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Abstract: In this report, we developed an efficient one-pot method for the synthesis of 3-phenyl-1-
(phenylthio)imidazo[1,5-a]pyridine analogs starting from 2-aminomethylpyridines, benzaldehydes,
and sodium benzenesulfinates, which constructed C-N and C-S bonds simultaneously. The method
features mild reaction conditions, a wide range of substrates, high atom utilization, and convenient
and easily accessible starting materials.

Keywords: 2-aminomethylpyridine; benzaldehyde; cyclization; sodium benzenesulfinate; iodine

1. Introduction

As an important nitrogen-containing heterocyclic compound, imidazo[1,5-a]pyridine
has a wide range of applications in various fields, especially in medicinal chemistry [1–7].
For example, imidazo[1,5-a]pyridine derivative (Figure 1a) shows good anti-inflammatory
effects as NIK inhibitors [8], compound b (Figure 1b) demonstrates excellent anti-cancer
activity in biomedical fields [9], and compound c (Figure 1c) shows good antitumor activity
in vivo and vitro [10]. In addition, compound d (Figure 1d) shows promising results in
treating brain injury, such as Alzheimer’s disease [11].
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1. Introduction 
As an important nitrogen-containing heterocyclic compound, imidazo[1,5-a]pyridine 

has a wide range of applications in various fields, especially in medicinal chemistry [1–7]. 
For example, imidazo[1,5-a]pyridine derivative (Figure 1a) shows good anti-
inflammatory effects as NIK inhibitors [8], compound b (Figure 1b) demonstrates excellent 
anti-cancer activity in biomedical fields [9], and compound c (Figure 1c) shows good 
antitumor activity in vivo and vitro [10]. In addition, compound d (Figure 1d) shows 
promising results in treating brain injury, such as Alzheimer's disease [11].  
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Figure 1. Imidazopyridine-based drugs and biologically relevant molecules. 

Imidazo[1,5-a]pyridine is considered to be a special backbone with a wide range of 
applications in medicine and chemistry [12–14], and efforts have been made to modify this 
skeleton over the past years [15,16]. In recent years, sulfur-containing compounds have 
also attracted significant attention due to their widespread presence in various natural 
products and drugs [17]. Therefore, the modification of imidazopyridine by the 
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Figure 1. Imidazopyridine-based drugs and biologically relevant molecules.

Imidazo[1,5-a]pyridine is considered to be a special backbone with a wide range of
applications in medicine and chemistry [12–14], and efforts have been made to modify this
skeleton over the past years [15,16]. In recent years, sulfur-containing compounds have
also attracted significant attention due to their widespread presence in various natural
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products and drugs [17]. Therefore, the modification of imidazopyridine by the construc-
tion of C(sp2)–S bonds is highly desirable [18–27]. Conventional methods for the synthe-
sis of imidazo[1,5-a]pyridines are generated by cyclic dehydration or arylation reactions
initiated by using trifluoromethic anhydride (Tf2O) and 2-methoxypyridine (2-MeO-Py)
(Scheme 1a) [28]. In recent years, relevant literature reports have been published on the
synthesis of 3-sulfinylimidazo[1,5-a]quinoline derivatives using iodine-catalyzed imidazo[1,5-
a]quinolines and disulfides as sulfinylation reagents (Scheme 1b). [9] In 2018, Song’s group
used sodium sulfite as the sulfur source to prepare 3-sulfinylimidazolo [1,2-a] pyridine
derivatives under high temperatures (Scheme 1c) [29]. Similarly, 3-sulfinylimidazo[1,5-
a]pyridine can also be synthesized by C–H functionalization using disulfide esters, 2-
methylaminopyridine, and sulfonylhydrazine (Scheme 1d) [30]. These methods are im-
portant for the C–S modification of imidazo[1,5-a]pyridines, while they still suffer from safety
issues, harsh reaction conditions, long reaction time, the use of toxic starting materials, and
expensive substrates.
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Inspired by our longstanding interest in organosulfur chemistry [31–36], we would
like to report an efficient method for the synthesis of 3-phenyl-1-(phenylthio)imidazo[1,5-
a]pyridine by using sodium benzenesulfinates, 2-aminomethylpyridines, and benzaldehy-
des as starting materials, which might pave an alternative way for the preparation of this
important backbone (Scheme 1, this work).

2. Results and Discussion

Initially, 2-aminomethylpyridine (1a), benzaldehyde (2a), and sodium benzenesulfinate
(3a) were chosen as starting materials for the synthesis of 3-phenyl-1-(phenylthio)imidazo-
[1,5-a]pyridine analogs, and the reaction conditions are summarized in Table 1. Since the
second step of the reaction using sodium benzenesulfinate is essentially quantitative in yields,
we mainly focused on the optimization in the first step. Inspired by the previous literature,
we used TBHP (tert-Butyl hydroperoxide) as the oxidant, I2 as the catalyst, and DMF (N,N-
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Dimethylformamide) as the solvent at a temperature of 70 ◦C, obtaining the target compound
4a with a 60% yield (entry 1). Firstly, a variety of oxidants (m-CPBA (3-Chloroperoxybenzoic
acid), IBX (2-Iodoxybenzoic acid), PIDA (Iodobenzene diacetate), and K2S2O8) were screened,
and it was found that TBHP was the best oxidant. The reaction did not occur without the
addition of oxidants (entries 2–6). Furthermore, when the catalyst was replaced with NaI or
NIS, it had a negative impact on the results (entries 8–9). Additionally, a series of solvents
such as DCM (Dichloromethane), Et2O (Diethyl ether), EtOH (Ethanol), and 1,4-Dioxane were
screened, and the best results were obtained with DMF (entries 10–13). Moreover, further
optimization on the reaction temperature showed that 100 ◦C was the best, giving the target
product with a 70% yield (entry 16). Subsequently, the oxidant loading was optimized, and
the results showed that the optimal oxidant loading was 1.0 equiv. (entries 18–19). Finally,
the screening on the ratio (entries 16, 20-21) of 1a and 2a showed that the best one is 1a:2a=2:1.
Therefore, the optimal reaction conditions are summarized in entry 16.

Table 1. Optimization of the reaction conditions a,b.
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Based on the above optimal reaction conditions, the substrate range of substituted
benzaldehyde 1a and sodium sulfite 3a was explored (Figure 2). Firstly, aryl aldehydes
containing electron-withdrawing groups (–Cl, –Br, –NO2) were used to carry out the re-
action in moderate to good yields (4e–4g). When changing the position of chlorine, the
yields were significantly reduced, such as 4h and 4i, which may be due to the influence
of steric hindrance. In addition, the yield of the substrate containing electron-donating
groups (–CH3, –tBu, –Ph) decreased considerably (4b–4d). To our delight, when naph-
thalene formaldehyde, pyridine formaldehyde, and thiophene formaldehyde were used,
the corresponding target compounds were obtained smoothly (4m–4o). In addition, the
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substrate range of sodium benzenesulfinates was also surveyed. The experimental results
showed that the target compounds bearing Me–, Cl–, and F– were obtained in moderate
to good yields (4j–4l). Unfortunately, no target compounds were obtained when sodium
alkylsulfinate was tested. Subsequently, the target compounds (4p–4za) were obtained
in high yield when the substituents on the benzene ring of aryl aldehydes and sodium
benzenesulfinates were adjusted simultaneously.

Figure 2. Substrate scope for various benzaldehydes and sodium benzenesulfinates. Reaction con-
ditions: 1a (1 mmol), 2a (0.5 mmol), 3a (1 mmol), I2 (0.1 mmol), TBHP (0.5 mmol), DMF (2 mL). The
mixture in the sealed tube was stirred at 100 ◦C for 2 h in the first step and was stirred for 2 h in
the second step. Isolated yield. * For a scaled-up reaction, 1a (20 mmol, 2.16 g), 2a (10 mmol, 1.06 g),
iodine (2 mmol, 0.5 g) in DMF (30 mL) were added into the reaction tube, then TBHP (10 mmol,
1.29 g) was added, and the mixture was stirred at 100 ◦C for 2 h. Then, 3a (20 mmol, 3.28 g), iodine
(10 mmol, 2.54 g), PPh3 (Triphenylphosphine) (20 mmol, 5.25 g) was added, and the mixture was stirred
at 100 ◦C and monitored by TLC (Thin Layer Chromatography) until the starting material (1a or 2a)
was consumed. The crude product was purified by column chromatography to give 4a (71%, 2.15 g).
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To explore the reaction mechanism, some control experiments were performed. Ini-
tially, 3 equiv. of BHT (2,6-di-tert-butyl-4-methylphenol) was added to the reaction system
under standard conditions, giving the target product 4a in a 68% yield (Scheme 2a). This
indicated that a radical pathway was excluded. Furthermore, sodium benzenesulfinate
(3a) could be converted to diphenyl disulfide in 75% in the presence of triphenylphosphine
and iodine (Scheme 2b). Interestingly, the yield of diphenyl disulfide remained basically
unchanged when 3 equiv. of BHT was added under these conditions. Finally, the target
product 4a could be obtained by using diphenyl disulfide in the presence of iodine, giv-
ing the target product in 72% yield (Scheme 2c). The product yield remained essentially
unchanged even with the addition of 3 equiv. of BHT (Scheme 2d).
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Scheme 2. Control experiments.

Based on the results of control experiments and related literature [37–40], we proposed
a possible mechanism for the model reaction (Scheme 3). Initially, 2-aminomethylpyridine
(1a) and benzaldehyde (2a) reacted with iodine/TBHP to form intermediate A. Subse-
quently, A reacted with I2 to produce intermediate B. Meanwhile, sodium benzenesulfinate
(3a) generated diphenyl disulfide C in the presence of PPh3 and I2. Thus, B reacted with
diphenyl disulfide C to form intermediate D, which gave the target product 4a via the
removal of HI.
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3. Experimental Section

General Information. See the details in the Supplementary Materials.
General procedure for the synthesis of 3-sulfinylimidazo[1,5-a]pyridines.

A mixture of pyridin-2-ylmethanamine (1a, 1 mmol), benzaldehyde (2a, 0.5 mmol),
and iodine (0.1 mmol) in DMF (3 mL) was added into the reaction tube, then TBHP (1.0 eq.,
based on 2a) was added, and the mixture was stirred at 100 ◦C for 2 h. Then, sodium
benzenesulfinate (3a, 1 mmol), iodine (0.5 mmol), and PPh3 (2.0 eq., based on 2a) were
added, and the mixture was stirred at 100 ◦C and monitored by TLC until the starting
material (1a or 2a) was consumed. The reaction was then quenched with saturated Na2S2O3
solution (about 5 mL), and extracted with ethyl acetate. The original solution was dried
with anhydrous Na2SO4 and evaporated in vacuo. The crude product was purified by
column chromatography to give 4a.

3-phenyl-1-(phenylthio)imidazo[1,5-a]pyridine (4a): 104 mg (yield: 69%), a yellow
oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.32 (d, J = 7.2 Hz, 1H), 7.85–7.83 (m, 2H), 7.65
(d, J = 9.1 Hz, 1H), 7.55–7.51 (m, 2H), 7.46 (t, J = 7.4 Hz, 1H), 7.23–7.17 (m, 4H), 7.09 (t,
J = 6.9 Hz, 1H), 6.87 (dd, J = 9.2, 6.4 Hz, 1H), 6.67 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz,
CDCl3) δ (ppm): 139.3, 138.4, 135.1, 129.5, 129.2, 129.0, 128.8, 128.3, 127.1, 125.5, 122.1,
121.1, 120.1, 118.5, 113.9. HRMS (ESI) m/z [(M + H)+] Calcd for C19H15N2S+ (303.0950),
found 303.0953.

1-(phenylthio)-3-(p-tolyl)imidazo[1,5-a]pyridine (4b): 72 mg (yield: 46%), a white
solid. M.P.: 142-146 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.29 (d, J = 7.2 Hz, 1H),
7.74–7.72 (m, 2H), 7.64 (d, J = 9.2 Hz, 1H), 7.35–7.33 (m, 2H), 7.23–7.16 (m, 4H), 7.08 (t,
J = 7.0 Hz, 1H), 6.85 (dd, J = 9.2, 6.4 Hz, 1H), 6.65 (t, J = 6.8 Hz, 1H), 2.43 (s, 3H). 13C NMR
(100 MHz, CDCl3) δ (ppm): 139.5, 139.3, 138.4, 135.0, 129.7, 128.8, 128.2, 127.1, 126.6, 125.5,
122.2, 121.0, 119.7, 118.5, 113.8, 21.5. HRMS (ESI) m/z [(M + H)+] Calcd for C20H17N2S+

(317.1107), found 317.1104.
3-(4-(tert-butyl)phenyl)-1-(phenylthio)imidazo[1,5-a]pyridine (4c): 82 mg (yield:

46%), a green solid. M.P.: 140-148 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.31 (d,
J = 7.2 Hz, 1H), 7.79–7.77 (m, 2H), 7.62 (d, J = 9.2 Hz, 1H), 7.56–7.54 (m, 2H), 7.23–7.16 (m,
4H), 7.07 (t, J = 7.1 Hz, 1H), 6.82 (dd, J = 9.2, 6.4 Hz, 1H), 6.62 (t, J = 6.8 Hz, 1H), 1.38 (s, 9H).
13C NMR (100 MHz, CDCl3) δ (ppm): 152.4, 139.5, 138.5, 135.0, 128.8, 128.0, 127.0, 126.7,
126.0, 125.5, 122.2, 121.0, 119.8, 118.4, 113.7, 34.9, 31.3. HRMS (ESI) m/z [(M + H)+] Calcd
for C23H23N2S+ (359.1576), found 359.1572.

3-([1,1′-biphenyl]-4-yl)-1-(phenylthio)imidazo[1,5-a]pyridine (4d): 84 mg (yield:
44%), a yellow oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.39 (d, J = 7.3 Hz, 1H), 7.96 (s,
1H), 7.94 (s, 1H), 7.80 (s, 1H), 7.77 (s, 1H), 7.70–7.67 (m, 3H), 7.52–7.48 (m, 2H), 7.41 (t,
J = 7.3 Hz, 1H), 7.28–7.20 (m, 4H), 7.12 (t, J = 7.1 Hz, 1H), 6.90 (dd, J = 9.2, 6.4 Hz, 1H), 6.71
(t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 141.8, 140.3, 139.0, 138.4, 135.2,
129.0, 128.9, 128.6, 128.4, 127.8, 127.7, 127.1, 127.1, 125.6, 122.2, 121.2, 120.3, 118.5, 114.0.
HRMS (ESI) m/z [(M + H)+] Calcd for C25H19N2S+ (379.1263), found 379.1260.

3-(4-chlorophenyl)-1-(phenylthio)imidazo[1,5-a]pyridine (4e): 121 mg (yield: 72%), a
yellow solid. M.P.: 104–1110 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.25 (d, J = 7.2 Hz,
1H), 7.79 (s, 1H), 7.77 (s, 1H), 7.65 (d, J = 9.1 Hz, 1H), 7.50 (s, 1H), 7.48 (s, 1H), 7.22–7.17
(m, 4H), 7.09 (t, J = 6.7 Hz, 1H), 6.88 (dd, J = 9.2, 6.5 Hz, 1H), 6.69 (t, J = 6.8 Hz, 1H). 13C
NMR (100 MHz, CDCl3) δ (ppm): 138.1, 135.3, 135.0, 129.4, 129.3, 128.9, 128.0, 127.2, 125.6,
122.4, 121.9, 121.3, 120.5, 118.6, 114.3. HRMS (ESI) m/z [(M + H)+] Calcd for C19H14ClN2S+

(337.0561), found 337.0565.
3-(4-bromophenyl)-1-(phenylthio)imidazo[1,5-a]pyridine (4f): 95 mg (yield: 50%), a

yellow solid. M.P.: 118–126 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.25 (d, J = 7.2 Hz,
1H), 7.73–7.70 (m, 2H), 7.65–7.73 (m, 3H), 7.22–7.16 (m, 4H), 7.09 (t, J = 6.7 Hz, 1H), 6.88
(dd, J = 9.0, 6.6 Hz, 1H), 6.69 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 138.1,
135.3, 132.3, 129.6, 128.9, 128.5, 127.2, 125.6, 123.2, 121.9, 121.3, 120.6, 118.6, 114.3. HRMS
(ESI) m/z [(M + H)+] Calcd for C19H13BrN2S+ (381.0056), found 381.0053.
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3-(3-nitrophenyl)-1-(phenylthio)imidazo[1,5-a]pyridine (4g): 105 mg (yield: 61%), a
yellow solid. M.P.: 116–120 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.70 (s, 1H), 8.34 (d,
J = 7.5 Hz, 1H), 8.27–8.21 (m, 2H), 7.72–7.68 (m, 2H), 7.22–7.16 (m, 4H), 7.09 (t, J = 6.6 Hz,
1H), 6.95 (dd, J = 8.9, 6.7 Hz, 1H), 6.79 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ
(ppm): 148.6, 137.8, 136.6, 135.7, 134.0, 131.3, 130.3, 128.9, 127.3, 125.8, 123.5, 122.3, 121.9,
121.6, 121.5, 118.7, 115.1. HRMS (ESI) m/z [(M + H)+] Calcd for C19H14N3O2S+ (348.0801),
found 348.0805.

3-(2-chlorophenyl)-1-(phenylthio)imidazo[1,5-a]pyridine (4h): 67 mg (yield: 40%), a
yellow oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 7.69–7.65 (m, 3H), 7.55 (d, J = 7.7 Hz, 1H),
7.48–7.40 (m, 2H), 7.20–7.19 (m, 4H), 7.11–7.06 (m, 1H), 6.92 (dd, J = 9.9, 6.6 Hz, 1H), 6.69
(t, J = 7.3 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 138.5, 136.9, 134.7, 134.3, 133.4,
131.1, 130.0, 128.8, 128.8, 127.3, 127.0, 125.5, 122.9, 121.3, 119.6, 118.1, 113.5. HRMS (ESI)
m/z [(M + H)+] Calcd for C19H14ClN2S+ (337.0561), found 337.0564.

3-(3-chlorophenyl)-1-(phenylthio)imidazo[1,5-a]pyridine (4i): 69 mg (yield: 41%),
a yellow oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.32 (d, J = 7.2 Hz, 1H), 7.86 (s, 1H),
7.74 (d, J = 7.3 Hz, 1H), 7.68 (d, J = 9.2 Hz, 1H), 7.49–7.44 (m, 2H), 7.24–7.17 (m, 4H),
7.12–7.08 (m, 1H), 6.91 (dd, J = 9.1, 6.4 Hz, 1H), 6.74 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz,
CDCl3) δ (ppm): 137.9, 137.7, 135.3, 135.1, 131.0, 130.3, 129.3, 128.9, 128.2, 127.4, 126.2, 125.7,
121.9, 121.5, 118.7, 114.5. HRMS (ESI) m/z [(M + H)+] Calcd for C19H14ClN2S+ (337.0561),
found 337.0565.

1-((4-chlorophenyl)thio)-3-phenylimidazo[1,5-a]pyridine (4j): 101 mg (yield: 60%), a
white solid. M.P.: 104–110 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.32 (d, J = 7.3 Hz, 1H),
7.84–7.82 (m, 2H), 7.64 (d, J = 9.2 Hz, 1H), 7.56–7.52 (m, 2H), 7.47 (t, J = 7.3 Hz, 1H), 7.15 (s,
4H), 6.90 (dd, J = 9.1, 6.4 Hz, 1H), 6.69 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ
(ppm): 139.4, 136.9, 135.0, 131.5, 129.3, 129.1, 128.9, 128.5, 128.3, 122.2, 121.5, 119.5, 118.3,
114.1. HRMS (ESI) m/z [(M + H)+] Calcd for C19H14ClN2S+ (337.0561), found 337.0563.

1-((4-fluorophenyl)thio)-3-phenylimidazo[1,5-a]pyridine (4k): 104 mg (yield: 65%),
a yellow oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.32 (d, J = 7.2 Hz, 1H), 7.85–7.83 (m,
2H), 7.67 (d, J = 9.2 Hz, 1H), 7.56–7.52 (m, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.28–7.25 (m, 2H),
6.94–6.87 (m, 3H), 6.68 (t, J = 6.8 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3) δ (ppm): 161.4
[d, J(C–F) = 244.0 Hz], 139.3, 134.9, 133.2, 129.5, 129.5 [d, J(C-F) = 8.0 Hz], 129.2, 129.1, 128.3,
122.1, 121.3, 120.5, 118.3, 115.9 [d, J(C-F) = 21.0 Hz], 113.9. 19F NMR (377 MHz, CDCl3)
δ –117.0. HRMS (ESI) m/z [(M + H)+] Calcd for C19H14FN2S+ (321.0856), found 321.0853.

3-phenyl-1-(p-tolylthio)imidazo[1,5-a]pyridine (4l): 82 mg (yield: 52%), a yellow oil.
1H NMR (400 MHz, CDCl3) δ (ppm): 8.29 (d, J = 7.2 Hz, 1H), 7.84–7.82 (m, 2H), 7.64 (d,
J = 9.2 Hz, 1H), 7.54–7.50 (m, 2H), 7.44 (t, J = 7.4 Hz, 1H), 7.18–7.16 (m, 2H), 7.02–7.00 (m,
2H), 6.84 (dd, J = 9.2, 6.4 Hz, 1H), 6.64 (t, J = 6.8 Hz, 1H), 2.25 (s, 3H). 13C NMR (100 MHz,
CDCl3) δ (ppm): 139.1, 136.5, 135.5, 134.8, 134.6, 129.6, 129.6, 129.1, 129.0, 128.3, 127.8, 122.0,
121.0, 118.5, 113.9, 21.0. HRMS (ESI) m/z [(M + H)+] Calcd for C20H17N2S+ (317.1107),
found 317.1104.

3-(naphthalen-1-yl)-1-(phenylthio)imidazo[1,5-a]pyridine (4m): 109 mg (yield: 62%),
a yellow oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.01 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.1 Hz,
1H), 7.79 (d, J = 7.1 Hz, 1H), 7.74–7.70 (m, 3H), 7.63–7.59 (m, 1H), 7.54 (t, J = 7.5 Hz, 1H),
7.48 (t, J = 7.6 Hz, 1H), 7.31–7.29 (m, 2H), 7.24–7.20 (m, 2H), 7.11 (t, J = 7.3 Hz, 1H), 6.89 (dd,
J = 9.6, 6.4 Hz, 1H), 6.58–6.54 (m, 1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 138.6, 138.1,
134.7, 134.0, 131.8, 130.3, 129.0, 128.9, 128.7, 127.2, 126.6, 126.5, 125.5, 125.4, 125.3, 122.5,
121.3, 119.8, 118.3, 113.5. HRMS (ESI) m/z [(M + H)+] Calcd for C23H17N2S+ (353.1107),
found 353.1104.

1-(phenylthio)-3-(pyridin-2-yl)imidazo[1,5-a]pyridine (4n):. 110 mg (yield: 73%), a
white solid. M.P.: 100-110 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 10.00 (d, J = 7.3 Hz, 1H),
8.61 (d, J = 4.0 Hz, 1H), 8.43 (d, J = 8.1 Hz, 1H), 7.73 (t, J = 7.8 Hz, 1H), 7.64 (d, J = 9.1 Hz,
1H), 7.20–7.15 (m, 5H), 7.09–7.0 (m, 1H), 6.93 (dd, J = 9.0, 6.5 Hz, 1H), 6.76 (t, J = 6.9 Hz,
1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 150.6, 148.1, 138.3, 136.6, 136.4, 136.3, 128.9,



Catalysts 2024, 14, 601 8 of 12

126.9, 126.8, 125.5, 122.4, 122.2, 120.3, 117.6, 114.2. HRMS (ESI) m/z [(M + H)+] Calcd for
C18H14N3S+ (304.0903), found 304.0906.

1-(phenylthio)-3-(thiophen-2-yl)imidazo[1,5-a]pyridine (4o): 49 mg (yield: 32%), a
yellow solid. M.P.: 112–116 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.40 (d, J = 7.2 Hz, 1H),
7.65 (d, J = 9.1 Hz, 1H), 7.60 (d, J = 3.7 Hz, 1H), 7.45 (d, J = 5.1 Hz, 1H), 7.21–7.16 (m, 5H),
7.10–7.07 (m, 1H), 6.89 (dd, J = 9.1, 6.4 Hz, 1H), 6.76 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz,
CDCl3) δ (ppm): 138.2, 135.1, 134.0, 131.5, 128.8, 127.7, 127.1, 126.6, 125.8, 125.6, 122.4,
121.1, 120.5, 118.5, 114.4. HRMS (ESI) m/z [(M + H)+] Calcd for C17H13N2S2

+ (309.0515),
found 309.0518.

3-(4-chlorophenyl)-1-((4-chlorophenyl)thio)imidazo[1,5-a]pyridine (4p): 138 mg
(yield: 74%), a yellow solid. M.P.: 140–148 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm):
8.26 (d, J = 7.3 Hz, 1H), 7.78–7.76 (m, 2H), 7.64 (d, J = 9.2 Hz, 1H), 7.51–7.49 (m, 2H),
7.14 (s, 4H), 6.91 (dd, J = 9.2, 6.5 Hz, 1H), 6.71 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz,
CDCl3) δ (ppm): 138.3, 136.7, 135.3, 135.2, 131.5, 129.4, 129.4, 128.9, 128.5, 127.9, 121.9,
121.6, 112.0, 118.4, 114.3. HRMS (ESI) m/z [(M + H)+] Calcd for C19H13Cl2N2S+ (371.0171),
found 371.0175.

3-(4-chlorophenyl)-1-((4-fluorophenyl)thio)imidazo[1,5-a]pyridine (4q): 122 mg
(yield: 69%), a white oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.27 (d, J = 7.2 Hz, 1H), 7.81
(s, 1H), 7.79 (s, 1H), 7.69 (d, J = 9.2 Hz, 1H), 7.54 (s, 1H), 7.52 (s, 1H), 7.29–7.25 (m, 2H),
6.95 –6.91 (m, 3H), 6.73 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 161.5 [d,
J(C-F) = 244.0 Hz], 138.1, 135.2, 135.0, 132.9, 129.7 [d, J(C-F) = 7.0 Hz], 129.5, 129.4, 127.8,
121.9, 121.5, 120.9, 118.5, 115.9 [d, J(C-F) = 22.0 Hz], 114.3. 19F NMR (377 MHz, CDCl3)
δ -116.7. HRMS (ESI) m/z [(M + H)+] Calcd for C19H13ClFN2S+ (355.0467), found 355.0465.

3-(2-chlorophenyl)-1-((4-chlorophenyl)thio)imidazo[1,5-a]pyridine (4r): 145 mg
(yield: 78%), a yellow solid. M.P.: 150–152 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm):
7.69–7.64 (m, 3H), 7.55 (d, J = 7.8 Hz, 1H), 7.49–7.40 (m, 2H), 7.15–7.12 (m, 4H), 6.94 (dd,
J = 9.1, 6.5 Hz, 1H), 6.70 (t, J = 6.7 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 137.1,
134.7, 134.3, 133.3, 131.4, 131.3, 130.0, 128.9, 128.6, 128.3, 127.3, 123.0, 121.7, 119.1, 117.9,
113.6. HRMS (ESI) m/z [(M + H)+] Calcd for C19H13Cl2N2S+ (371.0171), found 371.0174.

3-(2-chlorophenyl)-1-((4-fluorophenyl)thio)imidazo[1,5-a]pyridine (4s): 130 mg
(yield: 73%), a white solid. M.P.: 80–92◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 7.68–7.62
(m, 3H), 7.54 (s, 1H), 7.53 (s, 1H), 7.47–7.39 (m, 2H), 7.24 -7.21 (m, 2H), 6.94–6.87 (m, 3H),
6.69–6.66 (m, 1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 161.4 [d, J(C–F) = 244.0 Hz], 136.9,
134.5, 134.3, 133.3, 131.2, 130.0, 129.3 [d, J(C–F) = 8.0 Hz], 128.7, 127.3, 122.9, 121.5, 120.0,
118.0, 115.9 [d, J(C–F) = 22.0 Hz], 113.5. 19F NMR (377 MHz, CDCl3) δ –117.1. HRMS (ESI)
m/z [(M + H)+] Calcd for C19H13ClFN2S+ (355.0467), found 355.0464.

3-(3-chlorophenyl)-1-((4-chlorophenyl)thio)imidazo[1,5-a]pyridine(4t): 150 mg
(yield: 81%), a yellow solid. M.P.: 98–102 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.30 (d,
J = 7.2 Hz, 1H), 7.84 (s, 1H), 7.72 (d, J = 7.3 Hz, 1H), 7.64 (d, J = 9.2 Hz, 1H), 7.48–7.41 (m, 2H),
7.17–7.12 (m, 4H), 6.92 (dd, J = 9.2, 6.5 Hz, 1H), 6.73 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz,
CDCl3) δ (ppm): 137.9, 136.7, 135.4, 135.1, 131.6, 131.1, 130.4, 129.3, 128.9, 128.5, 128.2, 126.1,
122.0, 121.8, 120.2, 118.4, 114.5. HRMS (ESI) m/z [(M + H)+] Calcd for C19H13Cl2N2S+

(371.0171), found 371.0175.y6
3-(3-chlorophenyl)-1-((4-fluorophenyl)thio)imidazo[1,5-a]pyridine (4u): 126 mg

(yield: 71%), a yellow solid. M.P.: 98–100◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.30 (d,
J = 7.3 Hz, 1H), 7.85 (s, 1H), 7.74–7.67 (m, 2H), 7.49–7.42 (m, 2H), 7.27–7.24 (m, 2H),
6.95–6.89 (m, 3H), 6.74 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 160.5 [d,
J(C-F) = 243.0 Hz], 137.7, 135.1, 132.9, 131.1, 130.3, 129.7 [d, J(C-F) = 8.0 Hz], 129.3, 128.2,
126.1, 121.9, 121.6, 121.1, 118.5, 115.9 [d, J(C–F) = 23.0 Hz], 114.4. 19F NMR (377 MHz, CDCl3)
δ –116.7. HRMS (ESI) m/z [(M + H)+] Calcd for C19H13ClFN2S+ (355.0467), found 355.0463.

3-(4-bromophenyl)-1-((4-chlorophenyl)thio)imidazo[1,5-a]pyridine (4v): 133 mg
(yield: 64%), a white solid. M.P.:150–156◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.26 (d,
J = 7.2 Hz, 1H), 7.72 (s, 1H), 7.70 (s, 1H), 7.66–7.62 (m, 3H), 7.14 (s, 4H), 6.91 (dd, J = 9.2,
6.5 Hz, 1H), 6.71 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 138.3, 136.7, 135.3,



Catalysts 2024, 14, 601 9 of 12

132.3, 131.5, 129.6, 128.9, 128.5, 128.3, 123.4, 121.9, 121.6, 120.0, 118.4, 114.4. HRMS (ESI)
m/z [(M + H)+] Calcd for C19H13BrClN2S+ (414.9666), found 414.9669.

1-((4-chlorophenyl)thio)-3-(naphthalen-1-yl)imidazo[1,5-a]pyridine (4w): 140 mg
(yield: 72%), a yellow oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.02 (d, J = 8.2 Hz, 1H),
7.96 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 7.1 Hz, 1H), 7.73–7.67 (m, 3H), 7.64–7.60 (m, 1H), 7.55 (t,
J = 7.5 Hz, 1H), 7.50–7.46 (m, 1H), 7.24–7.17 (m, 4H), 6.92 (dd, J = 9.2, 6.4 Hz, 1H), 6.59 (t,
J = 6.7 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ (ppm): 138.3, 137.0, 134.7, 134.0, 131.7, 131.5,
130.4, 129.0, 128.9, 128.7, 128.6, 127.3, 126.5, 126.3, 125.3, 125.3, 122.6, 121.6, 119.3, 118.1,
113.6. HRMS (ESI) m/z [(M + H)+] Calcd for C23H16ClN2S+ (387.0717), found 387.0720.

1-((4-chlorophenyl)thio)-3-(3-nitrophenyl)imidazo[1,5-a]pyridine (4x): 144 mg (yield:
75%), a yellow solid. M.P.:140–144 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.68 (s, 1H),
8.34 (d, J = 7.2 Hz, 1H), 8.26 (d, J = 8.2 Hz, 1H), 8.20 (d, J = 8.1 Hz, 1H), 7.72–7.65 (m, 2H),
7.13 (s, 4H), 6.97 (dd, J = 9.2, 6.5 Hz, 1H), 6.81 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz,
CDCl3) δ (ppm): 148.6, 136.7, 136.4, 135.7, 134.0, 131.7, 131.2, 130.3, 129.0, 128.6, 123.6, 122.4,
122.2, 121.7, 120.9, 118.5, 115.1. HRMS (ESI) m/z [(M + H)+] Calcd for C19H13ClN3O2S+

(382.0412), found 382.0416.
3-(3-nitrophenyl)-1-(p-tolylthio)imidazo[1,5-a]pyridine (4y): 120 mg (yield: 67%), a

yellow solid. M.P.:140–144◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.70 (s, 1H), 8.33 (d,
J = 7.2 Hz, 1H), 8.28–7.26 (m, 2H), 7.71–7.68 (m, 2H), 7.18 (s, 1H), 7.16 (s, 1H), 7.02–7.01 (m,
2H), 6.94 (dd, J = 9.2, 6.4 Hz, 1H), 6.78 (t, J = 6.8 Hz, 1H), 2.25 (s, 3H). 13C NMR (100 MHz,
CDCl3) δ (ppm): 148.6, 136.3, 135.9, 135.4, 134.0, 133.9, 131.3, 130.2, 129.7, 128.1, 123.4, 122.5,
122.3, 121.7, 121.5, 118.8, 115.0, 21.0. HRMS (ESI) m/z [(M + H)+] Calcd for C20H16N3O2S+

(362.0958), found 362.0955.
3-(naphthalen-1-yl)-1-(p-tolylthio)imidazo[1,5-a]pyridine (4z): 78 mg (yield: 43%), a

yellow oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.03 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 7.5 Hz,
1H), 7.80 (d, J = 7.1 Hz, 1H), 7.75–7.71 (m, 3H), 7.65–7.61 (m, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.49
(t, J = 7.6 Hz, 1H), 7.28 (s,1H), 7.26 (s,1H), 7.08 (s, 1H), 7.06 (s, 1H), 6.90 (dd, J = 9.1, 6.3 Hz,
1H), 6.59–6.56 (m, 1H), 2.30 (s, 3H). 13C NMR (100 MHz, CDCl3) δ (ppm): 137.8, 135.6,
134.7, 134.4, 134.0, 131.7, 130.3, 129.6, 129.0, 128.7, 128.0, 127.2, 126.5, 126.4, 125.4, 125.3,
122.5, 121.1, 120.7, 118.4, 113.5, 21.0. HRMS (ESI) m/z [(M + H)+] Calcd for C24H19N2S+

(367.1263), found 367.1266.
3-(4-chlorophenyl)-1-(p-tolylthio)imidazo[1,5-a]pyridine (4za): 120 mg (yield: 68%),

a yellow oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.22 (d, J = 7.3 Hz, 1H), 7.77 (m, 1H), 7.75
(m, 1H), 7.64 (d, J = 9.1 Hz, 1H), 7.48 (s, 1H), 7.46 (s, 1H), 7.16 (s, 1H), 7.14 (s, 1H)„ 7.01 (s,
1H), 6.99 (s, 1H), 6.85 (dd, J = 9.2, 6.4 Hz, 1H), 6.66 (t, J = 6.8 Hz, 1H), 2.24 (s, 3H). 13C NMR
(100 MHz, CDCl3) δ (ppm): 137.9, 135.7, 135.0, 134.9, 134.4, 129.6, 129.4, 129.3, 128.1, 127.8,
121.8, 121.4, 121.1, 118.6, 114.2, 21.0. HRMS (ESI) m/z [(M + H)+] Calcd for C20H16ClN2S+

(351.0717), found 351.0714.

4. Conclusions

In conclusion, we developed a one-pot strategy for the efficient synthesis of
sulfinylimidazo[1,5-a]pyridine derivatives starting from 2-aminomethylpyridines, ben-
zaldehydes, and sodium benzenesulfinates, which constructed C–N and C–S bonds simul-
taneously. The method is characterized by a short reaction time, mild reaction conditions,
high atom efficiency, and good yields. This method demonstrates significant potential for
the preparation of a variety of biologically or pharmaceutically active compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal14090601/s1, General Information, Typical procedure, NMR
spectra of all of the products.
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