1.1 eV, respectively. The lower flat band
potential also represents the better electrical conductivity of PCN2 [57]. The CB potentials
were generally more negative than the flat band by about —0.2 eV [58]. Therefore, the CB
potentials of CN, PCN, and PCN2 were determined to be —1.33 eV, —1.38 eV, and —1.3 eV
(vs. NHE), respectively. The bandgap alignments of the photocatalysts are illustrated
in Figure 5E, which provided evidence for charge transfer. The charge carrier density
(Np) reflects the electron density of the photocatalysts, and a higher Np value indicates
a greater electron density in the photocatalyst. Np could be calculated by applying the

following equation [59]:
Np = < 2 )
£€0€0

which ¢ represents the dielectric constant (eg-cang = 2) [60], €9 corresponds to the vacuum
permittivity (8.86 x 10712 Fm™1!), ey is the electronic charge unit (1.6 x 107 C), and V is
the potential. As shown in Figure 5F, the values of Np were calculated tobe 7.7 x 10 cm 3
for PCN2, 5.8 x 10" em~2 for PCN, and 3.7 x 10'* cm~3 for CN, indicating the highest
electron density of PCN2. According to the above analysis, the photocatalyst prepared
from the dual precursors exhibited a narrower band gap and a higher electron density.

The photocarrier separation performances of the fabricated photocatalysts were investi-
gated by transient photocurrent response measurement (I-t) and electrochemical impedance
spectra (EIS) tests. Higher photocurrent density of photocatalysts indicated faster charge
transfer capability. As shown in Figure 6A, PCN2 showed higher photocurrent intensity
than CN and PCN, demonstrating an improved photocarrier separation efficiency. A
smaller arc radius in EIS spectra usually suggests a lower electron transfer resistance. As
shown in Figure 6B, the resistivity of PCN2 was 1.7 x 10° Q, which was much smaller than
those of PCN (12 x 10° Q) and CN (75 x 10° Q). The resistivities of the prepared samples
decreased in the order PCN2 < CN < PCN, demonstrating the reduced charge transfer
resistance of PCN2. Photoluminescence (PL) was analyzed to determine the recombination
rate of photocarriers. Lower fluorescence intensity indicated an enhanced separation rate
of the photocarriers. Obviously, PCN2 showed the lowest emission intensity, as shown
in Figure 6C, proving the inhibited photocarrier recombination ability. Time-resolved
photoluminescence (TRPL) was implemented to investigate the photocarrier separation
process and the lifetime of the photocatalysts. It was determined from Figure 6D that
PCN2 exhibited the longest lifetime compared to PCN and CN, which demonstrated the
promoted photocarrier separation rate [61].

According to the above discussion, a possible mechanism of the enhanced photocat-
alytic hydrogen production mechanism is proposed, as shown in Figure 7. Photoelectrons
are promoted from the valence band of PCN to the conduction band under visible light.
Then the photoelectrons are quickly transferred from the bulk to the surface because of
the high conductivity of amorphous carbon and cyano groups. The molar ratio of urea to
melamine phosphate regulates the content of amorphous carbon and cyano groups for the
optimum property. The photoelectrons at the surface are then captured by Pt for photocat-
alytic hydrogen production. The synergetic effect of the ultra-thin structure and P-doping
could supply a large quantity of active sites for photocatalytic hydrogen production [62].
As a result, PCN2 shows enhanced photocatalytic hydrogen production activity.
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3. Materials and Methods
3.1. Materials

Melamine phosphate (C3HgNg(H3PO4)n, 99%) was purchased from Shanghai Macklin
Biochemical Co., Ltd. (Shanghai, China); Urea (CH4N,O, 99%), ethanol (CH3CH,OH,
99%), triethanolamine (TEOA, 99%), and HpPtClg (99%) were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). All chemical reagents in this report were of
analytical grade and employed without further treatment.

3.2. Fabrication of Photocatalysts

Preparation of PCNx: Amorphous carbon and cyano-group self-modified g-C3Ny
photocatalysts were prepared using the one-pot thermal polymerization method, which was
schematically illustrated in Scheme 1. Typically, 5 mmol melamine phosphate and different
amounts of urea were adequately ground in a mortar for 30 min. The resultant powders
were transferred to a porcelain boat covered with aluminum foil and heated at 600 °C
for 4 h with a heating rate of 10 °C/min under air. The obtained yellow products were
washed with deionized water and ethanol and then dried at 60 °C. The final photocatalysts
obtained with different amounts of urea (6.6 mmol, 10.8 mmol, and 15 mmol) were labeled
as PCN1, PCN2, and PCN3.

For comparison, 5 mmol melamine phosphate or 83.3 mmol urea was subjected to
fabricate photocatalysts from a single precursor with the same procedure. The obtained
samples were expressed as PCN and CN, respectively. The yield of prepared samples
was outlined in Table S2 (supporting information). All the samples have a yield higher
than 74%.

3.3. Characterizations of Photocatalysts

A D-MAX 2500/PC powder X-ray diffraction diffractometer (XRD) (Rigaku Corpora-
tion, Tokyo, Japan) was used to identify the crystal structures of synthesized carbon nitride
composite photocatalysts with Cu K« radiation at 40 kV and 150 mA. A Nicolet IS50 (Ther-
mofisher Scientific, Waltham, MA, USA) spectrometer was used to record Fourier-transform
infrared (FTIR) spectra in the form of KBr pellets. Scanning electron microscopy (SEM, JSM-
6700F microscope, JEOL Ltd., Tokyo, Japan) was carried out to determine the morphologies
of photocatalysts. A JEM-F200 transmission electron microscope (TEM) (JEOL Ltd., Tokyo,
Japan) was used to obtain TEM and high-resolution TEM (HRTEM) images and element
mappings. An ESCALAB 250XI X-ray photoelectron spectrometer (XPS) (Thermo Fisher
Scientific Inc., Waltham, MA USA) was applied to analyze the surface chemical states of
the photocatalysts using Al-Karadiation. Photoluminescence (PL) measurements were
conducted on an LS-55 fluorescence spectrophotometer (Perkin Elmer, Waltham, MA, USA)
under the excitation wavelength of 375 nm. A Perkin-Elmer Lambda 750 spectrophotometer
(Perkin Elmer, Waltham, MA, USA) was employed to collect the UV-Vis Diffuse reflectance
spectra (DRS) of the prepared composites. Time-resolved photoluminescence (TRPL) was
measured by a fluorescence lifetime spectrophotometer (Edinburgh Instruments FS5, Ed-
inburgh Instruments Ltd., Livingston, UK) with an excitation wavelength of 375 nm. N,
desorption adsorption isotherms were recorded on a N, adsorption analyzer (Micromeritics
ASAP 2460 Version 3.01).

Detailed photoelectrochemical measurements were supplied as the electronic support-
ing information.

3.4. Photocatalytic Hydrogen Production Measurement

The photocatalytic hydrogen production experiments were performed in a sealable
quartz vessel with the irradiation of a CEL-HXF 300 Xe lamp (CEAULIGHT, Beijing, China,
A > 420 nm). Typically, 100 mg photocatalysts were dispersed in 100 mL aqueous solution,
which contained 10% vol (10 mL) TEOA as the sacrificial agent. 2 wt% Pt was photo-
deposition on the photocatalyst. 0.266 mL HyPtClg (1 g/50 mL) was added to the system
and irradiated for 1 h before the reaction. The reaction temperature was maintained at
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7 °C through cyclical cooling water. The quartz vessel was vacuumed thoroughly. The
H, content was determined using an online gas chromatograph (Agilent 7890A, Hong
Kong, China) equipped with a thermal conductivity detector and a 4 m 5 A molecular sieve
column. High-purity N, was used as the carrier gas. The produced H; was analyzed at an
interval of every 30 min.

The photocatalytic cyclic stability measurement was performed by batch experiments.
After each reaction, the photocatalyst was centrifugated and dried at 60 °C and then reused
in 100 mL fresh aqueous solution containing 10% TEOA (10 mL) for the next 6 h reaction.

4. Conclusions

In summary, P-doped g-C3Ny4 with self-modified amorphous carbon and cyano groups
was prepared using a one-pot method. Melamine phosphate was used as an important
precursor to prepare P-doped g-C3Ny4, which simultaneously caused the self-modification
of amorphous carbon and cyano groups. Both amorphous carbon and cyano groups
could enhance the photocarrier transfer from the bulk to the surface because of their high
conductivity. Urea regulated the concentration and structural properties of amorphous
carbon and cyano groups, which further enhanced the conductivity and visible light ab-
sorption of the photocatalyst. Therefore, PCN2 exhibited excellent photocatalytic hydrogen
production activity compared to PCN and CN, which was about 157.86 umol-g~1-h~1.
The work developed an alternative strategy for the construction of high-performance
g-C3Ny photocatalysts.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/catal14080523 /s1: photoelectrochemical measurements of the
catalysts and some experimental results (Figures S1-53, Tables S1 and S2).
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