Tuning the Electronic Structures of Mo-Based Sulfides/Selenides with Biomass-Derived Carbon for Hydrogen Evolution Reaction and Sodium-Ion Batteries
Abstract
:1. Introduction
2. Biomass-Derived Carbon
Structural Engineering of BMC
3. Electronic Modulation of Mo-Based Sulfide/Selenide Materials
3.1. BMC/MoS2 for SIBs and HER
3.2. BMC/MoSe2 for SIBs and HER
4. Issues for Future Research on BMC/MoS2 or BMC/MoSe2
- (1)
- Different sources of biomass significantly impact the structure of biomass-derived carbon (BMC). Currently, there is no standardized framework for classifying the various sources of biomass and their characteristic structures. Guidelines for selecting appropriate biomass materials to achieve effective heteroatom doping, increase interlayer spacing, and introduce defects and active sites are still lacking. The ideal shapes and hierarchical porosity cannot be readily designed from biomass precursors. For the preparation of biomass-derived carbon materials, a deeper understanding of the microscopic structures of biomass and waste precursors is essential, along with precise monitoring of the pore sizes and dimensions of carbon materials. When using chemical activators to achieve high surface areas and hierarchical porous structures, controlling the pore geometry, size, and connectivity remains challenging. There is a need to find cheaper and more effective activators. Controlling heteroatom doping is difficult, as the proportion of dopant atoms adhering to the material cannot be precisely regulated. Further research is necessary to establish a synergistic relationship between the surface area, pore size, and surface chemical activity sites or functional groups. Additionally, uniformly loading and dispersing catalysts on biomass-derived carbon substrates presents a challenge. The influence of complex elements present in biomass on the internal electronic structure after thermal treatment also requires investigation through methods such as density functional theory (DFT) calculations.
- (2)
- Further studies are needed to determine how to precisely control synthesis conditions, such as temperature, atmosphere, and reaction time.
- (3)
- The impact of charge transfer and enhanced interfacial interactions between BMC and MoS2 or MoSe2 on the conductivity of heterostructures requires further evaluation.
- (4)
- Studying nanostructures requires a suite of advanced characterization techniques, including those to elucidate the shape, size, and location of enclosed pores, in-plane defects, vortex nanodomains and curvature, and the proportion and characteristics of crystalline and amorphous regions, as well as interlayer spacing and the specific surface area. In situ characterization of BMC/MoS2 or BMC/MoSe2 during electrocatalytic hydrogen production or sodium-ion storage, along with the corresponding reaction mechanisms, is essential for comprehensive understanding.
- (5)
- Despite recent efforts to develop biomass-derived carbon composites with exceptional catalytic and electrochemical performance, the mechanisms by which microstructural features influence these properties remain unclear. A major difficulty is establishing structure–performance connections to forecast the catalytic and electrochemical capabilities of materials. Machine learning is being utilized more and more in materials synthesis as computer technologies progress. Computer systems can learn from generated data, analyze, and anticipate based on their programming thanks to machine learning, a field of computer science that uses data-driven approaches. This improves our understanding of the relationship between material structure and performance. In addition to providing fresh perspectives for catalyst selection, design, and catalytic mechanism research, machine learning models may effectively direct the optimization of catalytic performance.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Shi, S.; Ji, Y.; Wang, K.; Tan, T.; Nielsen, J. Opportunities of CO2-based biorefineries for production of fuels and chemicals. Green Carbon 2023, 1, 75–84. [Google Scholar] [CrossRef]
- Olabi, A.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Deshmukh, M.K.G.; Sameeroddin, M.; Abdul, D.; Sattar, M.A. Renewable energy in the 21st century: A review. Mater. Today Proc. 2023, 80, 1756–1759. [Google Scholar] [CrossRef]
- Gernaat, D.E.; de Boer, H.S.; Daioglou, V.; Yalew, S.G.; Müller, C.; van Vuuren, D.P. Climate change impacts on renewable energy supply. Nat. Clim. Chang. 2021, 11, 119–125. [Google Scholar] [CrossRef]
- Fu, C.; Xu, M. Achieving carbon neutrality through ecological carbon sinks: A systems perspective. Green Carbon 2023, 1, 43–46. [Google Scholar] [CrossRef]
- He, B.; Zhang, Q.; Pan, Z.; Li, L.; Li, C.; Ling, Y.; Wang, Z.; Chen, M.; Wang, Z.; Yao, Y.; et al. Freestanding metal–organic frameworks and their derivatives: An emerging platform for electrochemical energy storage and conversion. Chem. Rev. 2022, 122, 10087–10125. [Google Scholar] [CrossRef]
- Wu, J.; Liang, Q.; Yu, X.; Lü, Q.F.; Ma, L.; Qin, X.; Chen, G.; Li, B. Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective. Adv. Funct. Mater. 2021, 31, 2011102. [Google Scholar] [CrossRef]
- Luo, X.; Abazari, R.; Tahir, M.; Fan, W.K.; Kumar, A.; Kalhorizadeh, T.; Kirillov, A.M.; Amani-Ghadim, A.R.; Chen, J.; Zhou, Y. Trimetallic metal–organic frameworks and derived materials for environmental remediation and electrochemical energy storage and conversion. Coord. Chem. Rev. 2022, 461, 214505. [Google Scholar] [CrossRef]
- Yang, J.; Hou, W.; Ye, L.; Hou, G.; Yan, C.; Zhang, Y. Vanadium hexacyanoferrate Prussian blue analogs for aqueous proton storage: Excellent electrochemical properties and mechanism insights. Small 2024, 20, 2305386. [Google Scholar] [CrossRef]
- Ifkovits, Z.P.; Evans, J.M.; Meier, M.C.; Papadantonakis, K.M.; Lewis, N.S. Decoupled electrochemical water-splitting systems: A review and perspective. Energy Environ. Sci. 2021, 14, 4740–4759. [Google Scholar] [CrossRef]
- Sun, J.; Ye, L.; Zhao, X.; Zhang, P.; Yang, J. Electronic modulation and structural engineering of carbon-based anodes for low-temperature lithium-ion batteries: A review. Molecules 2023, 28, 2108. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Adit, G.; Li, L.; Zhang, Y.; Chua, D.H.; Lee, P.S. Optimization strategies toward functional sodium-ion batteries. Energy Environ. Mater. 2023, 6, e12633. [Google Scholar] [CrossRef]
- Qiao, S.; Zhou, Q.; Ma, M.; Liu, H.K.; Dou, S.X.; Chong, S. Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 2023, 17, 11220–11252. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ye, L.; Sun, J.; Li, C.; Zhao, X.; Liu, J.; Sun, C. Electronic interconnected CoV2O6 to induce boosted reaction kinetics for highly stable sodium-ion half/full batteries. J. Alloys Compd. 2023, 947, 169694. [Google Scholar] [CrossRef]
- Singh, A.N.; Islam, M.; Meena, A.; Faizan, M.; Han, D.; Bathula, C.; Hajibabaei, A.; Anand, R.; Nam, K.W. Unleashing the potential of sodium-ion batteries: Current state and future directions for sustainable energy storage. Adv. Funct. Mater. 2023, 33, 2304617. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Xu, K.; Huang, Z.; Hu, W.; Tan, Y.; Sun, C.; Yang, J.; Geng, H. Manipulating Interfacial Renovation via In Situ Formed Metal Fluoride Heterogeneous Protective Layer toward Exceptional Durable Sodium Metal Anodes. Adv. Funct. Mater. 2024, 2411760. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Ahmad, A.D.; Abubaker, A.M.; Hassan, M.A. Exploring the feasibility of green hydrogen production using excess energy from a country-scale 100% solar-wind renewable energy system. Int. J. Hydrogen Energy 2022, 47, 21613–21633. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Shao, Z. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Q.; Yu, D. The future of hydrogen energy: Bio-hydrogen production technology. Int. J. Hydrogen Energy 2022, 47, 33677–33698. [Google Scholar] [CrossRef]
- Guo, F.; Macdonald, T.J.; Sobrido, A.J.; Liu, L.; Feng, J.; He, G. Recent Advances in Ultralow-Pt-Loading Electrocatalysts for the Efficient Hydrogen Evolution. Adv. Sci. 2023, 10, 2301098. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.; Liu, J.; Stang, P.J. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem. Soc. Rev. 2020, 49, 3889–3919. [Google Scholar] [CrossRef] [PubMed]
- Feidenhans’l, A.A.; Regmi, Y.N.; Wei, C.; Xia, D.; Kibsgaard, J.; King, L.A. Precious metal free hydrogen evolution catalyst design and application. Chem. Rev. 2024, 124, 5617–5667. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kim, J.C.; Li, Y.; Ma, K.Y.; Hong, S.; Kim, M.; Shin, H.S.; Jeong, H.Y.; Chhowalla, M. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 2022, 610, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Rao, A.M.; Zhou, J.; Lu, B. Molecular modulation strategies for two-dimensional transition metal dichalcogenide-based high-performance electrodes for metal-ion batteries. Chem. Sci. 2024, 15, 2323–2350. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, C.; Geng, J.; Sui, Y.; Wei, H.; Sun, C.; Geng, H.; Liu, Y. Nickel cobalt selenides on black phosphorene with fast electron transport for high-energy density sodium-ion half/full batteries. Inorg. Chem. Front. 2023, 10, 424–434. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, H.; Zhang, J.; Lou, X.W. Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 2021, 33, 2008376. [Google Scholar] [CrossRef]
- Yang, J.; Hou, W.; Pan, R.; Zhou, M.; Zhang, S.; Zhang, Y. The interfacial electronic engineering in polyhedral MOF derived Co-doped NiSe2 composite for upgrading rate and longevity performance of aqueous energy storage. J. Alloys Compd. 2022, 897, 163187. [Google Scholar] [CrossRef]
- Fu, Q.; Han, J.; Wang, X.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W.; Liu, S.; Gao, T.; Zhang, Z. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818. [Google Scholar] [CrossRef]
- Chowdhury, T.; Sadler, E.C.; Kempa, T.J. Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem. Rev. 2020, 120, 12563–12591. [Google Scholar] [CrossRef]
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Liu, Y.; Huang, B.; Wu, R.; Zhang, Z.; Zhao, B.; Ma, H.; Dang, W.; Wei, Z.; et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xiong, C.; Chen, M.-M.; Wang, S.; Fu, L.; Zhang, X. Structure modulation of two-dimensional transition metal chalcogenides: Recent advances in methodology, mechanism and applications. Chem. Soc. Rev. 2023, 52, 1215–1272. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Mohan, J.; Lakshmy, S.; Thomas, S.; Chakraborty, B.; Thomas, S.; Kalarikkal, N. A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures. Mater. Chem. Phys. 2023, 297, 127332. [Google Scholar] [CrossRef]
- Lin, L.; Sherrell, P.; Liu, Y.; Lei, W.; Zhang, S.; Zhang, H.; Wallace, G.G.; Chen, J. Engineered 2D transition metal dichalcogenides—A vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870. [Google Scholar] [CrossRef]
- Sovizi, S.; Angizi, S.; Ahmad Alem, S.A.; Goodarzi, R.; Taji Boyuk, M.R.R.; Ghanbari, H.; Szoszkiewicz, R.; Simchi, A.; Kruse, P. Plasma processing and treatment of 2D transition metal dichalcogenides: Tuning properties and defect engineering. Chem. Rev. 2023, 123, 13869–13951. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Zhang, Q.; Zhao, X.; Liu, M.; Wee, A.T. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181. [Google Scholar] [CrossRef]
- Gupta, D.; Chauhan, V.; Kumar, R. A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorg. Chem. Commun. 2020, 121, 108200. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Yi, Y.; Lu, C.; Dou, S.; Sun, J. Metallic transition metal dichalcogenides of Group VIB: Preparation, stabilization, and energy applications. Small 2021, 17, 2005573. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Lv, T.a.; Chu, P.K.; Huo, K. Two-dimensional transition metal chalcogenides for alkali metal ions storage. ChemSusChem 2020, 13, 1114–1154. [Google Scholar] [CrossRef]
- Apte, A.; Krishnamoorthy, A.; Hachtel, J.A.; Susarla, S.; Yoon, J.; Bharadwaj, P.; Tour, J.M.; Idrobo, J.C.; Kalia, R.K.; Nakano, A.; et al. Two-Dimensional Lateral Epitaxy of 2H (MoSe2)–1T'(ReSe2) Phases. Nano Lett. 2019, 19, 6338–6345. [Google Scholar] [CrossRef]
- Ruqia, B.; Kabiraz, M.K.; Hong, J.W.; Choi, S.-I. Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media. J. Energy Chem. 2022, 72, 217–240. [Google Scholar] [CrossRef]
- Yun, Q.; Li, L.; Hu, Z.; Lu, Q.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, Q.; Li, K.; Chen, X.; Feng, Y.; Yao, X.; Wei, B.; Yang, J. Morphology design and electronic configuration of MoSe2 anchored on TiO2 nanospheres for high energy density sodium-ion half/full batteries. J. Colloid Interface Sci. 2024, 660, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jin, J.; Zhang, P.; Zhang, X.; Yang, J.; Lang, J.; Shi, M. A dual redox-active and robust polymer enables ultrafast and durable proton-storage capability. J. Energy Chem. 2024, 98, 237–243. [Google Scholar] [CrossRef]
- Lin, W.; Yao, X.; Zhao, W.; Pu, Y.; Wang, S. Pathways to Carbon Neutrality in the Built Environment: Phase Change Materials. Green Carbon 2024, 2, 197–204. [Google Scholar] [CrossRef]
- He, H.; Zhang, R.; Zhang, P.; Wang, P.; Chen, N.; Qian, B.; Zhang, L.; Yu, J.; Dai, B. Functional carbon from nature: Biomass-derived carbon materials and the recent progress of their applications. Adv. Sci. 2023, 10, 2205557. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Liu, J.; Yu, H.; Liu, P.; Yang, Y.; Sun, D.; Kang, H.; Wang, Y.; Tang, J.; et al. Integration of advanced biotechnology for green carbon. Green Carbon 2024, 2, 164–175. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Cheng, C.K.; Luque, R.; Thomas, S.; Banh, T.L.; Nguyen, X.P. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 2022, 287, 131959. [Google Scholar] [CrossRef]
- Kuttin, K.W.; Yu, H.; Yang, M.; Ding, L.; Chen, X.; Yu, G.; Wang, F. Experimental and Numerical Modeling of Carbonized Biomass Gasification: A Critical Review. Green Carbon 2024, 2, 176–196. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Shen, X.; Wang, H.; Wang, H.; Xia, K.; Yin, Z.; Zhang, Y. Biomass-derived carbon materials: Controllable preparation and versatile applications. Small 2021, 17, 2008079. [Google Scholar] [CrossRef]
- Li, T.; Zhi, D.-D.; Guo, Z.-H.; Li, J.-Z.; Chen, Y.; Meng, F.-B. 3D porous biomass-derived carbon materials: Biomass sources, controllable transformation and microwave absorption application. Green Chem. 2022, 24, 647–674. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, X.L.; Yang, Y.L.; Suo, G.; Zhang, L.; Lu, S.; Chen, Z.G. Biomass-derived carbon for high-performance batteries: From structure to properties. Adv. Funct. Mater. 2022, 32, 2201584. [Google Scholar] [CrossRef]
- Sun, J.; Sun, Y.; Oh, J.A.S.; Gu, Q.; Zheng, W.; Goh, M.; Zeng, K.; Cheng, Y.; Lu, L. Insight into the structure-capacity relationship in biomass derived carbon for high-performance sodium-ion batteries. J. Energy Chem. 2021, 62, 497–504. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Z. The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renew. Sustain. Energy Rev. 2020, 134, 110308. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, X.; Wang, L.; Fu, H. Recent advances of biomass derived carbon-based materials for efficient electrochemical energy devices. J. Mater. Chem. A 2022, 10, 9277–9307. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y.; Wang, L.; Chen, Y.; Gao, S. Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renew. Energy 2021, 179, 1826–1835. [Google Scholar] [CrossRef]
- Sun, J.; Li, M.; Zhang, Z.; Guo, J. Unravelling the adsorption disparity mechanism of heavy-metal ions on the biomass-derived hierarchically porous carbon. Appl. Surf. Sci. 2019, 471, 615–620. [Google Scholar] [CrossRef]
- Qiu, Y.; Huo, J.; Jia, F.; Shanks, B.H.; Li, W. N-and S-doped mesoporous carbon as metal-free cathode catalysts for direct biorenewable alcohol fuel cells. J. Mater. Chem. A 2016, 4, 83–95. [Google Scholar] [CrossRef]
- Lai, Q.; Su, Q.; Gao, Q.; Liang, Y.; Wang, Y.; Yang, Z.; Zhang, X.; He, J.; Tong, H. In situ self-sacrificed template synthesis of Fe-N/G catalysts for enhanced oxygen reduction. ACS Appl. Mater. Interfaces 2015, 7, 18170–18178. [Google Scholar] [CrossRef]
- Yang, J.; Hu, J.; Weng, M.; Tan, R.; Tian, L.; Yang, J.; Amine, J.; Zheng, J.; Chen, H.; Pan, F. Fe-Cluster pushing electrons to N-doped graphitic layers with Fe3C (Fe) hybrid nanostructure to enhance O2 reduction catalysis of Zn-air batteries. ACS Appl. Mater. Interfaces 2017, 9, 4587–4596. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; You, T.L.; Ciucci, F. Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting. J. Power Sources 2018, 401, 312–321. [Google Scholar] [CrossRef]
- Pérez Mayoral, E.; Godino Ojer, M.; Ventura, M.; Matos, I. New insights into N-doped porous carbons as both heterogeneous catalysts and catalyst supports: Opportunities for the catalytic synthesis of valuable compounds. Nanomaterials 2023, 13, 2013. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Leng, Y.; Zhou, W.; Huang, J.; Zhao, M.; Zhan, J.; Feng, C.; Tang, Z.; Chen, S.; Liu, H. Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy 2015, 16, 357–366. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Yang, Y.; Wang, K.; Ji, S.; Key, J.; Ma, Y.; Wang, R. A Co-N-doped carbonized egg white as a high-performance, non-precious metal, electrocatalyst for oxygen reduction. J. Solid State Electrochem. 2015, 19, 1727–1733. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, G.; Wang, H.; Yin, J.; Zhang, L.; Xiao, F.; Siddharth, K.; Zhu, S.; Shao, M. Defect engineering of molybdenum-based materials for electrocatalysis. Catalysts 2020, 10, 1301. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Ni, J.; Li, L. Molybdenum-based materials for sodium-ion batteries. InfoMat 2021, 3, 339–352. [Google Scholar] [CrossRef]
- Xu, K.; Xie, J.; Dong, H.; Sun, C.; Li, Y.; Guo, J.; Wang, Z.; Yang, J.; Geng, H. Structural regulation enabled stable hollow molybdenum diselenide nanosheet anode for ultrahigh energy density sodium ion pouch cell. J. Colloid Interface Sci. 2024, 656, 241–251. [Google Scholar] [CrossRef]
- Wang, W.; Xiong, F.; Zhu, S.; Chen, J.; Xie, J.; An, Q. Defect engineering in molybdenum-based electrode materials for energy storage. eScience 2022, 2, 278–294. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, R.; Yang, J.; Li, J.; Li, S.; Li, Y.; Zhang, J.; Feng, J.; Liu, B.; Li, W. Molybdenum disulfide (MoS2)-based electrocatalysts for hydrogen evolution reaction: From mechanism to manipulation. J. Energy Chem. 2022, 74, 45–71. [Google Scholar] [CrossRef]
- Kim, Y.; Park, T.; Na, J.; Yi, J.W.; Kim, J.; Kim, M.; Bando, Y.; Yamauchi, Y.; Lin, J. Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications. Nanoscale 2020, 12, 8608–8625. [Google Scholar] [CrossRef]
- Fang, H.; Lin, Q.; Zhang, Y.; Thompson, J.; Xiao, S.; Sun, Z.; Malic, E.; Dash, S.P.; Wieczorek, W. Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers. Nat. Commun. 2023, 14, 6910. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 2018, 8, 1703482. [Google Scholar] [CrossRef]
- Zhai, W.; Li, Z.; Wang, Y.; Zhai, L.; Yao, Y.; Li, S.; Wang, L.; Yang, H.; Chi, B.; Liang, J.; et al. Phase Engineering of Nanomaterials: Transition Metal Dichalcogenides. Chem. Rev. 2024, 124, 4479–4539. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, Y.; Jing, Y.; Ma, J.; Du, C.F.; Yan, Q. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 2019, 15, 1901503. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Fang, D.; Liu, Y.; Shang, Y.; Shi, Y.; Yang, H.Y. MXene-based materials for electrochemical sodium-ion storage. Adv. Sci. 2021, 8, 2003185. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Ma, C.; Shahid, U.B.; Sun, M.; Zhang, X.; Tian, J.; Shao, M. Synergistic Enhancement of Electrocatalytic Nitrogen Reduction over Few-Layer MoSe2-Decorated Ti3C2Tx MXene. ACS Catal. 2022, 12, 6385–6393. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Li, D.; Cao, J.; Han, W. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries. ACS Nano 2021, 15, 7439–7450. [Google Scholar] [CrossRef]
- Pang, S.-Y.; Io, W.-F.; Wong, L.-W.; Zhao, J.; Hao, J. Direct and in situ growth of 1T′ MoS2 and 1T MoSe2 on electrochemically synthesized MXene as an electrocatalyst for hydrogen generation. Nano Energy 2022, 103, 107835. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Q.; Song, L.; Lu, H.; Xu, H.; Shao, G.; Wang, H.; Zhang, R.; Wang, C.; Fan, B. Enhancing electromagnetic wave absorption with core-shell structured SiO2@ MXene@ MoS2 nanospheres. Carbon Energy 2024, 6, e502. [Google Scholar] [CrossRef]
- Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448. [Google Scholar] [CrossRef]
- Zhai, N.; Luo, J.; Mei, J.; Wu, Y.; Shu, P.; Yan, W.; Li, X. Interface Engineering of Heterogeneous NiSe2-CoSe2@ C@ MoSe2 for High-Efficient Electromagnetic Wave Absorption. Adv. Funct. Mater. 2024, 34, 2312237. [Google Scholar]
- Zhu, D.; Liu, J.; Zhao, Y.; Zheng, Y.; Qiao, S.Z. Engineering 2D metal–organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small 2019, 15, 1805511. [Google Scholar]
- Wang, S.; Zou, R.; Liu, Q.; Chen, H. Bimetallic selenide Cu4Mo6Se8 nanosheet arrays grown on a carbon skeleton via MOF-derived with enhanced electrochemical kinetics for high-performance sodium-ion batteries. J. Mater. Chem. A 2023, 11, 8710–8718. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, Y.; Wajrak, M.; Bhatelia, T.; Jiang, S.P.; Shao, Z. Grain boundary engineering: An emerging pathway toward efficient electrocatalysis. InfoMat 2024, 6, e12608. [Google Scholar] [CrossRef]
- Mondal, A.; Vomiero, A. 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2208994. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Peng, J.; Lai, J.; Zhang, H.; Yang, J. Transition Metal Selenide-Based Anodes for Advanced Sodium-Ion Batteries: Electronic Structure Manipulation and Heterojunction Construction Aspect. Molecules 2024, 29, 3083. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, C.; Ji, C.; Ma, Y.; Wang, R.; Zhang, S.; Hao, J.; Zhou, T.; Zhang, L.; Zhang, C.; et al. Molybdenum-based materials for alkali metal-ion batteries: Recent advances and perspectives. Coord. Chem. Rev. 2024, 506, 215725. [Google Scholar] [CrossRef]
- Nolan, H.; Schröder, C.; Brunet-Cabré, M.; Pota, F.; McEvoy, N.; McKelvey, K.; Perova, T.S.; Colavita, P.E. MoS2/carbon heterostructured catalysts for the hydrogen evolution reaction: N-doping modulation of substrate effects in acid and alkaline electrolytes. Carbon 2023, 202, 70–80. [Google Scholar] [CrossRef]
- You, J.; Jia, Z.; Wang, Y.; Wang, D.; Song, J.; Tian, L.; Qi, T. Carbon dots modified molybdenum disulfide as a high-efficiency hydrogen evolution electrocatalyst. Int. J. Hydrogen Energy 2022, 47, 34898–34908. [Google Scholar] [CrossRef]
- Hu, H.; Zheng, Y.; Zhu, Y.; Rong, J.; Dai, Y.; Zhang, T.; Yang, D.; Qiu, F. Pt-doped biomass carbon decorated with MoS2 nanosheets as an electrocatalyst for hydrogen evolution. Inorg. Chem. 2022, 62, 601–608. [Google Scholar] [CrossRef]
- Sangeetha, D.; Selvakumar, M. Active-defective activated carbon/MoS2 composites for supercapacitor and hydrogen evolution reactions. Appl. Surf. Sci. 2018, 453, 132–140. [Google Scholar] [CrossRef]
- Homayounfard, A.M.; Maleki, M.; Ghanbari, H.; Kahnamouei, M.H.; Safaei, B. Growth of few-layer flower-like MoS2 on heteroatom-doped activated carbon as a hydrogen evolution reaction electrode. Int. J. Hydrogen Energy 2024, 55, 1360–1370. [Google Scholar] [CrossRef]
- Shah, S.A.; Xu, L.; Sayyar, R.; Bian, T.; Liu, Z.; Yuan, A.; Shen, X.; Khan, I.; Tahir, A.A.; Ullah, H. Growth of MoS2 nanosheets on M@ N-doped carbon particles (M = Co, Fe or CoFe Alloy) as an efficient electrocatalyst toward hydrogen evolution reaction. Chem. Eng. J. 2022, 428, 132126. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, Y.; Yang, D.-R.; Xu, W.-X.; Wang, C.; Wang, F.-B.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Li, H.; Wang, S.; Ding, D.; Chen, M.; Liu, C.; Tian, Z.; Novoselov, K.; Ma, C.; Deng, D.; et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W. Surface oxidized cobalt-phosphide nanorods as an advanced oxygen evolution catalyst in alkaline solution. ACS Catal. 2015, 5, 6874–6878. [Google Scholar] [CrossRef]
- Meng, X.; Yu, L.; Ma, C.; Nan, B.; Si, R.; Tu, Y.; Deng, J.; Deng, D.; Bao, X. Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction. Nano Energy 2019, 61, 611–616. [Google Scholar] [CrossRef]
- Li, H.; Yu, F.; Ling, X.; Wan, H.; Zhang, M.; Zhou, Y.; Wei, J.; Lu, F.; Zhang, X.; Zeng, X.; et al. Dual-cation-doped MoS2 nanosheets accelerating tandem alkaline hydrogen evolution reaction. Nanotechnology 2021, 32, 445703. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Chen, L.; Okonkwo, C.E.; Zhou, C. Effect of cobalt doping and sugarcane bagasse carbon on the electrocatalytic performance of MoS2 nanocomposites. Fuel 2022, 324, 124814. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, R.; Shen, D.; Liu, G.; Luo, K.H.; Wu, C.; Gu, S. One-pot synthesis of Mo2C&MoS2 loaded on N/S co-doped carbon materials as the electrocatalyts for hydrogen evolution reaction. Fuel 2022, 318, 123615. [Google Scholar]
- Bi, W.; Zhou, Q.; Sun, Y.; Wan, J.; Xie, S.; Hou, Y.; Yu, M.; Li, T.; Lian, J.; Liu, B. Enhancement of hydrogen evolution activity of CoS2/MoS2 heterostructure catalysts by electronic structure modulation. J. Alloys Compd. 2024, 1005, 175847. [Google Scholar] [CrossRef]
- Dai, X.; Wu, X.; Yao, B.; Hong, Z.; Jiang, T.; Wang, Z.L. Triboelectric Nanogenerators Powered Hydrogen Production System Using MoS2/Ti3C2 as Catalysts. Adv. Funct. Mater. 2024, 2406188. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, Y.; He, C.; Guan, Y.; Zhang, L.; Li, Y.; Zhang, Q.; He, C.; Sun, X.; Ren, X. Creating High-entropy Single Atoms on Transition Disulfides through Substrate-induced Redox Dynamics for Efficient Electrocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2024, 136, e202405017. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.; Wang, C.; Ma, Y.; He, L.; Liu, B.; Zhang, Z. Catkin-derived mesoporous carbon-supported molybdenum disulfide and nickel hydroxyl oxide hybrid as a bifunctional electrocatalyst for driving overall water splitting. J. Colloid Interface Sci. 2022, 608, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; He, T.; Chen, B.; Feng, Y.; Zu, L.; Wang, Z.; Zhang, Q.; Hao, T.; Meng, R.; Che, R.; et al. Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries. Angew. Chem. Int. Ed. 2020, 132, 14729–14735. [Google Scholar] [CrossRef]
- Liu, G.; Cui, J.; Luo, R.; Liu, Y.; Huang, X.; Wu, N.; Jin, X.; Chen, H.; Tang, S.; Kim, J.-K.; et al. 2D MoS2 grown on biomass-based hollow carbon fibers for energy storage. Appl. Surf. Sci. 2019, 469, 854–863. [Google Scholar] [CrossRef]
- Pang, Y.; Zhang, S.; Liu, L.; Liang, J.; Sun, Z.; Wang, Y.; Xiao, C.; Ding, D.; Ding, S. Few-layer MoS2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance. J. Mater. Chem. A 2017, 5, 17963–17972. [Google Scholar] [CrossRef]
- Luo, Y.; Li, X.; Hao, X.; Xu, Y.; Tang, S.; Zhang, K.; Qin, A. Few layers 2D MoS2/tubular sisal fiber-derived carbon composite: Enhanced cycling performance as anode material for sodium-ion batteries. J. Energy Storage 2023, 67, 107463. [Google Scholar] [CrossRef]
- Xiao, Z.; Chen, W.; Chen, Z.; Chen, C.; Cao, W.; Yu, F. Stable sandwich-like biomass carbon@ MoS2 composite material with enhanced sodium storage performance. Energy Fuels 2022, 36, 3954–3963. [Google Scholar] [CrossRef]
- Guo, J.; Yang, J.; Guan, J.; Chen, X.; Zhu, Y.; Fu, H.; Liu, Q.; Wei, B.; Geng, H. Interface and electronic structure dual-engineering on MoSe2 with multi-ion/electron transportation channels for boosted sodium-ion half/full batteries. Chem. Eng. J. 2022, 450, 138007. [Google Scholar] [CrossRef]
- Gao, D.; Xia, B.; Wang, Y.; Xiao, W.; Xi, P.; Xue, D.; Ding, J. Dual-native vacancy activated basal plane and conductivity of MoSe2 with high-efficiency hydrogen evolution reaction. Small 2018, 14, 1704150. [Google Scholar] [CrossRef]
- Xue, J.-Y.; Li, F.-L.; Chen, B.; Geng, H.; Zhang, W.; Xu, W.-Y.; Gu, H.; Braunstein, P.; Lang, J.-P. Engineering multiphasic MoSe2/NiSe heterostructure interfaces for superior hydrogen production electrocatalysis. Appl. Catal. B 2022, 312, 121434. [Google Scholar] [CrossRef]
- Ge, P.; Zhang, L.; Yang, Y.; Sun, W.; Hu, Y.; Ji, X. Advanced MoSe2/carbon electrodes in Li/Na-ions batteries. Adv. Mater. Interfaces 2020, 7, 1901651. [Google Scholar] [CrossRef]
- Li, Z.; Yu, L.; Tao, X.; Li, Y.; Zhang, L.; He, X.; Chen, Y.; Xiong, S.; Hu, W.; Li, J.; et al. Honeycomb-Structured MoSe2/rGO Composites as High-Performance Anode Materials for Sodium-Ion Batteries. Small 2024, 20, 2304124. [Google Scholar] [CrossRef] [PubMed]
- Kwon, I.S.; Kwak, I.H.; Debela, T.T.; Abbas, H.G.; Park, Y.C.; Ahn, J.-p.; Park, J.; Kang, H.S. Se-rich MoSe2 nanosheets and their superior electrocatalytic performance for hydrogen evolution reaction. ACS Nano 2020, 14, 6295–6304. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, C.; Zhu, W.; Li, R.; Pang, X.; Zhen, Y.; Wang, C.; Gao, L.; Fu, F.; Gao, Z.; et al. Boosting alkaline hydrogen evolution reaction via an unexpected dynamic evolution of molybdenum and selenium on MoSe2 electrode. Adv. Energy Mater. 2022, 12, 2202367. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, J.; Tang, H.; Chen, Z.; Chen, J.; Zhang, Y.; Lee, C.-S. Interlayer engineering and electronic regulation of MoSe2 nanosheets rolled hollow nanospheres for high-performance sodium-ion half/full batteries. Adv. Powder Mater. 2024, 3, 100169. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.Y.; Zhang, Y.; Jiang, W.J.; Zhang, Q.H.; Yang, Y.G.; Gu, L.; Hu, J.S.; Wan, L.J. Phase-controlled synthesis of 1T-MoSe2/NiSe heterostructure nanowire arrays via electronic injection for synergistically enhanced hydrogen evolution. Small Methods 2019, 3, 1800317. [Google Scholar] [CrossRef]
- Xue, Y.; Xu, Y.; Yan, Q.; Zhu, K.; Ye, K.; Yan, J.; Wang, Q.; Cao, D.; Wang, G. Coupling of Ru nanoclusters decorated mixed-phase (1T and 2H) MoSe2 on biomass-derived carbon substrate for advanced hydrogen evolution reaction. J. Colloid Interface Sci. 2022, 617, 594–603. [Google Scholar] [CrossRef]
- Su, C.; Ru, Q.; Gao, Y.; Shi, Z.; Zheng, M.; Chen, F.; Ling, F.C.-C.; Wei, L. Biowaste-sustained MoSe2 composite as an efficient anode for sodium/potassium storage applications. J. Alloys Compd. 2021, 850, 156770. [Google Scholar] [CrossRef]
- Zeng, L.; Kang, B.; Luo, F.; Fang, Y.; Zheng, C.; Liu, J.; Liu, R.; Li, X.; Chen, Q.; Wei, M.; et al. Facile synthesis of ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon for high-performance half/full sodium-ion and potassium-ion batteries. Chem. Eur. J. 2019, 25, 13411–13421. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, Z.; Chen, Z.; Shi, G.; Wang, L.; Chen, Z.; Tu, W.; Xia, R.; Iwuoha, E.I.; Liu, C.; et al. Wood-Derived, Monolithic Chainmail Electrocatalyst for Biomass-Assisted Hydrogen Production. Adv. Energy Mater. 2023, 13, 2300427. [Google Scholar] [CrossRef]
Material | Overpotential (At 10 mA cm−2) | Electrolyte | Stability (Efficiency) | Refs. |
---|---|---|---|---|
MoS2@NSC3 | 209 mV | 0.5 M H2SO4 | 15 h | [100] |
Co-MoS2-0.67-SCBC-0.2 | 62 mV | 0.5 M H2SO4 | 12 h (90~95%) | [99] |
MoS2@NiOOH@C-MC | 250 mV | 1 M KOH | 48 h | [104] |
Ru-MoSe2/CMT | 70 mV | 1 M KOH | 20 h | [119] |
BCDs-MoS2 | 115 mV | 0.5 M H2SO4 | 20 h | [89] |
DAC/MoS2 | 0.5 M H2SO4 | [91] | ||
AC/MoS2-F | 136 mV | 0.5 M H2SO4 | 24 h | [92] |
MoS2@Pt/YC | 118 mV | 0.5 M H2SO4 | 24 h | [90] |
Co@NCNT/CW | 263 mV (500 mA cm−2) | 1M KOH | 100 h | [122] |
Material | Current Density (A g−1) | Capacity (mAh g−1) | Capacity Retention @ Cycle Number | Refs. |
---|---|---|---|---|
MoS2/TSFC | 0.1 | 243 | 64% @ 500 cycles | [108] |
MoS2@BHCF | 2 | 227 | 223 mAh g−1 was maintained after 100 cycles at 0.05 A g−1 | [106] |
MoSe2/BC/CNTs | 5 | 405 | 83% @ 250 cycles | [120] |
MoSe2/NP-C-2 | 0.5 | 215 | [121] | |
GC@MoS2@CC | 0.1 | 589 | 69.7% from 100 to 200 cycles | [109] |
MoS2@AMCRs | 1 | 366 | 83% @ 300 cycles | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Zheng, K.; Chen, Z.; Wang, Y.; Tan, Y.; Wang, J.; Yao, L.; Wang, L.; Sun, C.; Yang, J. Tuning the Electronic Structures of Mo-Based Sulfides/Selenides with Biomass-Derived Carbon for Hydrogen Evolution Reaction and Sodium-Ion Batteries. Catalysts 2024, 14, 627. https://doi.org/10.3390/catal14090627
Pan H, Zheng K, Chen Z, Wang Y, Tan Y, Wang J, Yao L, Wang L, Sun C, Yang J. Tuning the Electronic Structures of Mo-Based Sulfides/Selenides with Biomass-Derived Carbon for Hydrogen Evolution Reaction and Sodium-Ion Batteries. Catalysts. 2024; 14(9):627. https://doi.org/10.3390/catal14090627
Chicago/Turabian StylePan, Hongying, Kaiyang Zheng, Zihan Chen, Yuexin Wang, Yajun Tan, Jian Wang, Luye Yao, Lixin Wang, Chencheng Sun, and Jun Yang. 2024. "Tuning the Electronic Structures of Mo-Based Sulfides/Selenides with Biomass-Derived Carbon for Hydrogen Evolution Reaction and Sodium-Ion Batteries" Catalysts 14, no. 9: 627. https://doi.org/10.3390/catal14090627
APA StylePan, H., Zheng, K., Chen, Z., Wang, Y., Tan, Y., Wang, J., Yao, L., Wang, L., Sun, C., & Yang, J. (2024). Tuning the Electronic Structures of Mo-Based Sulfides/Selenides with Biomass-Derived Carbon for Hydrogen Evolution Reaction and Sodium-Ion Batteries. Catalysts, 14(9), 627. https://doi.org/10.3390/catal14090627