Microwave-Assisted Oxidation of N2 into NOx over a La-Ce-Mn-O Perovskite Yielding Plasmas in a Quartz Flow Reactor at Atmospheric Pressure
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thiemann, M.; Scheibler, E.; Wiegand, K.W. Nitric Acid, Nitrous Acid, and Nitrogen Oxides. In Ullmann’s Encyclopedia of Industrial Chemistry; Elvers, B., Ed.; Verlag Chemie: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Appl, M. Ammonia. In Ullmann’s Encyclopedia of Industrial Chemistry; Elvers, B., Ed.; Verlag Chemie: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. Correction: From the Birkeland–Eyde process towards energy-efficient plasma-based NOX synthesis: A techno-economic analysis. Energy Environ. Sci. 2021, 16, 6170–6173. [Google Scholar] [CrossRef]
- Thompson, D.; Brown, T.D.; Beer, J.M. NOx formation in combustion. Combust. Flame 1972, 19, 69–79. [Google Scholar] [CrossRef]
- Pimenta, F.; Filho, E.; Diniz, Â.; Barrozo, M.A.S. Catalytic Microwave-Assisted Pyrolysis of the Main Residue of the Brewing Industry. Catalysts 2023, 13, 1170. [Google Scholar] [CrossRef]
- Sakurada, N.; Kitazono, T.; Ikawa, T.; Yamada, T.; Sajiki, H. Pt/CB-Catalyzed Chemoselective Hydrogenation Using In Situ-Generated Hydrogen by Microwave-Mediated Dehydrogenation of Methylcyclohexane under Continuous-Flow Conditions. Catalysts 2024, 14, 384. [Google Scholar] [CrossRef]
- Arshad, M.Y.; Ahmad, A.S.; Mularski, J.; Modzelewska, A.; Jackowski, M.; Pawlak-Kruczek, H.; Niedzwiecki, L. Pioneering the Future: A Trailblazing Review of the Fusion of Computational Fluid Dynamics and Machine Learning Revolutionizing Plasma Catalysis and Non-Thermal Plasma Reactor Design. Catalysts 2024, 14, 40. [Google Scholar] [CrossRef]
- Cheng, H.; Ren, X.; Yao, Y.; Tang, X.; Yi, H.; Gao, F.; Zhou, Y.; Yu, Q. Application of Unconventional External-Field Treatments in Air Pollutants Removal over Zeolite-Based Adsorbents/Catalysts. Catalysts 2023, 13, 1461. [Google Scholar] [CrossRef]
- Amouroux, J.; Cavvadias, S.; Rapakoulias, D. Réacteur de synthèse et de trempe dans un plasma hors d’équilibre: Application à la synthèse des oxydes d’azote. Rev. Phys. Appl. 1979, 14, 969–976. [Google Scholar] [CrossRef]
- Rapakoulias, D.; Cavadias, S.; Amouroux, J. Processus catalytiques dans un réacteur à plasma hors d’équilibre II. Fixation de l’azote dans le système N2-O2. Rev. Phys. Appl. 1980, 15, 1261–1265. [Google Scholar] [CrossRef]
- Mutel, B.; Dessaux, O.; Goudmand, P. Energy cost improvement of the nitrogen oxides synthesis in a low pressure plasma. Rev. Phys. Appl. 1984, 19, 461–464. [Google Scholar] [CrossRef]
- Sun, G.; Zhu, A.; Yang, X.; Niua, J.; Xu, Y. Formation of NOx from N2 and O2 in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure. Chem. Commun. 2003, 12, 1418–1419. [Google Scholar] [CrossRef]
- Zhang, T.-Q.; Li, X.-S.; Liu, J.-L.; Wen, X.-Q.; Zhu, A.-M. Plasma Nitrogen Fixation: NOx Synthesis in MnOx/Al2O3 Packed-Bed Dielectric Barrier Discharge. Plasma Chem. Plasma Proc. 2023, 43, 1907–1919. [Google Scholar] [CrossRef]
- Patil, B.S.; Cherkasov, N.; Lang, J.; Ibhadon, A.O.; Hessel, V.; Wang, Q. Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides. Appl. Catal. B Environ. 2016, 194, 123–133. [Google Scholar] [CrossRef]
- Li, Y.; Qin, L.; Wang, H.-L.; Li, S.-S.; Yuan, H.; Yang, D.-Z. High efficiency NOx synthesis and regulation using dielectric barrier discharge in the needle array packed bed reactor. Chem. Eng. J. 2023, 461, 141922. [Google Scholar] [CrossRef]
- Ma, H.; Sharma, R.K.; Welzel, S.; van de Sanden, M.C.M.; Tsampas, M.N.; Schneider, W.F. Observation and rationalization of nitrogen oxidation enabled only by coupled plasma and catalyst. Nat. Commun. 2022, 13, 402. [Google Scholar] [CrossRef] [PubMed]
- Hollevoet, L.; Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; De Geyter, N.; Bogaerts, A.; Martens, J.A. Energy-Efficient Small-Scale Ammonia Synthesis Process with Plasma-Enabled Nitrogen Oxidation and Catalytic Reduction of Adsorbed NOx. ChemSusChem 2022, 15, e202102526. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.S.E.; Cupertino, D. Production of Nitrogen Oxides. World Patent WO2020115473A1, 3 December 2019. [Google Scholar]
- Forsberg, G.; Baeling, P.; Van Rooij, G.J. Method for the Synthesis of Nitrogen Oxides and Nitric Acid in a Thermal Reactor. World Patent WO2022159018A1, 18 January 2022. [Google Scholar]
- McEnamey, J.; Schwalbe, J.A.; Chocklingam, S.; Pinkowski, N. Microwave Plasma System for Efficiently Producing Nitric Acid and Nitrogen Fertilizers. World Patent WO2023137047A1, 11 January 2023. [Google Scholar]
- Radoiu, M.; Mello, A. Scaling up microwave excited plasmas—An alternative technology for industrial decarbonization. Plasma Processes Polym. 2024, 21, e2300200. [Google Scholar] [CrossRef]
- Acher, L.; Laredo, T.; Caillot, T.; Kaddouri, A.; Meunier, F.C. Trapping and Methanation of CO2 in a Domestic Microwave Oven Using Combinations of Sorbents and Catalysts. Appl. Sci. 2023, 13, 12536. [Google Scholar] [CrossRef]
- Acher, L.; Gana, J.; Caillot, T.; Kaddouri, A.; Meunier, F.C. CO2 capture and methanation over iron and cobalt-containing catalysts operated in a domestic microwave oven. Appl. Catal. A Gen. 2024, 685, 119898. [Google Scholar] [CrossRef]
- Perroud, H.; Miraux, J.; Lions, M.; Caillot, T.; Ferronato, C.; Kaddouri, A.; Meunier, F.C. Combustion of volatile organic compounds in a domestic microwave oven using regenerable sorbent-catalyst combinations. Sep. Purif. Technol. 2024, 330, 125387. [Google Scholar] [CrossRef]
- Palma, V.; Barba, D.; Cortese, M.; Martino, M.; Renda, S.; Meloni, E. Microwaves and Heterogeneous Catalysis: A Review on Selected Catalytic Processes. Catalysts 2020, 10, 246. [Google Scholar] [CrossRef]
- Link to a Video Showing the Fast Heating of a La-Ce-Mn-O Perovskite in Comparision to a CuO-Based Sample. Available online: https://sdrive.cnrs.fr/s/xY63sGTLxNRENH9 (accessed on 18 September 2024).
- Akay, G. Plasma Generating—Chemical Looping Catalyst Synthesis by Microwave Plasma Shock for Nitrogen Fixation from Air and Hydrogen Production from Water for Agriculture and Energy Technologies in Global Warming Prevention. Catalysts 2020, 10, 152. [Google Scholar] [CrossRef]
- Teraoka, Y.; Fukuda, H.; Kagawa, S. Catalytic Activity of Perovskite-Type Oxides for the Direct Decomposition of Nitrogen Monoxide. Chem. Lett. 1990, 19, 1–4. [Google Scholar] [CrossRef]
- Teraoka, Y.; Harada, T.; Kagawa, S. Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides. J. Chem. Soc. Faraday Trans. 1998, 94, 1887–1891. [Google Scholar] [CrossRef]
- Ishihara, T.; Ando, A.; Takiishi, K.; Yamada, K.; Nishiguchi, H.; Takita, Y. Direct decomposition of NO into N2 and O2 over La(Ba)Mn(In)O3 perovskite oxide. J. Catal. 2003, 220, 104–114. [Google Scholar] [CrossRef]
- Onrubia-Calvo, J.A.; Pereda-Ayo, B.; González-Velasco, J.R. Perovskite-Based Catalysts as Efficient, Durable, and Economical NOx Storage and Reduction Systems. Catalysts 2020, 10, 208. [Google Scholar] [CrossRef]
- Zhao, D.; Song, H.; Liu, J.; Jiang, Q.; Li, X. Advances in Designing Efficient La-Based Perovskites for the NOx Storage and Reduction Process. Catalysts 2022, 12, 593. [Google Scholar] [CrossRef]
- Kalinke, I.; Kubbutat, P.; Dinani, S.T.; Ambros, S.; Ozcelik, M.; Kulozik, U. Critical assessment of methods for measurement of temperature profiles and heat load history in microwave heating processes—A review. Comp. Rev. Food Sci. Food Saf. 2022, 21, 2118–2148. [Google Scholar] [CrossRef] [PubMed]
- Bao, C.; Serrano-Lotina, A.; Niu, M.; Portela, R.; Li, Y.; Lim, K.H.; Liu, P.; Wang, W.-J.; Banares, M.A.; Wang, Q. Microwave-associated chemistry in environmental catalysis for air pollution remediation: A review. Chem. Eng. J. 2023, 466, 142902. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Black-body_radiation (accessed on 5 September 2024).
- Mochida, I.; Kawabuchi, Y.; Kawano, S.; Matsumura, Y.; Yoshikawa, M. High catalytic activity of pitch-based activated carbon fibres of moderate surface area for oxidation of NO to NO2 at room temperature. Fuel 1997, 76, 543–548. [Google Scholar] [CrossRef]
- Meunier, F.C.; Breen, J.P.; Ross, J.R.H. New insights into the origin of NO2 in the mechanism of the selective catalytic reduction of NO by propene over alumina. Chem. Commun. 1999, 3, 259–260. [Google Scholar] [CrossRef]
- Link to a Video Showing the Emission of the La-Ce-Mn-O at 300 and 600 W. Available online: https://sdrive.cnrs.fr/s/6SnNfgQnCPafX5X (accessed on 18 September 2024).
- Hunt, J.; Ferrari, A.; Lita, A.; Crosswhite, M.; Ashley, B.; Stiegman, A.E. Microwave-Specific Enhancement of the Carbon–Carbon Dioxide (Boudouard) Reaction. J. Phys. Chem. C 2013, 117, 26871–26880. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Robinson, B.; Caiola, A.; Hu, J. Selectivity modulated oxidative dehydrogenation of ethane with CO2 under microwave catalytic processing. Catal. Sci. Technol. 2023, 13, 34993504. [Google Scholar] [CrossRef]
- Link to a Video Showing the Pulsation of the Emission of the La-Ce-Mn-O at 100 W. Available online: https://sdrive.cnrs.fr/s/aaDyi7wnbW97LXT (accessed on 18 September 2024).
- Kuscer, D.; Hrovat, M.; Holc, J.; Bernik, S.; Kolar, D. Phases in the LaMnO3±δ–SrMnO3−δ–LaAlO3 system. Mater. Res. Bull. 2000, 35, 2525–2544. [Google Scholar] [CrossRef]
- Haneishi, N.; Tsubaki, S.; Abe, E.; Maitani, M.M.; Suzuki, E.I.; Fujii, S.; Fukushima, J.; Takizawa, H.; Wada, Y. Enhancement of Fixed-bed Flow Reactions under Microwave Irradiation by Local Heating at the Vicinal Contact Points of Catalyst Particles. Sci. Rep. 2019, 9, 222. [Google Scholar] [CrossRef]
- Khattak, H.K.; Bianucci, P.; Slepkov, A.D. Linking plasma formation in grapes to microwave resonances of aqueous dimers. Proc. Natl. Acad. Sci. USA 2019, 116, 4000–4005. [Google Scholar] [CrossRef]
- Kaddouri, A.; Ifrah, S. Microwave-assisted synthesis of La1−xBxMnO3.15 (B = Sr, Ag; x = 0 or 0.2) via manganese oxides susceptors and their activity in methane combustion. Catal. Commun. 2006, 7, 109–113. [Google Scholar] [CrossRef]
- Bhalla, A.S.; Guo, R.; Roy, R. The perovskite structure—A review of its role in ceramic science and technology. Mater. Res. Innov. 2000, 4, 3–26. [Google Scholar] [CrossRef]
- Keav, S.; Matam, S.K.; Ferri, D.; Weidenkaff, A. Structured Perovskite-Based Catalysts and Their Application as Three-Way Catalytic Converters—A Review. Catalysts 2014, 4, 226–255. [Google Scholar] [CrossRef]
- Monteiro, J.; Costa, L.C.; Valente, M.A.; Santos, T.; Sousa, J. Simulating the electromagnetic field in microwave ovens. In Proceedings of the 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011), Natal, Brazil, 29 October–1 November 2011; pp. 493–497. Available online: https://ieeexplore.ieee.org/document/6169274 (accessed on 18 September 2024).
- Muhumuza, E.; Wu, P.; Nan, T.; Zhao, L.; Bai, P.; Mintova, S.; Yan, Z. Perovskite-Type LaCoO3 as an Efficient and Green Catalyst for Sustainable Partial Oxidation of Cyclohexane. Ind. Eng. Chem. Res. 2020, 59, 21322–21332. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meunier, F.C.; Kaddouri, A. Microwave-Assisted Oxidation of N2 into NOx over a La-Ce-Mn-O Perovskite Yielding Plasmas in a Quartz Flow Reactor at Atmospheric Pressure. Catalysts 2024, 14, 635. https://doi.org/10.3390/catal14090635
Meunier FC, Kaddouri A. Microwave-Assisted Oxidation of N2 into NOx over a La-Ce-Mn-O Perovskite Yielding Plasmas in a Quartz Flow Reactor at Atmospheric Pressure. Catalysts. 2024; 14(9):635. https://doi.org/10.3390/catal14090635
Chicago/Turabian StyleMeunier, Frederic C., and Akim Kaddouri. 2024. "Microwave-Assisted Oxidation of N2 into NOx over a La-Ce-Mn-O Perovskite Yielding Plasmas in a Quartz Flow Reactor at Atmospheric Pressure" Catalysts 14, no. 9: 635. https://doi.org/10.3390/catal14090635
APA StyleMeunier, F. C., & Kaddouri, A. (2024). Microwave-Assisted Oxidation of N2 into NOx over a La-Ce-Mn-O Perovskite Yielding Plasmas in a Quartz Flow Reactor at Atmospheric Pressure. Catalysts, 14(9), 635. https://doi.org/10.3390/catal14090635