Emerging Catalytic Strategies Driven by External Field for Heavy Metal Remediation
Abstract
:1. Introduction
2. External Field-Driven Heavy Metal Removal
2.1. Electrocatalysis
2.1.1. Direct Current (DC) Electrocatalysis Mode
2.1.2. Pulsed Current (PC) Electrocatalysis Mode
2.2. Mechano-Catalysis
2.2.1. Piezocatalysis
2.2.2. Contact-Electro-Catalysis
2.3. Magneto-Catalysis
2.4. Thermoelectrocatalysis
2.5. Integrated Coupling Catalysis
2.5.1. Photo-Electrocatalysis
2.5.2. Piezo-Photocatalysis
2.5.3. Magneto-Photocatalysis
2.5.4. Thermoelectric-Photocatalysis
3. Conclusions and Perspectives
3.1. Conclusions
3.2. Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environ. Sci. Technol. 2016, 50, 7290–7304. [Google Scholar] [CrossRef]
- Selvi, A.; Rajasekar, A.; Theerthagiri, J.; Ananthaselvam, A.; Sathishkumar, K.; Madhavan, J.; Rahman, P.K.S.M. Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Front. Environ. Sci. 2019, 7, 66. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Aksu, Z.; Kutsal, T. A comparative study for biosorption characteristics of heavy metal ions with C. vulgaris. Environ. Technol. 1990, 11, 979–987. [Google Scholar] [CrossRef]
- Abd Elnabi, M.K.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Abd Elaty, A.E.; et al. Toxicity of heavy metals and recent advances in their removal: A review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.; Zhong, H.; Zheng, S.; Wang, R.; Yang, L. Simple, one-step and amplified Hg2+ detection strategy based on DNAzyme motor. Sens. Actuators B Chem. 2018, 277, 456–461. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, L.; Li, B.; Jing, L.; Wang, E. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II) ion. Chem. Commun. 2010, 46, 1476–1478. [Google Scholar] [CrossRef]
- Selin, N.E. A proposed global metric to aid mercury pollution policy. Science 2018, 360, 607–609. [Google Scholar] [CrossRef]
- Cao, F.; Lian, C.; Yu, J.; Yang, H.; Lin, S. Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes. Bioresour. Technol. 2019, 276, 211–218. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kamalesh, T.; Kumar, P.S.; Rangasamy, G. A critical review on the sustainable approaches for the removal of toxic heavy metals from water systems. Ind. Eng. Chem. Res. 2023, 62, 8575–8601. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, H.; Zhang, X.; Zang, X.; Ding, Y.; Zhang, J.; He, D. Simultaneous chelated heavy metals removal and sludge recovery through titanium coagulation: From waste to resource. Sci. Total Environ. 2024, 912, 168821. [Google Scholar] [CrossRef] [PubMed]
- Mehrpour, P.; Mirbagheri, S.A.; Kavianimalayeri, M.; Sayyahzadeh, A.H.; Ehteshami, M. Experimental pH adjustment for different concentrations of industrial wastewater and modeling by Artificial Neural Network. Environ. Technol. Innov. 2023, 31, 103212. [Google Scholar] [CrossRef]
- Lin, H.; Yang, D.; Zhang, C.; Liu, W.; Zhang, L.; Dong, Y. Selective removal behavior of lead and cadmium from calcium-rich solution by MgO loaded soybean straw biochars and mechanism analysis. Chemosphere 2023, 319, 138010. [Google Scholar] [CrossRef]
- Aswathy, N.R.; Sen, R.; Mongaraj, S.; Sudha, G.S.; Mohapatra, A.K. An all-green cellulose acetate/corn cob composite membrane filter: A critical evaluation of its morphology and adsorption characteristics for dyes and heavy metals. J. Appl. Polym. Sci. 2024, 141, e55206. [Google Scholar] [CrossRef]
- Xiang, H.; Min, X.; Tang, C.-J.; Sillanpää, M.; Zhao, F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, R.; Ai, Y.; Jiang, T.; Wang, Y.; Wang, Y.; Wang, L.; Yang, Q.; Sun, H.-b. Sea urchin-like MnO2 nanosheets 3D assembly for the ultra-fast adsorption of Sb(III) and the inspired prospect of aqueous SbO2− battery. Chem. Eng. J. 2023, 454, 140308. [Google Scholar] [CrossRef]
- Demirbas, A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 2008, 157, 220–229. [Google Scholar] [CrossRef]
- Li, S.; Liu, F.; Su, Y.; Shao, N.; Yu, D.; Liu, Y.; Liu, W.; Zhang, Z. Luffa sponge-derived hierarchical meso/macroporous boron nitride fibers as superior sorbents for heavy metal sequestration. J. Hazard. Mater. 2019, 378, 120669. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J. Structured semiconductors in photocatalysis. Catalysts 2023, 13, 1111. [Google Scholar] [CrossRef]
- Gao, X.; Meng, X. Photocatalysis for heavy metal treatment: A Review. Processes 2021, 9, 1729. [Google Scholar] [CrossRef]
- Du, J.; Zhang, B.; Li, J.; Lai, B. Decontamination of heavy metal complexes by advanced oxidation processes: A review. Chin. Chem. Lett. 2020, 31, 2575–2582. [Google Scholar] [CrossRef]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Abidli, A.; Huang, Y.; Ben Rejeb, Z.; Zaoui, A.; Park, C.B. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere 2022, 292, 133102. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shi, Q.; Song, N.; Xiao, Y.; Wang, L.; Chen, Z.; James, T.D. Current trends in the detection and removal of heavy metal ions using functional materials. Chem. Soc. Rev. 2023, 52, 5827–5860. [Google Scholar] [CrossRef] [PubMed]
- Charerntanyarak, L. Heavy metals removal by chemical coagulation and precipitation. Water Sci. Technol. 2018, 39, 135–138. [Google Scholar] [CrossRef]
- Shao, N.; Li, S.; Yan, F.; Su, Y.; Liu, F.; Zhang, Z. An all-in-one strategy for the adsorption of heavy metal ions and photodegradation of organic pollutants using steel slag-derived calcium silicate hydrate. J. Hazard. Mater. 2020, 382, 121120. [Google Scholar] [CrossRef]
- Che, F.; Gray, J.T.; Ha, S.; Kruse, N.; Scott, S.L.; McEwen, J.-S. Elucidating the roles of electric fields in catalysis: A perspective. ACS Catal. 2018, 8, 5153–5174. [Google Scholar] [CrossRef]
- Song, X.; Li, S.; Zhang, J.; Shi, W.; Zhang, L. Electrostatics advancing green catalysis events. Sci. China Chem. 2023, 66, 1881–1885. [Google Scholar] [CrossRef]
- Han, G.-F.; Li, F.; Chen, Z.-W.; Coppex, C.; Kim, S.-J.; Noh, H.-J.; Fu, Z.; Lu, Y.; Singh, C.V.; Siahrostami, S.; et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 2021, 16, 325–330. [Google Scholar] [CrossRef]
- Boswell, B.R.; Mansson, C.M.F.; Cox, J.M.; Jin, Z.; Romaniuk, J.A.H.; Lindquist, K.P.; Cegelski, L.; Xia, Y.; Lopez, S.A.; Burns, N.Z. Mechanochemical synthesis of an elusive fluorinated polyacetylene. Nat. Chem. 2021, 13, 41–46. [Google Scholar] [CrossRef]
- Ren, X.; Wu, T.; Sun, Y.; Li, Y.; Xian, G.; Liu, X.; Shen, C.; Gracia, J.; Gao, H.-J.; Yang, H.; et al. Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 2021, 12, 2608. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Elouarzaki, K.; Xu, Z.J. Electrochemistry in magnetic fields. Angew. Chem. Int. Ed. 2022, 61, e202203564. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Yang, F.; Zhang, J.; Liu, Y.; Li, S. Magnetic field driven catalysis of multiferroic magnetoelectric nanocomposites. Mater. Lab 2023, 2, 230025. [Google Scholar] [CrossRef]
- Hooshmand Zaferani, S.; Sams, M.W.; Shi, X.-L.; Mehrabian, N.; Ghomashchi, R.; Chen, Z.-G. Applications of thermoelectric generators to improve catalytic-assisted hydrogen production efficiency: Future Directions. Energy Fuels 2022, 36, 8096–8106. [Google Scholar] [CrossRef]
- Achour, A.; Liu, J.; Peng, P.; Shaw, C.; Huang, Z. In situ tuning of catalytic activity by thermoelectric effect for ethylene oxidation. ACS Catal. 2018, 8, 10164–10172. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Ikeda, S.; Takata, T.; Komoda, M.; Hara, M.; Kondo, J.N.; Domen, K.; Tanaka, A.; Hosono, H.; Kawazoe, H. Mechano-catalysis—A novel method for overall water splitting. Phys. Chem. Chem. Phys. 1999, 1, 4485–4491. [Google Scholar] [CrossRef]
- Fan, F.-R.; Xie, S.; Wang, G.-W.; Tian, Z.-Q. Tribocatalysis: Challenges and perspectives. Sci. China Chem. 2021, 64, 1609–1613. [Google Scholar] [CrossRef]
- Cai, J.; Yan, L.; Seyedkanani, A.; Orsat, V.; Akbarzadeh, A. Nano-architected GaN metamaterials with notable topology-dependent enhancement of piezoelectric energy harvesting. Nano Energy 2024, 129, 109990. [Google Scholar] [CrossRef]
- Lielmezs, J.; Morgan, J.P. Magneto-catalytic effect in ethylene hydrogenation reaction. Chem. Eng. Sci. 1967, 22, 781–791. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, C.; Wu, J.; Liu, H.; Zhang, B.; Jiang, Z.; Li, S.; Xu, P. Recent advances in magnetic field-enhanced electrocatalysis. ACS Appl. Energy Mater. 2020, 3, 10303–10316. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, R.; Wang, Z.; Wang, Q. Photo-thermal conversion properties of hybrid CuO-MWCNT/H2O nanofluids for direct solar thermal energy harvest. Appl. Therm. Eng. 2018, 147, 390–398. [Google Scholar] [CrossRef]
- Sharifi, T.; Zhang, X.; Costin, G.; Yazdi, S.; Woellner, C.F.; Liu, Y.; Tiwary, C.S.; Ajayan, P. Thermoelectricity enhanced electrocatalysis. Nano Lett. 2017, 17, 7908–7913. [Google Scholar] [CrossRef] [PubMed]
- Kasbaji, M.; Ibrahim, I.; Mennani, M.; Abdelatty Abuelalla, O.; Fekry, S.S.; Mohamed, M.M.; Salama, T.M.; Moneam, I.A.; Mbarki, M.; Moubarik, A.; et al. Future trends in dye removal by metal oxides and their Nano/Composites: A comprehensive review. Inorg. Chem. Commun. 2023, 158, 111546. [Google Scholar] [CrossRef]
- Mennani, M.; Kasbaji, M.; Ait Benhamou, A.; Ablouh, E.-H.; Grimi, N.; El Achaby, M.; Kassab, Z.; Moubarik, A. Lignin-functionalized cobalt for catalytic reductive degradation of organic dyes in simple and hybrid binary systems. Chemosphere 2024, 350, 141098. [Google Scholar] [CrossRef] [PubMed]
- Flores López, S.L.; Moreno Virgen, M.R.; Hernández Montoya, V.; Montes Morán, M.A.; Tovar Gómez, R.; Rangel Vázquez, N.A.; Pérez Cruz, M.A.; Esparza González, M.S. Effect of an external magnetic field applied in batch adsorption systems: Removal of dyes and heavy metals in binary solutions. J. Mol. Liq. 2018, 269, 450–460. [Google Scholar] [CrossRef]
- Sima, M.; Hamid, E.-N.; Jafar, A.; Eduardo, R.C.-C.; Jens Honoré, W. The performance of a C2N membrane for heavy metal ions removal from water under external electric field. Sep. Purif. Technol. 2022, 289, 120770. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Zhao, J.; Zhang, Z.; Li, X.; Zhang, J. Recent Advances of Ferro-, Piezo-, and Pyroelectric nanomaterials for catalytic applications. ACS Appl. Nano Mater. 2020, 3, 1063–1079. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178–214. [Google Scholar] [CrossRef]
- Xu, Y.; Li, S.; Chen, M.; Zhang, J.; Rosei, F. Carbon-based nanostructures for emerging photocatalysis: CO2 reduction, N2 fixation, and organic conversion. Trends Chem. 2022, 4, 984–1004. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, Y.; Zhou, E.; Zhang, W.; Liu, Y.; Zhang, J.; Wu, X.; Qi, Q.; Liu, Z. In-suit fabricating an efficient electronic transport channels via S-scheme polyaniline/Cd0.5Zn0.5S heterojunction for rapid removal of tetracycline hydrochloride and hydrogen production. J. Mater. Sci. Technol. 2023, 153, 205–218. [Google Scholar] [CrossRef]
- Li, J.; Ren, J.; Li, S.; Li, G.; Li, M.M.-J.; Li, R.; Kang, Y.S.; Zou, X.; Luo, Y.; Liu, B.; et al. Potential industrial applications of photo/electrocatalysis: Recent progress and future challenges. Green Energy Environ. 2024, 9, 859–876. [Google Scholar] [CrossRef]
- Tu, S.; Guo, Y.; Zhang, Y.; Hu, C.; Zhang, T.; Ma, T.; Huang, H. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application. Adv. Funct. Mater. 2020, 30, 2005158. [Google Scholar] [CrossRef]
- Jing, L.; Xu, Y.; Xie, M.; Li, Z.; Wu, C.; Zhao, H.; Wang, J.; Wang, H.; Yan, Y.; Zhong, N.; et al. Piezo-photocatalysts in the field of energy and environment: Designs, applications, and prospects. Nano Energy 2023, 112, 108508. [Google Scholar] [CrossRef]
- Li, J.; Pei, Q.; Wang, R.; Zhou, Y.; Zhang, Z.; Cao, Q.; Wang, D.; Mi, W.; Du, Y. Enhanced photocatalytic performance through magnetic field boosting carrier transport. ACS Nano 2018, 12, 3351–3359. [Google Scholar] [CrossRef]
- Peng, C.; Fan, W.; Li, Q.; Han, W.; Chen, X.; Zhang, G.; Yan, Y.; Gu, Q.; Wang, C.; Zhang, H.; et al. Boosting photocatalytic activity through tuning electron spin states and external magnetic fields. J. Mater. Sci. Technol. 2022, 115, 208–220. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, R.; Zhou, L.; Dong, R.; Kou, J.; Lu, C. Infrared light induced sustainable enhancement of photocatalytic efficiency by thermoelectric effect. J. Colloid Interface Sci. 2023, 652, 963–970. [Google Scholar] [CrossRef]
- Tan, J.; Du, B.; Ji, C.; Shao, M.; Zhao, X.; Yu, J.; Xu, S.; Man, B.; Zhang, C.; Li, Z. Thermoelectric field-assisted raman scattering and photocatalysis with GaN-plasmonic metal composites. ACS Photonics 2023, 10, 2216–2225. [Google Scholar] [CrossRef]
- Yu, D.; Liu, Z.; Zhang, J.; Li, S.; Zhao, Z.; Zhu, L.; Liu, W.; Lin, Y.; Liu, H.; Zhang, Z. Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: Piezo-photocatalytic and ferro-photoelectrochemical effects. Nano Energy 2019, 58, 695–705. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Zhang, B.-P.; Huang, W.; Harnagea, C.; Nechache, R.; Zhu, L.; Zhang, S.; Lin, Y.-H.; Ni, L.; et al. Manipulation of charge transfer in vertically aligned epitaxial ferroelectric KNbO3 nanowire array photoelectrodes. Nano Energy 2017, 35, 92–100. [Google Scholar] [CrossRef]
- Shaik, S.; Danovich, D.; Joy, J.; Wang, Z.; Stuyver, T. Electric-field mediated chemistry: Uncovering and exploiting the potential of (Oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 2020, 142, 12551–12562. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, X.; Gao, T.; Li, X.; Wang, G.; Pan, X.; Wang, J. Dielectrophoresis-assisted removal of Cd and Cu heavy metal ions by using Chlorella microalgae. Environ. Pollut. 2023, 334, 122110. [Google Scholar] [CrossRef] [PubMed]
- Bartzis, V.; Ninos, G.; Sarris, I.E. Water purification from heavy metals due to electric field ion drift. Water 2022, 14, 2372. [Google Scholar] [CrossRef]
- Zhou, C.; Yao, G.; Ni, X.; Wang, H.; Mao, Z.; Fang, X.; Ma, J.; Liu, D.; Ye, Z. Effects of willow and Sedum alfredii Hance planting patterns on phytoremediation efficiency under AC electric field. Environ. Sci. Pollut. Res. 2023, 30, 112813–112824. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Weng, B.; Sun, X.; Cai, B.; Huebner, R.; Luo, Y.; Du, R. A Decade of Electrocatalysis with Metal Aerogels: A Perspective. Catalysts 2023, 13, 167. [Google Scholar] [CrossRef]
- Zeng, L.; Yang, Q.; Wang, J.; Wang, X.; Wang, P.; Wang, S.; Lv, S.; Muhammad, S.; Liu, Y.; Yi, H.; et al. Programmed alternating current optimization of Cu-catalyzed C-H bond transformations. Science 2024, 385, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.; Zhao, S.; Chang, H.; Li, Y.; Zhao, Y. Effects of an assistive electric field on heavy metal passivation during manure composting. Sci. Total Environ. 2023, 901, 165909. [Google Scholar] [CrossRef]
- Hemmatifar, A.; Ozbek, N.; Halliday, C.; Hatton, T.A. Electrochemical selective recovery of heavy metal vanadium oxyanion from continuously flowing aqueous streams. Chemsuschem 2020, 13, 3865–3874. [Google Scholar] [CrossRef]
- Kan, H.; Mao, R.; Zhu, X.; Cui, Y.; Liu, Y.; Wang, K.; Sun, S.; Zhao, X. Self-catalytic decomplexation of Cu−TEPA and simultaneous recovery of Cu by an electrochemical ozone production system using heterojunction Ni-Sb-SnO2 anode. J. Hazard. Mater. 2024, 465, 132967. [Google Scholar] [CrossRef]
- Qin, H.; Liu, X.; Liu, X.; Zhao, H.; Mao, S. Highly selective electrocatalytic CuEDTA reduction by MoS2 nanosheets for efficient pollutant removal and simultaneous electric power output. Nano-Micro Lett. 2023, 15, 193. [Google Scholar] [CrossRef]
- Chen, W.; He, X.; Jiang, Z.; Li, B.; Li, X.-y.; Lin, L. A capacitive deionization and electro-oxidation hybrid system for simultaneous removal of heavy metals and organics from wastewater. Chem. Eng. J. 2023, 451, 139071. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Sun, L.; Yang, W. Dynamic cation enrichment during pulsed CO2 electrolysis and the cation-promoted multicarbon formation. J. Am. Chem. Soc. 2024, 146, 23901–23908. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xue, J.; Li, Y.; Shen, Q.; Li, Q.; Zhang, X.; Liu, X.; Jia, H. Robust Fe2+-doped nickel-iron layered double hydroxide electrode for electrocatalytic reduction of hexavalent chromium by pulsed potential method. J. Mater. Sci. Technol. 2022, 110, 73–83. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, H.; Zhang, L.; Wu, Y.; Lan, C.; Tang, J.; Wang, J.; Tang, L. Insights into the mechanism of selective removal of heavy metal ions by the pulsed/direct current electrochemical method. Environ. Sci. Technol. 2024, 58, 5589–5597. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Roy, S.; Bardhan, S.; Roy, J.; Kanungo, I.; Basu, R.; Das, S. Recent advances in piezocatalytic polymer nanocomposites for wastewater remediation. Dalton Trans. 2022, 51, 451–462. [Google Scholar] [CrossRef]
- Guo, R.; Jin, L.; Zhang, Y. Piezo-catalysis in BiFeO3@In2Se3 heterojunction for high-efficiency uranium removal. Small 2024, 20, 2307946. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Yang, F.; Zhang, J.; Shi, W.; Rosei, F. Mechanically driven water splitting over piezoelectric nanomaterials. Chem Catal. 2024, 4, 100901. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Yu, D.; Zhao, J.-Z.; Su, Y.; Liu, Y.; Lin, Y.; Liu, W.; Xu, H.; Zhang, Z. Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect. Nano Energy 2019, 66, 104083. [Google Scholar] [CrossRef]
- Wang, K.; Guan, Z.; Liang, X.; Song, S.; Lu, P.; Zhao, C.; Yue, L.; Zeng, Z.; Wu, Y.; He, Y. Remarkably enhanced catalytic performance in CoOx/Bi4Ti3O12 heterostructures for methyl orange degradation via piezocatalysis and piezo-photocatalysis. Ultrason. Sonochemistry 2023, 100, 106616. [Google Scholar] [CrossRef]
- Xu, M.-L.; Lu, M.; Qin, G.-Y.; Wu, X.-M.; Yu, T.; Zhang, L.-N.; Li, K.; Cheng, X.; Lan, Y.-Q. Piezo-photocatalytic synergy in BiFeO3@COF Z-Scheme heterostructures for high-efficiency overall water splitting. Angew. Chem. Int. Ed. 2022, 61, 202210700. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, X.; Tang, W.; Wang, Z.L. Contact-electro-catalysis (CEC). Chem. Soc. Rev. 2024, 53, 4349–4373. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Berbille, A.; Feng, Y.; Li, S.; Zhu, L.; Tang, W.; Wang, Z.L. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 2022, 13, 130. [Google Scholar] [CrossRef]
- Li, R.; Liang, S.; Aihemaiti, A.; Li, S.; Zhang, Z. Effectively enhanced piezocatalytic activity in flower-like 2H-MoS2 with tunable S vacancy towards organic pollutant degradation. Appl. Surf. Sci. 2023, 631, 157461. [Google Scholar] [CrossRef]
- Dai, J.; Shao, N.; Zhang, S.; Zhao, Z.; Long, Y.; Zhao, S.; Li, S.; Zhao, C.; Zhang, Z.; Liu, W. Enhanced piezocatalytic activity of Sr0.5Ba0.5Nb2O6 nanostructures by engineering surface oxygen vacancies and self-generated heterojunctions. ACS Appl. Mater. Interfaces 2021, 13, 7259–7267. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, Y.; Ye, J.; Zhou, X.; Zhou, X.; Zhao, Y.; Feng, K.; Luo, H.; Zhang, D.; Bowen, C. Retrievable hierarchically porous ferroelectric ceramics for “Greening” the piezo-catalysis process. Adv. Funct. Mater. 2024, 34, 2311091. [Google Scholar] [CrossRef]
- Yu, C.; Tan, M.; Li, Y.; Liu, C.; Yin, R.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering. J. Colloid Interface Sci. 2021, 596, 288–296. [Google Scholar] [CrossRef]
- Alfryyan, N.; Kumar, S.; Ben Ahmed, S.; Kebaili, I.; Boukhris, I.; Azad, P.; Al-Buriahi, M.S.; Vaish, R. Electric poling effect on piezocatalytic BaTiO3 polymer composites for coatings. Catalysts 2022, 12, 1228. [Google Scholar] [CrossRef]
- Xie, C.; Niu, B.; Guo, H.; Ying, S. Piezoelectric-catalytic degradation of organic dyes and catalytic reduction of Cr(VI) with BaCO3@BaTiO3 microspheres. Inorg. Chem. Commun. 2023, 154, 110922. [Google Scholar] [CrossRef]
- Pan, M.; Zhang, C.; Wang, J.; Chew, J.W.; Gao, G.; Pan, B. Multifunctional piezoelectric heterostructure of BaTiO3@Graphene: Decomplexation of Cu-EDTA and recovery of Cu. Environ. Sci. Technol. 2019, 53, 8342–8351. [Google Scholar] [CrossRef]
- Wei, Y.J.; Zhang, Y.; Geng, W.; Su, H.; Long, M. Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water. Appl. Catal. B Environ. 2019, 259, 118084. [Google Scholar] [CrossRef]
- Tian, W.; Qiu, J.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. Efficient piezocatalytic removal of BPA and Cr(VI) with SnS2/CNFs membrane by harvesting vibration energy. Nano Energy 2021, 86, 106036. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, C.; Hui, W.; Huang, X.; Yang, C.; Liang, Y. Intrinsically morphological effect of perovskite BaTiO3 boosting piezocatalytic uranium extraction efficiency and mechanism investigation. J. Hazard. Mater. 2023, 455, 131578. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Y.; Lv, Z.; Zhang, S.; Gao, F.; Fang, M.; Kong, M.; Liu, P.; Tan, X.; Hu, B.; et al. Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl. Catal. B Environ. 2022, 310, 121343. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Z.; Fang, M.; Tan, X.; Xu, S.H.; Liu, M.; Fei, G.T.; Zhang, L.D. Biological calcium phosphate nanorods for piezocatalytical extraction of U(VI) from water. Nano Res. 2023, 16, 12772–12780. [Google Scholar] [CrossRef]
- Li, W.; Tu, J.; Sun, J.; Zhang, Y.; Fang, J.; Wang, M.; Liu, X.; Tian, Z.-Q.; Fan, F.R. Boosting reactive oxygen species generation via contact-electro-catalysis with feiii-initiated self-cycled fenton system. Angew. Chem. Int. Ed. 2024, e202413246. [Google Scholar] [CrossRef]
- Su, Y.; Berbille, A.; Li, X.-F.; Zhang, J.; PourhosseiniAsl, M.; Li, H.; Liu, Z.; Li, S.; Liu, J.; Zhu, L.; et al. Reduction of precious metal ions in aqueous solutions by contact-electro-catalysis. Nat. Commun. 2024, 15, 4196. [Google Scholar] [CrossRef]
- Shen, X.; Wang, S.; Zhao, L.; Song, H.; Li, W.; Li, C.; Lv, S.; Wang, G. Simultaneous Cu(II)-EDTA decomplexation and Cu(II) recovery using integrated contact-electro-catalysis and capacitive deionization from electroplating wastewater. J. Hazard. Mater. 2024, 472, 134548. [Google Scholar] [CrossRef] [PubMed]
- Steiner, U.E.; Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 1989, 89, 51–147. [Google Scholar] [CrossRef]
- Hu, C.; Tu, S.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Photocatalysis enhanced by external fields. Angew. Chem. Int. Ed. 2020, 60, 16309–16328. [Google Scholar] [CrossRef]
- Yu, Q.; Li, M.; Zhang, J.; Liu, H.; Zhang, L.; Li, S.; Ge, D.; Zhang, J. Magnetostrictive-piezocatalytic CoFe2O4@UiO-66 nanohybrid and its potential for deep-seated tumor treatment. Chem. Commun. 2024, 60, 4463–4466. [Google Scholar] [CrossRef]
- Ge, M.; Xu, D.; Chen, Z.; Wei, C.; Zhang, Y.; Yang, C.; Chen, Y.; Lin, H.; Shi, J. Magnetostrictive-piezoelectric-triggered nanocatalytic tumor therapy. Nano Lett. 2021, 21, 6764–6772. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, F.; Chen, X.; Torlakcik, H.; Steuer, C.; Hoop, M.; Siringil, E.C.; Marti, X.; Limburg, G.; Stipp, P.; Nelson, B.J.; et al. Magnetoelectrically driven catalytic degradation of organics. Adv. Mater. 2019, 31, 1901378. [Google Scholar] [CrossRef]
- Ramadan, R. Study the multiferroic properties of BiFeO3/Ni0.1Fe2.9O4 for heavy metal removal. Appl. Phys. A 2023, 129, 125. [Google Scholar] [CrossRef]
- González-Vázquez, O.F.; Moreno-Virgen, M.R.; Hernández-Montoya, V.; Tovar-Gómez, R.; Kamaraj, S.-K.; Ortiz-Morales, M.; Frausto-Reyes, C. Intensification of a continuous adsorption system by applying an external magnetic field for the removal of heavy metals in the ionic state. Chem. Eng. Process. Process Intensif. 2022, 181, 109140. [Google Scholar] [CrossRef]
- Mushtaq, F.; Chen, X.-z.; Veciana, A.; Hoop, M.; Nelson, B.J.; Pané, S. Magnetoelectric reduction of chromium(VI) to chromium(III). Appl. Mater. Today 2022, 26, 101339. [Google Scholar] [CrossRef]
- Zhong, W.; Wang, Z.; Gao, N.; Huang, L.; Lin, Z.; Liu, Y.; Meng, F.; Deng, J.; Jin, S.; Zhang, Q.; et al. Coupled vacancy pairs in Ni-doped Cose for improved electrocatalytic hydrogen production through topochemical deintercalation. Angew. Chem. Int. Ed. 2020, 59, 22743–22748. [Google Scholar] [CrossRef] [PubMed]
- Giulia, P. Boosting the performance of plastic thermoelectrics. Nat. Rev. Mater. 2024, 9, 604. [Google Scholar] [CrossRef]
- Mauricio Gómez, V.; Riccardo, M.; Philippe, B.-A. Electron tunneling induced thermoelectric effects. Phys. Rev. B 2024, 110, 064303. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Zhang, X.; Wang, Y.; Chen, S.; Liu, Y.; Zhang, Y. Harvesting thermal energy through pyroelectric and thermoelectric nanomaterials for catalytic applications. Catalysts 2024, 14, 159. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Zhang, J.; Zhao, L.-D.; Lin, Y.; Liu, W.; Rosei, F. Thermoelectrocatalysis: An emerging strategy for converting waste heat into chemical energy. Natl. Sci. Rev. 2024, 11, nwae036. [Google Scholar] [CrossRef]
- Achour, A.; Chen, K.; Reece, M.J.; Huang, Z. Tuning of catalytic activity by thermoelectric materials for carbon dioxide hydrogenation. Adv. Energy Mater. 2018, 8, 1701430. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Khan, I.; Saha, S.; Wu, C.-C.; Barman, S.R.; Kao, F.-C.; Lin, Z.-H. Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates. Nat. Commun. 2021, 12, 180. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Kong, N.; Ou, M.; Wang, Y.; Xiao, Q.; Mei, L.; Liu, B.; Chen, L.; Zeng, X.; Ji, X. A novel cascaded energy conversion system inducing efficient and precise cancer therapy. Bioact. Mater. 2023, 20, 663–676. [Google Scholar] [CrossRef]
- Wang, S.; Qiao, Y.; Liu, X.; Zhu, S.; Zheng, Y.; Jiang, H.; Zhang, Y.; Shen, J.; Li, Z.; Liang, Y.; et al. Reduced graphene oxides modified Bi2Te3 nanosheets for rapid photo-thermoelectric catalytic therapy of bacteria-infected wounds. Adv. Funct. Mater. 2023, 33, 2210098. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, M.; Fang, Y.; Yang, Z.; Dai, X.; Gu, P.; Feng, W.; Chen, Y. A photo-activated thermoelectric catalyst for ferroptosis-/pyroptosis-boosted tumor nanotherapy. Adv. Healthc. Mater. 2023, 12, 2300699. [Google Scholar] [CrossRef]
- Ji, X.; Tang, Z.; Liu, H.; Kang, Y.; Chen, L.; Dong, J.; Chen, W.; Kong, N.; Tao, W.; Xie, T. Nanoheterojunction-mediated thermoelectric strategy for cancer surgical adjuvant treatment and β-elemene combination therapy. Adv. Mater. 2023, 35, 2207391. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.-D.; Zhu, Y.; Liu, Y.; Li, F.; Yu, M.; Liu, D.-B.; Xu, W.; Lin, Y.-H.; Nan, C.-W. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv. Energy Mater. 2016, 6, 1502423. [Google Scholar] [CrossRef]
- Luo, L.; Sun, Z.; Wang, R. Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery. Energy 2022, 238, 121816. [Google Scholar] [CrossRef]
- Goutham, C.; Kumar, K.V.A.; Raavi, S.S.K.; Subrahmanyam, C.; Asthana, S. Enhanced electrical and photocatalytic activities in Na0.5Bi0.5TiO3 through structural modulation by using anatase and rutile phases of TiO2. J. Materiomics. 2022, 8, 18–29. [Google Scholar] [CrossRef]
- Geng, J.; Wei, Q.; Luo, B.; Zong, S.; Ma, L.; Luo, Y.; Zhou, C.; Deng, T. A numerical case study of particle flow and solar radiation transfer in a compound parabolic concentrator (cpc) photocatalytic reactor for hydrogen production. Catalysts 2024, 14, 237. [Google Scholar] [CrossRef]
- Jia, S.; Li, X.; Zhang, B.; Yang, J.; Zhang, S.; Li, S.; Zhang, Z. TiO2/CuS heterostructure nanowire array photoanodes toward water oxidation: The role of CuS. Appl. Surf. Sci. 2019, 463, 829–837. [Google Scholar] [CrossRef]
- Sun, S.; Kong, W.; Huang, L.; Wang, Q.; Zhang, G.; Zhou, P. Synergistic light irradiation and circuital current for efficient mineralization of recalcitrant organics and sequential recovery of heavy metals from etching terminal wastewater using photo-assisted bioelectrochemical systems. J. Power Sources 2022, 522, 230991. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Arnusch, C.J.; Wang, J. Photocarriers regulation strategy applicable to photocatalytic flow-through systems with chloroplast inspired electrode for removal and detoxification of organic-heavy metal complexes. Chem. Eng. J. 2023, 474, 145467. [Google Scholar] [CrossRef]
- Li, W.; Liao, G.; Duan, W.; Gao, F.; Wang, Y.; Cui, R.; Wang, X.; Wang, C. Synergistically electronic interacted PVDF/CdS/TiO2 organic-inorganic photocatalytic membrane for multi-field driven panel wastewater purification. Appl. Catal. B Environ. Energy 2024, 354, 124108. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Xu, Q.; Gong, H.; Yan, M.; Feng, K.; Zhou, X.; Zhou, X.; Zhang, D. Enhanced piezoelectricity and spectral absorption in Nd-doped bismuth titanate hierarchical microspheres for efficient piezo-photocatalytic H2 production and pollutant degradation. J. Mater. Chem. A 2023, 12, 1753–1763. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, R.; Shi, N.; Zhang, L.; Li, S.; Zhang, J. Piezotronic effect induced schottky barrier decrease to boost the plasmonic charge separation of BaTiO3-Au heterojunction for the photocatalytic selective oxidation of aminobenzyl alcohol. ACS Appl. Mater. Interfaces 2022, 14, 55548–55558. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Liu, M.; Liu, X.; Huang, W.; Sun, S.; Jiang, Y.; Liu, Y.; Zhang, J.; Zhang, Z. Remarkably enhanced photocatalytic performance of Au/AgNbO3 heterostructures by coupling piezotronic with plasmonic effects. Nano Energy 2022, 95, 107031. [Google Scholar] [CrossRef]
- Xu, W.; Jing, B.; Li, Q.; Cao, J.; Zhou, J.; Li, J.; Li, D.; Ao, Z. Bubble induced piezoelectric activation of peroxymonosulfate on BiOCl for formaldehyde degradation during the absorption process: A density functional theory study. J. Mater. Chem. A 2024, 12, 9723–9729. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Li, J.; Liu, H.; Liu, M.; Zhang, Y.; Su, L.; Pérez-Jiménez, A.I.; Guo, Y.; Yang, F.; et al. Mechanically induced highly efficient hydrogen evolution from water over piezoelectric SnSe nanosheets. Small 2022, 18, 2202507. [Google Scholar] [CrossRef]
- Yan, B.; Gu, Q.; Cao, W.; Cai, B.; Li, Y.; Zeng, Z.; Liu, P.; Ke, Z.; Meng, S.; Ouyang, G.; et al. Laser direct overall water splitting for H2 and H2O2 production. Proc. Natl. Acad. Sci. USA 2024, 121, e2319286121. [Google Scholar] [CrossRef]
- Dong, Z.; Gao, D.; Li, Z.; Pei, H.; Xu, L.; Huang, J.; Cao, X.; Wang, Y.; Wang, T.; Wei, Q.; et al. Harvesting the vibration energy of CdS for high-efficient piezo-photocatalysis removal of U(VI): Roles of shape dependent and piezoelectric polarization. Energy Environ. Mater. 2024, 7, 12705. [Google Scholar] [CrossRef]
- Li, R.; Qiu, L.P.; Cao, S.Z.; Li, Z.; Gao, S.L.; Zhang, J.; Ramakrishna, S.; Long, Y.Z. Research advances in magnetic field-assisted photocatalysis. Adv. Funct. Mater. 2024, 34, 2316725. [Google Scholar] [CrossRef]
- Dhanalakshmi, R.; Denardin, J.C. Magnetic field enhanced photoreduction of Cr (VI) over the p-n-p BiFeO3/CoFe2O4/Co3O4 nanocomposites. J. Magn. Magn. Mater. 2022, 562, 169788. [Google Scholar] [CrossRef]
- Lan, S.; Yu, C.; Sun, F.; Chen, Y.; Chen, D.; Mai, W.; Zhu, M. Tuning piezoelectric driven photocatalysis by La-doped magnetic BiFeO3-based multiferroics for water purification. Nano Energy 2022, 93, 106792. [Google Scholar] [CrossRef]
- He, P.; Zhang, L.; Wu, L.; Xiao, S.; Ren, X.; He, R.; Yang, X.; Liu, R.; Duan, T. Synergy of oxygen vacancies and thermoelectric effect enhances uranium(VI) photoreduction. Appl. Catal. B Environ. 2023, 322, 122087. [Google Scholar] [CrossRef]
- Ai, C.; Yan, Z.; Hou, S.; Huo, Q.; Chai, L.; Qiu, G.; Zeng, W. Sequentially recover heavy metals from smelting wastewater using bioelectrochemical system coupled with thermoelectric generators. Ecotoxicol. Environ. Saf. 2020, 205, 111174. [Google Scholar] [CrossRef] [PubMed]
Catalytic Methods | Pros | Cons |
---|---|---|
Electro-catalysis | Fine-tuning of reaction kinetics and selectivity; Potential for real-time monitoring and control. | The electricity input increases operational costs; Limited to systems with accessible electrical connections. |
Mechano-catalysis | Utilizing waste mechanical energy; Able to integrate into continuous processes. | Mechanical wear and tear on treatment equipment; Potential for uneven reaction conditions. |
Magneto-catalysis | Improves reaction selectivity; Enables non-contact remote control of catalytic process. | Effectiveness depends on the strength of the magnetic field; May require specialized magnetic equipment. |
Thermoelectro-catalysis | Operating under low temperature differences; Easy to scale up and achieve industrial-scale applications. | Limited by kinetic or thermodynamic equilibrium; Lack of high-frequency thermal cycling. |
Methods | Catalysts | Target Heavy Metals | Removal Efficiency | Ref. |
---|---|---|---|---|
Electrocatalysis | Carbon felts | Pb(II) Cd(II) Mn(II) | 100% 100% >98% | [74] |
Mechano-catalysis | Au/BiVO4 | Cr(VI) | 83% | [90] |
Magneto-catalysis | BiFeO3/Ni0.1Fe2.9O4 | Cr(VI) | 75% | [103] |
Photo-electrocatalysis | WO3/MoO3/g-C3N4 | Cu(II) Ni(II) Zn(II) | 85.8% 71.6% 67.7% | [122] |
Piezo-photocatalysis | CdS | U(VI) | 98.32% | [131] |
Magneto-photocatalysis | BiFeO3/CoFe2O4 /Co3O4 | Cr(VI) | 99.3% | [133] |
Thermoelectric-photocatalysis | TiO2−x/1T-MoS2 | U(VI) | 98.2% | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, S.; Rehman, A.U.; Zhang, S.; Zhang, Q.; Liu, Y.; Li, S. Emerging Catalytic Strategies Driven by External Field for Heavy Metal Remediation. Catalysts 2024, 14, 602. https://doi.org/10.3390/catal14090602
Zhang X, Chen S, Rehman AU, Zhang S, Zhang Q, Liu Y, Li S. Emerging Catalytic Strategies Driven by External Field for Heavy Metal Remediation. Catalysts. 2024; 14(9):602. https://doi.org/10.3390/catal14090602
Chicago/Turabian StyleZhang, Xinyue, Shanliang Chen, Attiq Ur Rehman, Suwei Zhang, Qingzhe Zhang, Yong Liu, and Shun Li. 2024. "Emerging Catalytic Strategies Driven by External Field for Heavy Metal Remediation" Catalysts 14, no. 9: 602. https://doi.org/10.3390/catal14090602
APA StyleZhang, X., Chen, S., Rehman, A. U., Zhang, S., Zhang, Q., Liu, Y., & Li, S. (2024). Emerging Catalytic Strategies Driven by External Field for Heavy Metal Remediation. Catalysts, 14(9), 602. https://doi.org/10.3390/catal14090602