Recent Research Progress on Surface Modified Graphite Carbon Nitride Nanocomposites and Their Photocatalytic Applications: An Overview
Abstract
:1. Introduction
2. Research Progress on Surface Modification of CN
2.1. Size Regulation
2.1.1. Two-Dimensional (2D) CN Nanosheets
2.1.2. One-Dimensional (1D) CN Nanotubes and Nanorods
2.1.3. Zero-Dimensional (0D) CN Quantum Dots (QDs)
2.2. Defect Control
2.3. Element Doping
2.4. Heterojunction Construction
3. The Research Progress on Photocatalytic Applications of CN
3.1. Photocatalytic Degradation of Organic Pollutants
3.2. Photocatalytic Hydrogen Production
3.3. Photocatalytic Reduction of CO2
3.4. Photocatalytic Synthesis of H2O2
4. Summary and Outlook
- (1)
- Further improve the visible light absorption range and absorption efficiency of CNby doping with new non-metallic/metallic elements, adjusting the energy band structure of CN, expanding its light response range, and improving its absorption efficiency of visible light. Construct more optimized nanoscale CN structures, such as nanosheets, nanotubes, nanospheres, etc., to increase the specific surface area and improve light capture ability.
- (2)
- Further promote the effective separation of photogenerated electrons and holes in CN. Compound CN with other 0D, 1D, 2D, and semiconductor materials to build a more structurally reasonable composite heterojunction, promote the effective separation of photogenerated electrons and holes, and reduce recombination losses.
- (3)
- Continue to study the photocatalytic mechanism in depth. Through theoretical calculation and experimental verification, in-depth research on the charge transfer, reaction path, and kinetic mechanism in the CN photocatalytic process will be conducted to provide theoretical guidance for the design of new photocatalysts.
- (4)
- In the future, with the continuous innovation of the preparation process, such as nanostructure design and molecular structural engineering, it will be able to prepare CN materials with higher crystallization, larger surface area, and better light absorption performance, and further enhance its light catalytic performance.
- (5)
- Develop efficient and low-cost CN large-scale preparation technology to meet the needs of industrial production. At the same time, combine CN photocatalytic technology with other energy conversion and storage technologies to build an efficient and environmentally friendly energy system.
- (6)
- Expand the types of environmental pollutants that can be degraded by CN photocatalysis. At present, new environmental pollutants such as antibiotics and microplastics are becoming hot topics. Therefore, the application of CN photocatalysts on these pollutants can be gradually expanded to achieve true photocatalytic remediation of environmental pollution.
- (7)
- CN can be introduced in the aspect of new energy conversion area, light energy can be converted into electrical energy or chemical energy, which can be used to prepare high-efficiency solar cells, photocatalytic water decomposition, etc.
- (8)
- For sustainable energy development, in the future, CN can be used to photocatalyze seawater to produce hydrogen, and this is worth researching.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zheng, Y.; Fang, T.; Chen, Y.; Zhu, Y.; Liang, Q.; Sheng, H.; Li, Z.; Chen, C.; Wang, X. Photocatalysis: An overview of recent developments and technological advancements. Sci. China Chem. 2020, 63, 149–181. [Google Scholar] [CrossRef]
- Kuang, P.; Sayed, M.; Fan, J.; Chen, B.; Yu, J. 3D graphene-based H2-production photocatalyst and electrocatalyst. Adv. Energy Mater. 2020, 10, 1903802. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.L.; Santos-Juanes, L.; Arques, A.; Amat, A.M.; Miranda, M.A. Organic photocatalysts for the oxidation of pollutants and model compounds. Chem. Rev. 2012, 112, 1710–1750. [Google Scholar] [CrossRef]
- Yang, C.; Cheng, B.; Xu, J.; Yu, J.; Cao, S. Donor-acceptor-based conjugated polymers for photocatalytic energy conversion. EnergyChem 2023, 6, 100116. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349. [Google Scholar] [CrossRef]
- Bie, C.; Zhu, B.; Xu, F.; Zhang, L.; Yu, J. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv. Mater. 2019, 31, 1902868. [Google Scholar] [CrossRef]
- Li, H.; Song, Q.; Wan, S.; Tung, C.W.; Liu, C.; Pan, Y.; Luo, G.Q.; Chen, H.M.; Cao, S.; Yu, J.; et al. Atomic Interface Engineering of Single-Atom Pt/TiO2-Ti3C2 for Boosting Photocatalytic CO2 Reduction. Small 2023, 19, 2301711. [Google Scholar] [CrossRef]
- Jang, E.S.; Won, J.H.; Hwang, S.J.; Choy, J.H. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv. Mater. 2006, 18, 3309–3312. [Google Scholar] [CrossRef]
- Di, T.; Xu, Q.; Ho, W.K.; Tang, H.; Xiang, Q.J.; Yu, J.G. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem 2019, 11, 1394–1411. [Google Scholar] [CrossRef]
- Teter, D.M.; Hemley, R.J. Low-compressibility carbon nitrides. Science 1996, 271, 53–55. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; M-Carlsson, J.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Lin, L.; Wang, B.; Wang, X. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 2015, 54, 12868–12884. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, X. Photocatalytic CO2 conversion by polymeric carbon nitrides. Chem. Commun. 2018, 54, 5674–5687. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Li, H.; Tao, S.; Wan, S.; Qiu, G.; Long, Q.; Yu, J.; Cao, S. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production. Chin. J. Catal. 2023, 46, 167–176. [Google Scholar] [CrossRef]
- Wang, X.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2012, 2, 1596–1606. [Google Scholar] [CrossRef]
- Starukh, H.; Praus, P. Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis. Catalysts 2020, 10, 1119. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Zhang, H.; Zhao, J.; Shi, H.; Zhang, M.; Yang, H.; Zheng, Z.; Yang, P. Nitrogen vacancies in polymeric carbon nitrides promote CO2 photoreduction. J. Catal. 2022, 409, 12–23. [Google Scholar] [CrossRef]
- Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction. ACS Sustain. Chem. Eng. 2020, 8, 8214–8222. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Y.; Shen, Y.; Liu, S.; Zhang, Y. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298–2321. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Phua, S.Z.F.; Dong, G.; Liu, X.; He, B.; Zhai, Q.; Li, Y.; Zheng, C.; Quan, H.; Li, Z.; et al. Structure tuning of polymeric carbon nitride for solar energy conversion: From nano to molecular scale. Chem 2019, 5, 2775–2813. [Google Scholar] [CrossRef]
- Lin, L.; Yu, Z.; Wang, X. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. Int. Ed. 2019, 131, 6225–6236. [Google Scholar] [CrossRef]
- Savateev, A.; Antonietti, M. Ionic carbon nitrides in solar hydrogen production and organic synthesis: Exciting chemistry and economic advantages. ChemCatChem 2019, 11, 6166–6176. [Google Scholar] [CrossRef]
- Yan, B.; Chen, Z.; Xu, Y. Amorphous and crystalline 2D polymeric carbon nitride nanosheets for photocatalytic hydrogen/oxygen evolution and hydrogen peroxide production. Chem.-Asian J. 2020, 15, 2329–2340. [Google Scholar] [CrossRef]
- Li, H.; Cheng, B.; Xu, J.; Yu, J.; Cao, S. Crystalline carbon nitrides for photocatalysis. EES Catal. 2024, 2, 411–447. [Google Scholar] [CrossRef]
- Yi, J.; El-Alami, W.; Song, Y.; Li, H.; Ajayan, P.M.; Xu, H. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chem. Eng. J. 2020, 382, 122812. [Google Scholar] [CrossRef]
- Shen, R.; Xie, J.; Guo, P.; Che, L.; Chen, X.; Li, X. Bridging the g-C3N4 nanosheets and robust CuS cocatalysts by metallic acetylene black interface mediators for active and durable photocatalytic H2 production. ACS Appl. Energy Mater. 2018, 1, 2232–2241. [Google Scholar] [CrossRef]
- Shi, G.; Yang, L.; Liu, Z.; Chen, X.; Zhou, J.; Yu, Y. Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity. Appl. Surf. Sci. 2018, 427, 1165–1173. [Google Scholar] [CrossRef]
- Wang, L.; Hong, Y.; Liu, E.; Duan, X.; Lin, X.; Shi, J. A bottom-up acidification strategy engineered ultrathin g-C3N4 nanosheets towards boosting photocatalytic hydrogen evolution. Carbon 2020, 163, 234–243. [Google Scholar] [CrossRef]
- Mehtab, A.; Ali, S.A.; Ingole, P.P.; Mao, Y.; Alshehri, S.M.; Ahmad, T. MoS2 nanoflower-deposited g-C3N4 nanosheet 2D/2D heterojunction for efficient photo/electrocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2023, 6, 12003–12012. [Google Scholar] [CrossRef]
- Mehtab, A.; Alshehri, S.M.; Ahmad, T. Photocatalytic and photoelectrocatalytic water splitting by porous g-C3N4 nanosheets for hydrogen generation. ACS Appl. Nano Mater. 2022, 5, 12656–12665. [Google Scholar] [CrossRef]
- Masih, D.; Ma, Y.; Rohani, S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B-Environ. Energy 2017, 206, 556–588. [Google Scholar] [CrossRef]
- Yi, J.; Fei, T.; Li, L.; Yu, Q.; Zhang, S.; Song, Y.; Lian, J.; Zhu, X.; Deng, J.; Xu, H.; et al. Large-scale production of ultrathin carbon nitride-based photocatalysts for high-yield hydrogen evolution. Appl. Catal. B-Environ. Energy 2021, 281, 119475. [Google Scholar] [CrossRef]
- Ma, P.; Zhang, X.; Wang, C.; Wang, Z.; Wang, K.; Feng, Y.; Wang, J.; Zhai, Y.; Deng, J.; Wang, L.; et al. Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution. Appl. Catal. B-Environ. Energy 2022, 300, 120736. [Google Scholar] [CrossRef]
- Guo, S.; Deng, Z.; Li, M.; Jiang, B.; Tian, C.; Pan, Q.; Fu, H. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2016, 55, 1830–1834. [Google Scholar] [CrossRef]
- Liu, B.; Ye, L.; Wang, R.; Yang, J.; Zhang, Y.; Guan, R.; Tian, L.; Chen, X. Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity. ACS Appl. Mater Interf. 2018, 10, 4001–4009. [Google Scholar] [CrossRef]
- Li, Y.; Gu, M.; Shi, T.; Cui, W.; Zhang, X.; Dong, F.; Cheng, J.; Fan, J.; Lv, K. Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity. Appl. Catal. B-Environ. Energy 2020, 262, 118281. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, N.; Hashimoto, M.; Iwasai, K.; Chikamori, N.; Nakata, K.; Xu, Y.; Shi, J.; Wu, H.; Luo, Y.; et al. Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano Res 2018, 11, 2295–2309. [Google Scholar] [CrossRef]
- Guo, L.; Gao, J.; Li, M.; Xie, Y.; Chen, H.; Wang, S.; Li, Z.; Wang, X.; Zhou, W. Synergy of defect engineering and curvature effect for porous graphite carbon nitride nanotubes promoted photocatalytic hydrogen evolution. EcoEnergy 2023, 1, 437–447. [Google Scholar] [CrossRef]
- Preeyanghaa, M.; Vinesh, V.; Neppolian, B. Complete removal of Tetracycline by sonophotocatalysis using ultrasound-assisted hierarchical graphitic carbon nitride nanorods with carbon vacancies. Chemosphere 2022, 287, 132379. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; Chen, Z.; Zhong, L.; Yang, W.; Li, T.; Gan, J.; Yang, Y.; Chen, Z.; Lai, H.; Li, X.; et al. Nanocellulose-assisted molecularly engineering of nitrogen deficient graphitic carbon nitride for selective biomass photo-oxidation. Adv. Funct. Mater. 2023, 33, 2301311. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, X.; Liu, X.; Li, C.; Liu, S. Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active centers. Appl. Catal. B-Environ. Energy 2022, 304, 120978. [Google Scholar] [CrossRef]
- He, L.; Fei, M.; Chen, J.; Tian, Y.; Jiang, Y.; Huang, Y.; Xu, K.; Hu, J.; Zhao, Z.; Zhang, Q.; et al. Graphitic C3N4 quantum dots for next-generation QLED displays. Mater. Today 2019, 22, 76–84. [Google Scholar] [CrossRef]
- Hong, Y.; Yang, J.; Choi, W.M.; Wang, J.; Xu, J. B-doped g-C3N4 quantum dots-modified Ni(OH)2 nanoflowers as an efficient and stable electrode for supercapacitors. ACS Appl. Energy Mater. 2021, 4, 1496–1504. [Google Scholar] [CrossRef]
- Dai, X.; Han, Z.; Fan, H.; Ai, S. Sulfur doped carbon nitride quantum dots with efficient fluorescent property and their application for bioimaging. J. Nanopart. Res. 2018, 20, 315. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, H. Self-introduction of carbon nitride quantum dots into carbon nitride planar structure for enhanced photocatalytic hydrogen production. Appl. Catal. B-Environ. Energy 2023, 339, 123101. [Google Scholar] [CrossRef]
- Eroglu, Z.; Sündü, B.; Metin, O. Tailoring the redox ability of carbon nitride quantum dots/reduced graphene oxide-black phosphorus (CNQDs@rGOBP) ternary heterojunctions for photodegradation of organic pollutants. Mater. Today Sustain. 2023, 23, 100418. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, C.; Lu, X.; Mu, X.; Song, P. Effects of defects in g-C3N4 on excited-state charge distribution and transfer: Potential for improved photocatalysis. Spectrochim. Acta. A 2020, 227, 117687–117714. [Google Scholar] [CrossRef]
- Ma, W.; Wang, N.; Guo, Y.; Yang, L.; Lv, M.; Tang, X.; Li, S. Enhanced photoreduction CO2 activity on g-C3N4: By synergistic effect of nitrogen defective-enriched and porous structure, and mechanism insights. Chem. Eng. J. 2020, 388, 124288. [Google Scholar] [CrossRef]
- Lv, C.; Qian, Y.; Yan, C.; Ding, Y.; Liu, Y.; Chen, G.; Yu, G. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 2018, 130, 10403–10407. [Google Scholar] [CrossRef]
- Liu, H.; Ma, S.; Shao, L.; Liu, H.; Gao, Q.; Li, B.; Fu, H.; Fu, S.; Ye, H.; Zhao, F.; et al. Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection. Appl. Catal. B-Environ. Energy 2020, 261, 118201. [Google Scholar] [CrossRef]
- Luo, J.; Liu, Y.; Fan, C.; Tang, L.; Yang, S.; Liu, M.; Wang, M.; Feng, C.; Ouyang, X.; Wang, L.; et al. Direct attack and indirect transfer mechanisms dominated by reactive oxygen species for photocatalytic H2O2 production on g-C3N4 possessing nitrogen vacancies. ACS Catal. 2021, 11, 11440–11450. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Kofuji, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 2015, 5, 3058–3066. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Y.; Huang, Z.; Zhang, J.; Jia, X.; Wang, X.; Ye, J. Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. Appl. Catal. B-Environ. Energy 2020, 265, 118581. [Google Scholar] [CrossRef]
- Bao, H.; Wang, L.; Li, G.; Zhou, L.; Xu, Y.; Liu, Z.; Wu, M. Carrier engineering of carbon nitride boosts visible-light photocatalytic hydrogen evolution. Carbon 2021, 179, 80–88. [Google Scholar] [CrossRef]
- Huang, J.; Wang, H.; Yu, H.; Zhang, Q.; Cao, Y.; Peng, F. Oxygen doping in graphitic carbon nitride for enhanced photocatalytic hydrogen evolution. ChemSusChem 2020, 13, 5041–5049. [Google Scholar] [CrossRef]
- Dang, X.; Cui, X.; Zhang, H.; Chen, X.; Zhao, H. Construction of a P, N Co-doped nanocarbon-embedded g-C3N4 hollow sphere nanoreactor for the efficient photocatalytic production of hydrogen peroxide. ACS Sustain. Chem. Eng. 2023, 11, 13096–13107. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y.; Feng, W. Gas-phase fluorination of g-C3N4 for enhanced photocatalytic hydrogen evolution. Nanomaterials 2021, 12, 37. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, B.; Li, Q.; Niu, X.; Xia, Z.; Qi, L.; Liu, G.; Liu, Y.; Gao, A.; Wang, H. Enhanced scavenger-free photocatalysis-self-Fenton degradation performance over B-doped NVs modified g-C3N4 via promoting Fe(II)/Fe(III) cycle. Sep. Purif. Technol. 2025, 353, 128386. [Google Scholar] [CrossRef]
- Wang, R.; Xu, B.; Wang, J.; Wang, X.; Yao, Y. Selective hydrogen-deuterium exchange in graphitic carbon nitrides: Probing the active sites for photocatalytic water splitting by solid-state NMR. J. Mater. Chem. A 2021, 9, 3985–3994. [Google Scholar] [CrossRef]
- Shi, H.; He, Y.; Li, Y.; Luo, P. Unraveling the synergy mechanism between photocatalysis and peroxymonosulfate activation on a Co/Fe bimetal-doped carbon nitride. ACS Catal. 2023, 13, 8973–8986. [Google Scholar] [CrossRef]
- Jiang, J.; Cao, S.; Hu, C.; Chen, C. A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chin. J. Catal. 2017, 38, 1981–1989. [Google Scholar] [CrossRef]
- Ma, T.; Shen, Q.; Zhaoa, B.; Xue, J.; Guan, R.; Liu, X.; Jia, H.; Xu, B. Facile synthesis of Fe-doped g-C3N4 for enhanced visible-light photocatalytic activity. Inorg. Chem. Commun. 2019, 107, 107451. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, M.; Yang, W.; Xiao, Y.; Zeng, L.; Wu, X.; Xu, Q.; SU, C.; He, Q. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production. Adv. Mater. 2021, 33, 2101455. [Google Scholar] [CrossRef]
- Lu, X.; Liu, X.; Chen, X.; Li, X. Engineering MPx (M= Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H2 evolution over g-C3N4/MoS2 layered heterojunctions. Appl. Catal. B-Environ. Energy 2019, 252, 250–259. [Google Scholar] [CrossRef]
- Yi, J.; She, X.; Song, Y.; Xu, H.; Zhang, P.; Mo, Z.; Liu, L.; Du, D.; Li, H. A silver on 2D white-C3N4 support photocatalyst for mechanistic insights: Synergistic utilization of plasmonic effect for solar hydrogen evolution. RSC Adv. 2016, 6, 112420–112528. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, S.; Yang, G.; Wang, G.; Zhang, L.; Xia, D.; Huang, H.; Cheng, Z.; Xu, J.; Sun, C.; et al. Z-scheme Au decorated carbon nitride/cobalt tetroxide plasmonic heterojunction photocatalytic for catalytic reduction of hexavalent chromium and oxidation of Bisphenol A. J. Hazard. Mater. 2021, 410, 124539. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Yu, W.; Zhang, J.; Fang, S.; Zhang, J.; Qiu, J.; Kong, F.; Duan, X. Single platinum atoms anchored on holy carbon nitride for efficient photodegradation of sulfonylurea herbicide. Chem. Eng. J. 2022, 446, 137426. [Google Scholar] [CrossRef]
- Zeng, Z.; Ye, F.; Deng, S.; Fang, D.; Wang, X.; Bai, Y.; Xiao, H. Accelerated organic pollutants mineralization in interlayer confined single Pt atom photocatalyst for hydrogen recovery. Chem. Eng. J. 2022, 444, 136561. [Google Scholar] [CrossRef]
- Jin, X.; Wang, R.; Zhang, L.; Si, R.; Shen, M.; Wang, M.; Tian, J.; Shi, J. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2020, 132, 6894–6898. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Z.; Zhang, S.; Ye, H.; Kong, K.; Gong, X.; Hua, J.; Tian, H. Molecular engineering of donor-acceptor conjugated polymer/g-C3N4 heterostructures for significantly enhanced hydrogen evolution under visible-light irradiation. Adv. Funct. Mater. 2018, 28, 1804512. [Google Scholar] [CrossRef]
- Shi, Y.; Li, L.; Xu, Z.; Sun, H.; Amin, S.; Guo, F.; Shi, W.; Li, Y. Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation. Mater. Res. Bull. 2022, 150, 111789. [Google Scholar] [CrossRef]
- Hou, J.; Wang, H.; Qin, R.; Zhang, Q.; Wu, D.; Hou, Z.; Yang, W.; Hussain, A.; Tahir, M.; Yin, W.; et al. Grinding preparation of 2D/2D g-C3N4/BiOCl with oxygen vacancy heterostructure for improved visible-light-driven photocatalysis. Carbon Res. 2024, 3, 1. [Google Scholar] [CrossRef]
- Ahmad, N.; Kuo, C.F.J.; Mustaqeem, M.; Mujahid, M.; Sangili, A.; Huang, C.-C.; Chang, H.-T. Synthesis of novel Type-II MnNb2O6/g-C3N4 Mott-Schottky heterojunction photocatalyst: Excellent photocatalytic performance and degradation mechanism of fluoroquinolone-based antibiotics. Chemosphere 2023, 321, 138027. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, Y.; Wang, N.; Kang, X.; Wang, D.; Wang, C.; Liu, J.; Jiang, Y.; Fu, H. Facile synthesis of a Z-scheme CeO2/C3N4 heterojunction with enhanced charge transfer for CO2 photoreduction. Sci. China Mater. 2023, 66, 3165–3175. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, C.; Zhang, X.; Guo, R.; Zheng, Y.; Chu, H.; Fu, H.; Wang, P.; Wang, C. Piezo-photocatalytic synergetic for H2O2 generation via dual-pathway over Z-scheme ZIF-L/g-C3N4 heterojunction. Nano Energy 2024, 128, 109795. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Z.; Bian, J.; Bai, F.; Su, H.; Li, Z.; Xie, J.; Xu, R.; Sun, J.; Bai, L.; et al. A Z-Scheme heterojunctional photocatalyst engineered with spatially separated dual redox sites for selective CO2 reduction with water: Insight by in situ µs-transient absorption spectra. Adv. Mater. 2023, 35, 2300064. [Google Scholar] [CrossRef]
- Chen, R.; Ding, S.; Fu, N.; Ren, X. Preparation of a g-C3N4/Ag3PO4 composite Z-type photocatalyst and photocatalytic degradation of Ofloxacin: Degradation performance, reaction mechanism, degradation pathway and toxicity evaluation. J. Environ. Chem. Eng. 2023, 11, 109440. [Google Scholar] [CrossRef]
- Du, P.; Wei, Y.; Sun, J.; Ying, Z.; Wu, J.; Xu, N. Synthesis of plasmonic Z-scheme g-C3N4/W18O49 nanocone arrays with enhanced charge separation. J. Phys. Chem. C 2021, 125, 4205–4210. [Google Scholar] [CrossRef]
- Eroglu, Z.; Metin, O. Internal interactions within the complex type-II heterojunction of a graphitic carbon nitride/black phosphorus hybrid decorated with graphene quantum dots: Implications for photooxidation performance. ACS Appl. Nano Mater. 2023, 6, 7960–7974. [Google Scholar] [CrossRef]
- Alemdar, S.; Basak, A.; Metin, O. Exploring the enhanced catalytic activity of Pt nanoparticles generated on the red phosphorus/graphitic carbon nitride binary heterojunctions in the photo-assisted hydrolysis of ammonia borane. ACS Appl. Mater. Interf. 2023, 15, 48096–48109. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Fan, T.; Cao, Y.; Li, P.; Yao, X.; Liu, X. Construction of three-dimensional MgIn2S4 nanoflowers/two-dimensional oxygen-doped g-C3N4 nanosheets direct Z-scheme heterojunctions for efficient Cr (VI) reduction: Insight into the role of superoxide radicals. J. Hazard. Mater. 2021, 420, 126567. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, W.; Xu, T.; Wang, G.; Huan, W.; Si, C. Straightforward fabrication of lignin-derived carbon-bridged graphitic carbon nitride for improved visible photocatalysis of tetracycline hydrochloride assisted by peroxymonosulfate activation. Adv. Compos. Hybrid Mater. 2023, 6, 197. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhan, X.; Hong, B.; Xia, Y.; Ding, Y.; Cai, T.; Yin, K.; Wang, X.; Yang, L.; Luo, S. Surface atom rearrangement on carbon nitride for enhanced photocatalysis degradation of antibiotics under visible light. Chem. Eng. J. 2023, 452, 139434. [Google Scholar] [CrossRef]
- Zhang, C.; Ouyang, Z.; Yang, Y.; Long, X.; Qin, L.; Wang, W.; Zhou, Y.; Qin, D.; Qin, F.; Lai, C. Molecular engineering of donor-acceptor structured g-C3N4 for superior photocatalytic oxytetracycline degradation. Chem. Eng. J. 2022, 448, 137370. [Google Scholar] [CrossRef]
- Kuate, L.J.N.; Chen, Z.; Yan, Y.; Lu, J.; Guo, F.; Wen, H.; Shi, W. Construction of 2D/3D black g-C3N4/BiOI S-scheme heterojunction for boosted photothermal-assisted photocatalytic tetracycline degradation in seawater. Mater. Res. Bull. 2024, 175, 112776. [Google Scholar] [CrossRef]
- Ganesan, S.; Kokulnathan, T.; Sumathi, S.; Palaniappan, A. Efficient photocatalytic degradation of textile dye pollutants using thermally exfoliated graphitic carbon nitride (TE-g-C3N4). Sci. Rep. 2024, 14, 2284. [Google Scholar] [CrossRef]
- Huang, T.; Chen, J.; Zhang, L.; Khataee, A.; Han, Q.; Liu, X.; Sun, J.; Zhu, J.; Pan, S.; Wang, X.; et al. Precursor-modified strategy to synthesize thin porous amino-rich graphitic carbon nitride with enhanced photocatalytic degradation of RhB and hydrogen evolution performances. Chin. J. Catal. 2022, 43, 497–506. [Google Scholar] [CrossRef]
- Song, P.; Sun, S.; Cui, J.; Zheng, X.; Liang, S. Organic dye-reformed construction of porous-defect g-C3N4 nanosheet for improved visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2021, 568, 150986. [Google Scholar] [CrossRef]
- Li, X.; Luo, Q.; Han, L.; Deng, F.; Yang, Y.; Dong, F. Enhanced photocatalytic degradation and H2 evolution performance of NCDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly. J. Mater. Sci Technol. 2022, 114, 222–232. [Google Scholar] [CrossRef]
- Xiong, J.; Li, X.; Huang, J.; Gao, X.; Chen, Z.; Liu, J.; Li, H.; Kang, B.; Yao, W.; Zhu, Y. CN/rGO@ BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl. Catal. B-Environ. Energy 2020, 266, 118602. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, N.; Lou, L.; Iwasaki, K.; Wu, H.; Luo, Y.; Li, D.; Nakata, K.; Fujishima, A.; Meng, Q. Localized surface plasmon resonance enhanced photocatalytic hydrogen evolution via Pt@Au NRs/C3N4 nanotubes under visible-light irradiation. Adv. Funct. Mater. 2019, 29, 1806774. [Google Scholar] [CrossRef]
- Yan, F.; Wu, Y.; Jiang, L.; Xue, X.; Lv, J.; Lin, L.; Yu, Y.; Zhang, Y.; Yang, F.; Qiu, Y. Design of C3N4-based hybrid heterojunctions for enhanced photocatalytic hydrogen production activity. ChemSusChem 2020, 13, 876–881. [Google Scholar] [CrossRef]
- Yang, H.; Sun, S.; Lyu, J.; Yang, Q.; Cui, J. Mechanism insight into triple S-Scheme intermolecular carbon nitride homojunction with robust built-in electric field for highly enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2024, 481, 148297. [Google Scholar] [CrossRef]
- Wang, H.; Bian, Y.; Hu, J.; Dai, l. Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation. Appl. Catal. B-Environ. Energy 2018, 238, 592–598. [Google Scholar] [CrossRef]
- Wang, C.; Liu, G.; Song, K.; Wang, X.; Wang, H.; Zhao, N.; He, F. Three-dimensional hierarchical porous carbon/graphitic carbon nitride composites for efficient photocatalytic hydrogen production. ChemCatChem 2019, 11, 6364–6371. [Google Scholar] [CrossRef]
- Yang, R.; Shi, H.; Zhao, J.; Zhang, H.; Zhong, M.; Yang, P. Novel asymmetric aggregation strategy to boost charge separation in carbon nitride polymers for high-performance hydrogen photosynthesis. ACS Catal. 2024, 14, 9607–9617. [Google Scholar] [CrossRef]
- Wu, X.; Fan, H.; Wang, W.; Lei, L.; Chang, X.; Ma, L. Multiple ordered porous honeycombed g-C3N4 with carbon ring in-plane splicing for outstanding photocatalytic H2 production. J. Mater. Chem. A 2022, 10, 17817–17826. [Google Scholar] [CrossRef]
- Li, Q.; Wang, S.; Sun, Z.; Tang, Q.; Liu, Y.; Wang, L.; Wang, H.; Wu, Z. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759. [Google Scholar] [CrossRef]
- Hu, S.; Qiao, P.; Yi, X.; Lei, Y.; Hu, H.; Ye, J.; Wang, D. Selective photocatalytic reduction of CO2 to CO mediated by silver single atoms anchored on tubular carbon nitride. Angew. Chem. Int. Ed. 2023, 62, e202304585. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Q.; Han, C.; Zhou, S.; Li, Z.; Liu, J.; Hu, F.; Wang, J.; Wang, N.; Zhu, Y.; et al. Synergistic optimization of morphology and vacancies on diatomic rhodium catalysts dispersed on carbon nitride for efficient photocatalytic reduction of CO2. Adv. Funct. Mater. 2024, 34, 2307733. [Google Scholar] [CrossRef]
- Wan, S.; Hou, Y.; Wang, W.; Lu, G.; Wang, C.; Tu, R.; Cao, S. Graphitic carbon nitride/La, Rh co-doped SrTiO3 S-scheme heterojunction for photocatalytic CO2 reduction. Rare Metal 2024, 43, 1–11. [Google Scholar] [CrossRef]
- Hussien, M.K.; Sabbah, A.; Qorbani, M.; Putikam, R.; Kholimatussadiah, S.; Tzou, D.-L.M.; Elsayed, M.H.; Lu, Y.-J.; Wang, Y.-Y.; Lee, X.-H.; et al. Constructing B-N-P bonds in ultrathin holey g-C3N4 forregulating the local chemical environment in photocatalytic CO2 reduction to CO. Small 2024, 20, 2400724. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Q.; Wang, W.; Cheng, B.; Yu, J.; Cao, S. 2D/2D g-C3N4@ BiOI S-scheme heterojunction with gas-liquid-solid triphase interface for highly efficient CO2 photoreduction. Sci. China Mater. 2024, 67, 1830–1838. [Google Scholar] [CrossRef]
- Ding, J.; Tang, Q.; Fu, Y.; Zhang, Y.; Hu, J.; Li, T.; Zhong, Q.; Fan, M.; Kung, H.H. Core-shell covalently linked graphitic carbon nitride-melamine-resorcinol-formaldehyde microsphere polymers for efficient photocatalytic CO2 reduction to methanol. J. Am. Chem. Soc. 2022, 144, 9576–9585. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, C.; Ping, B.; Li, G.; Chen, J.; Sun, Z.; Zhang, Y.; Ruan, Q.; Li, T. A hydroxyl-induced carbon nitride homojunction with functional surface for efficient photocatalytic production of H2O2. Appl. Catal. B-Environ. Energy 2023, 324, 122216. [Google Scholar] [CrossRef]
- He, F.; Lu, Y.; Wu, Y.; Wang, S.; Zhang, Y.; Dong, P.; Wang, Y.; Zhao, C.; Wang, S.; Zhang, J.; et al. Rejoint of carbon nitride fragments into multi-interfacial order-disorder homojunction for robust photo-driven generation of H2O2. Adv. Mater. 2024, 36, 2307490. [Google Scholar] [CrossRef]
- Zhou, J.; Shan, T.; Zhang, F.; Boury, B.; Huang, L.; Yang, Y.; Liao, G.; Xiao, H.; Chen, L. A novel dual-channel carbon nitride homojunction with nanofibrous carbon for significantly boosting photocatalytic hydrogen peroxide production. Adv. Fiber Mater. 2024, 6, 387–400. [Google Scholar] [CrossRef]
- Feng, B.; Liu, Y.; Wan, K.; Zu, S.; Pei, Y.; Zhang, X.; Qiao, M.; Li, H.; Zong, B. Tailored exfoliation of polymeric carbon nitride for photocatalytic H2O2 production and CH4 valorization mediated by O2 activation. Angew. Chem. Int. Ed. 2024, 63, e202401884. [Google Scholar] [CrossRef] [PubMed]
- Meng, A.; Ma, X.; Wen, D.; Zhong, W.; Zhou, S.; Su, Y. Towards highly-selective H2O2 photosynthesis: In-plane highly ordered carbon nitride nanorods with Ba atoms implantation. Chin. J. Catal. 2024, 60, 231–241. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; Zhang, H.; Wan, Y.; Luo, J. Biomimetic-photo-coupled catalysis for boosting H2O2 production. Chem. Eng. J. 2024, 483, 149183. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, P.; Wang, C.; Gan, L.; Chen, X.; Zhang, P.; Wang, Y.; Li, H.; Wang, L.; Zhou, X.; et al. Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution. Energy Environ. Sci. 2022, 15, 830–842. [Google Scholar] [CrossRef]
Material Type | Synthesis Method | Photocatalytic System | Reference |
---|---|---|---|
2D CN nanosheets | Calcining + Annealing | H2 production | [29] |
2D CN nanosheets | Calcining + Annealing | CO2 reduction | [30] |
2D ultra-thin CN nanosheets | Acid + Hydrothermal + Calcining | H2 production | [31] |
2D CN nanosheets | Calcining + Acid + Annealing | H2 production | [32] |
2D CN nanosheets | Calcining + Acid + Annealing | H2 production | [33] |
2D CN nanosheets | liquid-phase exfoliation | H2 production | [34] |
2D CN nanosheets | NB2O5-mediated thinning strategy | H2 production | [35] |
2D CN nanosheets | Hydrothermal | H2 production | [36] |
1D P-doped CN nanotubes | Hydrothermal | H2 production | [37] |
1D P-doped CN nanotubes | Hydrothermal | CO2 reduction | [38] |
1D CN nanotubes | Hydrothermal | NO reduction | [39] |
1D CN nanotubes | Hydrothermal | H2 production | [40] |
1D N-defect CN nanotubes | sodium borohydride thermal reduction | H2 production | [41] |
1D C-defect CN nanorods | ultrasonic-assisted thermal polycondensation | Tetracycline degradation | [42] |
1D N/O-defect CN nanorods | Hydrothermal | H2 production | [43] |
1D C-doped CN nanorods | solvothermal-assisted | CO2 reduction | [44] |
0D CNQDs | N2-assisted thermal polycondensation | QLED displays | [45] |
0D B-doped CNQDs | Hydrothermal | Supercapacitors | [46] |
0D S-doped CNQDs | Hydrothermal + Ultrasonic | Bioimaging | [47] |
0D CNQDs | Ground + Hydrothermal | H2 production | [48] |
rGOBP/0D CNQDs | Ultrasound-assisted liquid exfoliation | Methyl orange degradation | [49] |
Material Type | Synthesis Method | Photocatalytic System | Reference |
---|---|---|---|
C/N defects-CN | DFT calculation | All photocatalytic system | [50] |
N defects-CN | Hydrothermal | CO2 reduction | [51] |
N defects-CN | Hydrothermal | N2 reduction | [52] |
N defects-CN | Hydrothermal | Bacteria sterilization | [53] |
N defects-CN | Hydrothermal | H2O2 production | [54] |
Amine moieties-CN | Hydrothermal | H2O2 production | [55] |
N defects-CN | Hydrothermal | H2O2 production | [56] |
Material Type | Synthesis Method | Photocatalytic System | Reference |
---|---|---|---|
B-doped CN | Calcination + Hydrothermal | H2 production | [57] |
N-C-O/C-O-C-doped CN | Acid + Hydrothermal | H2 production | [58] |
P, N-doped CN | Hydrothermal | H2O2 production | [59] |
F-doped CN | Calcination | H2 production | [60] |
B-doped CN | Hydrothermal | H2 production | [61] |
H-doped CN | Hydrothermal | H2 production | [62] |
Fe, Co-doped CN | Hydrothermal | Methylene blue degradation | [63] |
Li, Na, K-doped CN | High-temperature assisted | H2 production | [64] |
Fe-doped CN | One-step thermal polymerization | Rhodamine B degradation | [65] |
C, P-doped CN | Salt template-induced | H2 production | [66] |
Ag-doped CN | Hydrothermal | H2 production | [68] |
Au-doped CN/Co2O3 | Hydrothermal | Bisphenol A degradation | [69] |
Single atom Pt-CN | Hydrothermal | Sulfonylurea herbicide degradation | [70] |
Single atom Pt-CN | Simple cationic ion exchange | H2 production | [71] |
Single atom Ni-CN | Cryo-deposition | H2 production | [72] |
Material Type | Synthesis Method | Photocatalytic System | Reference |
---|---|---|---|
Fluorene, carbazole, N-annulated perylene-CN | Calcination + Hydrothermal | H2 production | [73] |
ZnFe2O4/CN | Solvothermal + Calcination | Tetracycline degradation | [74] |
BiOCl/CN | Grinding | H2 production | [75] |
MnNb2O6/CN | Solvothermal | Fluoroquinolone degradation | [76] |
CeO2/CN | In situ exfoliation | CO2 reduction | [77] |
ZIF-L/CN | Stirring deposition | H2O2 production | [78] |
CoOx-BVO4/CN | Molecular self-assembly | CO2 reduction | [79] |
Ag3PO4/CN | In-situ deposition | Ofloxacin degradation | [80] |
W18O49/CN | Hydrothermal | H2 production | [81] |
GQDs@CNBP | Ultrasonic + Exfoliation | MO degradation | [82] |
Pt/RP/CN | Ultrasound-assisted two-step protocol | H2 production | [83] |
Material Type | Degradation System | Photocatalytic Performance | Reference |
---|---|---|---|
MgIn2S4 nanoflower/2D oxygen-doped CN | Cr (VI) solution | 343.7-fold enhancement | [84] |
C-doped CN | TC solution | 6.74-fold enhancement | [85] |
Nv, Os-CN | TC, CIP, SZO solution | 2.1, 2.24, 1.38-fold enhancement | [86] |
BTC/CN | Oxytetracycline solution | 2.32-fold enhancement | [87] |
BiOI/CN-B | TC solution | 93% removal rate in 60 min | [88] |
TE-CN | MB, MO, RhB dyes | 92%, 93%, 95% removal rate in 60 min | [89] |
5H-CN | RhB dyes | 34-fold enhancement | [90] |
4-nitrophenol-modified CN | RhB dyes | 29.6-fold enhancement | [91] |
NCDs/S-CN | RhB dyes | 99% removal rate in 15 min | [92] |
rGO@BPQDs/CN | RhB/tetracycline solution | 2.69-fold enhancement | [93] |
Material Type | Sacrificial Agent | Photocatalytic Performance | Reference |
---|---|---|---|
Pt@Au NRs/CN | 10 mL deionized water | 207.0 µmol h−1 (20 mg) | [94] |
Ag/Ni/CN | 10 mL methanol | 600 μmol−1g−1h−1 | [95] |
UTMCN | 10 vol% triethanolamine | 5281 μmol−1g−1h−1 | [96] |
S-doped CN | 10 mL deionized water | 1511.2 μmol−1g−1h−1 | [97] |
3D C/CN | 10 mL triethanolamine | 1610 μmol−1g−1h−1 | [98] |
SS-CNP/BA | 10 vol% triethanolamine | 272.4 µmol h−1 (2 mg) | [99] |
Cr-PHCN | 45 mL triethanolamine | 7581 μmol−1g−1h−1 | [100] |
Material Type | Reduction Product | Photocatalytic Performance | Reference |
---|---|---|---|
CQDs/O-doped CN | CH4 | 13.83 μmol·g−1 (8 h) | [101] |
Ag1@PCN | CO | 0.32 μmol h−1 (2 mg) | [102] |
Rh2/HCNS-Nv | CH4/CO | 14.16/5.16 μmol−1g−1h−1 | [103] |
LRSTO/CN | CH4/CO | 1.8/4.1 μmol−1g−1h−1 | [104] |
B-doped CN | CO | 22.45 μmol−1g−1h−1 | [105] |
2D CN@BiOI | CO | 458.0 µmol h−1m−2 | [106] |
CN-MRF | CH3OH | 0.99 μmol h−1 (100 mg) | [107] |
Material Type | Sacrificial Agent | Photocatalytic Performance | Reference |
---|---|---|---|
Hydroxyl-rich CN | 50 mL ethanol | 508 μmol−1g−1h−1 | [108] |
CN-NH4-NaK | 10 mL isopropanol/90 mL water | 16,675 µmol h−1 g−1 (30 min) | [109] |
MCN/SCN/CF | 25 mL distilled water | 136.91 μmol−1g−1h−1 | [110] |
fl-CN | 5 mL ethanol/45 mL water | 952 μmol−1g−1h−1 | [111] |
BI-CN | 4 mL ethanol/36 mL water | 353 μmol−1g−1h−1 | [112] |
PEI-GCN/Au | 10 mL of deionized water | 270 μmol−1g−1h−1 | [113] |
Nv-C≡N-CN | 20 mL pure water | 3093 μmol−1g−1h−1 | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Tan, J.; Liu, J.; Li, Y.; Sun, L.; Huang, Z.; Li, J. Recent Research Progress on Surface Modified Graphite Carbon Nitride Nanocomposites and Their Photocatalytic Applications: An Overview. Catalysts 2024, 14, 636. https://doi.org/10.3390/catal14090636
Li S, Tan J, Liu J, Li Y, Sun L, Huang Z, Li J. Recent Research Progress on Surface Modified Graphite Carbon Nitride Nanocomposites and Their Photocatalytic Applications: An Overview. Catalysts. 2024; 14(9):636. https://doi.org/10.3390/catal14090636
Chicago/Turabian StyleLi, Shuhan, Juntao Tan, Jiatong Liu, Yang Li, Liang Sun, Zhijie Huang, and Jiaming Li. 2024. "Recent Research Progress on Surface Modified Graphite Carbon Nitride Nanocomposites and Their Photocatalytic Applications: An Overview" Catalysts 14, no. 9: 636. https://doi.org/10.3390/catal14090636
APA StyleLi, S., Tan, J., Liu, J., Li, Y., Sun, L., Huang, Z., & Li, J. (2024). Recent Research Progress on Surface Modified Graphite Carbon Nitride Nanocomposites and Their Photocatalytic Applications: An Overview. Catalysts, 14(9), 636. https://doi.org/10.3390/catal14090636