Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photocatalyst Characterization
2.2. Surface Composition and Photoelectric Analysis
2.3. Photocatalytic Activity
2.4. Mechanism of CO2 Photoreduction
3. Experimental Section
3.1. Methods
3.1.1. Materials
3.1.2. Synthesis of ZCS-QDs
3.1.3. Ligand Exchange of ZCS-QDs
3.1.4. Synthesis of CeO2
3.1.5. Synthesis of x ZCS-QDs/CeO2
3.2. Characterizations
3.3. CO2 Photoreduction Experiments
3.4. Photoelectrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. technological use of CO2. Chem. Rev. 2014, 114, 1709–1742. [Google Scholar]
- Yin, S.; Sun, L.; Zhou, Y.; Li, X.; Li, J.; Song, X.; Huo, P.; Wang, H.; Yan, Y. Enhanced electron–hole separation in SnS2/Au/g-C3N4 embedded structure for efficient CO2 photoreduction. Chem. Eng. J. 2021, 406, 126776. [Google Scholar] [CrossRef]
- Ma, W.; Wang, N.; Guo, Y.; Yang, L.; Lv, M.; Tang, X.; Li, S. Enhanced photoreduction CO2 activity on g-C3N4: By synergistic effect of nitrogen defective-enriched and porous structure, and mechanism insights. Chem. Eng. J. 2020, 388, 124288. [Google Scholar] [CrossRef]
- Zhu, Z.; Xing, X.; Qi, Q.; Shen, W.; Wu, H.; Li, D.; Li, B.; Liang, J.; Tang, X.; Zhao, J.; et al. Fabrication of Graphene Modified CeO2/g-C3N4 Heterostructures for Photocatalytic Degradation of Organic Pollutants. Chin. J. Struct. Chem. 2023, 42, 100194. [Google Scholar] [CrossRef]
- Tang, X.; Shen, W.; Li, D.; Li, B.; Wang, Y.; Song, X.; Zhu, Z.; Huo, P. Research on cobalt-doping sites in g-C3N4 framework and photocatalytic reduction CO2 mechanism insights. J. Alloys Compd. 2023, 954, 170044. [Google Scholar] [CrossRef]
- Mo, Z.; Miao, Z.; Yan, P.; Sun, P.; Wu, G.; Zhu, X.; Ding, C.; Zhu, Q.; Lei, Y.; Xu, H. Electronic and energy level structural engineering of graphitic carbon nitride nanotubes with B and S co-doping for photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2023, 645, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cheng, C.; Yang, Z.; Wei, J. Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nat. Commun. 2022, 13, 6466. [Google Scholar] [CrossRef]
- Chang, X.; Wang, T.; Gong, J. CO2 Photo-reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196. [Google Scholar]
- Pathak, P.; Meziani, M.J.; Li, Y.; Cureton, L.T.; Sun, Y.-P. Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem. Commun. 2004, 10, 1234–1235. [Google Scholar] [CrossRef]
- Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O. Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal. B Environ. 2009, 89, 494–502. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zhang, C.; Cui, L.; Kang, S.; Li, X.; Zhou, L. Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl. Catal. B Environ. 2013, 130–131, 277–284. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.-N.; Zhan, Z.; Woo, M.-H.; Wu, C.-Y.; Biswas, P. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl. Catal. B Environ. 2010, 100, 386–392. [Google Scholar] [CrossRef]
- Zhu, Z.; Ye, J.; Tang, X.; Chen, Z.; Yang, J.; Huo, P.; Ng, Y.; Crittenden, J. Vacancy-Rich CoSx@LDH@Co-NC Catalytic Membrane for Antibiotic Degradation with Mechanistic Insights. Environ. Sci. Technol. 2023, 57, 16131–16140. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, M.; Song, X.; Zhou, W.; Liu, X.; Yan, Y.; Huo, P. Charge separation and transfer activated by covalent bond in UiO-66-NH2/RGO heterostructure for CO2 photoreduction. Chem. Eng. J. 2022, 437, 135210. [Google Scholar] [CrossRef]
- Ye, Q.; Zhou, Y.; Xu, Y.; Zhang, Q.; Shi, X.; Li, D.; Tian, D.; Jiang, D. Improved charge transfer in polymeric carbon nitride synergistically induced by the aromatic rings modification and Schottky junctions for efficient photocatalytic CO2 reduction. Chem. Eng. J. 2023, 463, 142395. [Google Scholar] [CrossRef]
- Hammond, O.S.; Edler, K.J.; Bowron, D.T.; Torrente-Murciano, L. Deep eutectic-solvothermal synthesis of nanostructured ceria. Nat. Commun. 2017, 8, 14150. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, R. Hollow Micro/Nanostructured Ceria-Based Materials: Synthetic Strategies and Versatile Applications. Adv. Mater. 2018, 31, e1800592. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, K.; Peng, B.; Wang, G.; Muhler, M.; Wang, F. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catal. 2021, 11, 9618–9678. [Google Scholar] [CrossRef]
- Selopal, G.S.; Zhao, H.; Wang, Z.M.; Rosei, F. Core/Shell Quantum Dots Solar Cells. Adv. Funct. Mater. 2020, 30, 1908762. [Google Scholar] [CrossRef]
- Ning, Z.; Tian, H.; Yuan, C.; Fu, Y.; Qin, H.; Sun, L.; Ågren, H. Solar cells sensitized with type-II ZnSe–CdS core/shell colloidal quantum dots. Chem. Commun. 2011, 47, 1536–1538. [Google Scholar] [CrossRef] [PubMed]
- Kouhnavard, M.; Ikeda, S.; Ludin, N.; Khairudin, N.A.; Ghaffari, B.; Mat-Teridi, M.; Ibrahim, M.; Sepeai, S.; Sopian, K. A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew. Sustain. Energy Rev. 2014, 37, 397–407. [Google Scholar] [CrossRef]
- Yakoubi, A.; Ben Chaabane, T.; Aboulaich, A.; Mahiou, R.; Balan, L.; Medjahdi, G.; Schneider, R. Aqueous synthesis of Cu-doped CdZnS quantum dots with controlled and efficient photoluminescence. J. Lumin 2016, 175, 193–202. [Google Scholar] [CrossRef]
- Saha, S.; Sain, S.; Meikap, A.; Pradhan, S. Microstructure characterization and electrical transport of nanocrystalline CdZnS quantum dots. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 66, 59–66. [Google Scholar] [CrossRef]
- Yang, H.; Xu, B.; Zhang, Q.; Yuan, S.; Zhang, Z.; Liu, Y.; Nan, Z.; Zhang, M.; Ohno, T. Boosting visible-light-driven photocatalytic performance of waxberry-like CeO2 by samarium doping and silver QDs anchoring. Appl. Catal. B Environ. 2021, 286, 119845. [Google Scholar] [CrossRef]
- Jiang, H.; Li, X.; Chen, S.; Wang, H.; Huo, P. g-C3N4 quantum dots-modified mesoporous CeO2 composite photocatalyst for enhanced CO2 photoreduction. J. Mater. Sci. Mater. Electron. 2020, 31, 20495–20512. [Google Scholar] [CrossRef]
- Sre, V.V.; Okla, M.K.; Janani, B.; Abdel-Maksoud, M.A.; Al-Amri, S.S.; Alaraidh, I.A.; Alatar, A.A.; Khan, S.S. A novel sunlight driven Z scheme ZnCdS QDs deposited over g-C3N4 photocatalyst for photoinactivation of E. coli cells. J. Water Process. Eng. 2024, 59, 104957. [Google Scholar] [CrossRef]
- Morgan, D.J. Photoelectron spectroscopy of ceria: Reduction, quantification and the myth of the vacancy peak in XPS analysis. Surf. Interface Anal. 2023, 55, 845–850. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zhou, W.; Liu, X.; Song, X.; Chen, S.; Wang, H.; Huo, P. Rational design of Ag/CuO@ZnIn2S4 S-scheme plasmonic photocatalyst for highly selective CO2 conversion. Appl. Catal. B Environ. 2024, 342, 123449. [Google Scholar]
- Boaro, M.; Colussi, S.; Trovarelli, A. Ceria-Based Materials in Hydrogenation and Reforming Reactions for CO2 Valorization. Front. Chem. 2019, 7, 28. [Google Scholar] [CrossRef]
- Mullins, D.R. The surface chemistry of cerium oxide. Surf. Sci. Rep. 2015, 70, 42–85. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Grinter, D.C.; Liu, Z.; Palomino, R.M.; Senanayake, S.D. Ceria-based model catalysts: Fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Britcher, L.; Kumar, S.; Griesser, H.J. XPS Study of Sulfur and Phosphorus Compounds with Different Oxidation States. Sains Malays. 2018, 47, 1913–1922. [Google Scholar] [CrossRef]
- Wu, L.; Su, F.; Liu, T.; Liu, G.-Q.; Li, Y.; Ma, T.; Wang, Y.; Zhang, C.; Yang, Y.; Yu, S.-H. Phosphorus-Doped Single-Crystalline Quaternary Sulfide Nanobelts Enable Efficient Visible-Light Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2022, 144, 20620–20629. [Google Scholar] [CrossRef]
- Sun, Y.; Hao, Y.; Lin, X.; Liu, Z.; Sun, H.; Jia, S.; Chen, Y.; Yan, Y.; Li, X. Efficient electron transport by 1D CuZnInS modified 2D Ti3C2 MXene for enhanced photocatalytic hydrogen production. J. Colloid Interface Sci. 2024, 653, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Choi, M.; Hong, G.; Hahn, S.K. Controlled afterglow luminescent particles for photochemical tissue bonding. Light Sci. Appl. 2022, 11, 314. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.; Li, Y.; Yue, X.; Wang, C. Phase-dependent enhancement for CO2 photocatalystic reduction over CeO2/TiO2 catalysts. Catal. Sci. Technol. 2016, 6, 7967–7975. [Google Scholar] [CrossRef]
- Kibar, M.E. Preparation of copper oxide-cerium oxide/nanotube-titanium dioxide photocatalyst for CO2 conversion in solar light. React. Kinet. Catal. Lett. 2021, 134, 937–950. [Google Scholar] [CrossRef]
- Hu, H.; Hu, J.; Wang, X.; Gan, J.; Su, M.; Ye, W.; Zhang, W.; Mac, X.; Huihu, W. Enhanced reduction and oxidation capability over CeO2/g-C3N4 hybrid through surface carboxylation: Performance and mechanism. Catal. Sci. Technol. 2020, 10, 4712–4725. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Li, Y.; Wang, Q. Flower-like CoAl layered double hydroxides modified with CeO2 and RGO as efficient photocatalyst towards CO2 reduction. J. Alloys Compd. 2021, 881, 160650. [Google Scholar] [CrossRef]
- Su, B.; Kong, Y.; Wang, S.; Zuo, S.; Lin, W.; Fang, Y.; Hou, Y.; Zhang, G.; Zhang, H.; Wang, X. Hydroxyl-Bonded Ru on Metallic TiN Surface Catalyzing CO2 Reduction with H2O by Infrared Light. J. Am. Chem. Soc. 2023, 145, 27415–27423. [Google Scholar] [CrossRef]
- Yin, S.; Zhou, Y.; Liu, Z.; Wang, H.; Zhao, X.; Zhu, Z.; Yan, Y.; Huo, P. Elucidating protonation pathways in CO2 photoreduction using the kinetic isotope effect. Nat. Commun. 2024, 15, 437. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ju, Z.; Zhang, W.; Pan, Y.; Zhu, J.; Mao, J.; Zheng, X.; Fu, H.; Yuan, M.; Chen, H.; et al. Efficient Infrared-Light-Driven CO2 Reduction Over Ultrathin Metallic Ni-doped CoS2 Nanosheets. Angew. Chem. Int. Ed. 2021, 60, 8705–8709. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Huang, H.; Chen, Z.; Yu, H.; Wang, K.; Huang, J.; Yu, H.; Zhang, Y. Synergistic Polarization Engineering on Bulk and Surface for Boosting CO2 Photoreduction. Angew. Chem. Int. Ed. 2021, 60, 18303–18308. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wu, Y.; Zhang, X.; Li, X.; Zhu, Z.; Ma, C.; Yan, Y.; Huo, P.; Yang, G. Boosting charge carriers separation and migration efficiency via fabricating all organic van der Waals heterojunction for efficient photoreduction of CO2. Chem. Eng. J. 2021, 408, 127292. [Google Scholar] [CrossRef]
- Zhu, K.; Zhu, Q.; Jiang, M.; Zhang, Y.; Shao, Z.; Geng, Z.; Wang, X.; Zeng, H.; Wu, X.; Zhang, W.; et al. Modulating Tit2g Orbital Occupancy in a Cu/TiO2 Composite for Selective Photocatalytic CO2 Reduction to CO. Angew. Chem. Int. Ed. 2022, 61, e202207600. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Fan, X.-B.; Wu, L.-Z.; Zhou, Y. Mechanistic insights into the influence of surface ligands on quantum dots for photocatalysis. J. Mater. Chem. A 2023, 11, 8497–8514. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, Y.; Zhou, E.; Zhang, W.; Liu, Y.; Zhang, J.; Wu, X.; Qi, Q.; Liu, Z. In-suit fabricating an efficient electronic transport channels via S-scheme polyaniline/Cd0.5Zn0.5S heterojunction for rapid removal of tetracycline hydrochloride and hydrogen production. J. Mater. Sci. Technol. 2023, 153, 205–218. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, G.; Zhang, H.; Gao, C.; Chen, Z.; Liu, Z.; Wang, J.; Du, J.; Cai, B.; Li, Z. Boosting Photocatalytic CO2 Methanation through Interface Fusion over CdS Quantum Dot Aerogels. Small 2024, e2400769. [Google Scholar] [CrossRef]
- Zhang, Z.; Rogers, C.R.; Weiss, E.A. Energy Transfer from CdS QDs to a Photogenerated Pd Complex Enhances the Rate and Selectivity of a Pd-Photocatalyzed Heck Reaction. J. Am. Chem. Soc. 2019, 142, 495–501. [Google Scholar] [CrossRef]
- Aldana, J.; Wang, Y.A.; Peng, X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. J. Am. Chem. Soc. 2001, 123, 8844–8850. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Sun, Y.; Cai, J.; Cai, M.; Hu, B.; Yan, Y.; Zhang, Y.; Tang, X. Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight. Catalysts 2024, 14, 599. https://doi.org/10.3390/catal14090599
Yan J, Sun Y, Cai J, Cai M, Hu B, Yan Y, Zhang Y, Tang X. Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight. Catalysts. 2024; 14(9):599. https://doi.org/10.3390/catal14090599
Chicago/Turabian StyleYan, Junzhi, Yuming Sun, Junxi Cai, Ming Cai, Bo Hu, Yan Yan, Yue Zhang, and Xu Tang. 2024. "Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight" Catalysts 14, no. 9: 599. https://doi.org/10.3390/catal14090599
APA StyleYan, J., Sun, Y., Cai, J., Cai, M., Hu, B., Yan, Y., Zhang, Y., & Tang, X. (2024). Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight. Catalysts, 14(9), 599. https://doi.org/10.3390/catal14090599