Advances in Catalytic Oxidation of Methane and Carbon Monoxide (2nd Edition)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Takahashi, A.; Nakayama, A.; Murayama, T.; Sakaguchi, N.; Shimada, T.; Takagi, S.; Ishida, T. Au Clusters Supported on Defect-Rich Ni-Ti Oxides Derived from Ultrafine Layered Double Hydroxides (LDHs) for CO Oxidation at Ambient Temperature. Catalysts 2023, 13, 1155. https://doi.org/10.3390/catal13081155.
- Timmer, P.; Glatthaar, L.; Weber, T.; Over, H. Identifying the Active Phase of RuO2 in the Catalytic CO Oxidation Reaction, Employing Operando CO Infrared Spectroscopy and Online Mass Spectrometry. Catalysts 2023, 13, 1178. https://doi.org/10.3390/catal13081178.
- Qin, X.D.; Ke, W.; Vazquez, Y.; Lee, I.; Zaera, F. CO Oxidation Catalyzed by Au Dispersed on SBA-15 Modified with TiO2 Films Grown via Atomic Layer Deposition (ALD). Catalysts 2023, 13, 1106. https://doi.org/10.3390/catal13071106.
- Lin, H.X.; Liu, Y.X.; Deng, J.G.; Jing L.; Dai, H.X. Methane Combustion over the Porous Oxides and Supported Noble Metal Catalysts. Catalysts 2023, 13, 427. https://doi.org/10.3390/catal13020427.
- Wu, L.; Fan, W.; Wang, X.; Lin, H.; Tao, J.; Liu, Y.; Deng, J.; Jing, L.; Dai, H. Methane Oxidation over the Zeolites-Based Catalysts. Catalysts 2023, 13, 604. https://doi.org/10.3390/catal13030604.
- Li, Z.; Chen, Y.; Xie, Z.; Song, W.; Liu, B.; Zhao, Z. Rational Design of the Catalysts for the Direct Conversion of Methane to Methanol Based on a Descriptor Approach. Catalysts 2023, 13, 1226. https://doi.org/10.3390/catal13081226.
- Tavani, F.; Tofoni, A.; D’Angelo, P. Exploring the Methane to Methanol Oxidation over Iron and Copper Sites in Metal–Organic Frameworks. Catalysts 2023, 13, 1338. https://doi.org/10.3390/catal13101338.
References
- Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature Far Below 0 °C. Chem. Lett. 1987, 16, 405–408. [Google Scholar] [CrossRef]
- Green, I.X.; Tang, W.; Neurock, M.; Yates, J.T., Jr. Spectroscopic Observation of Dual Catalytic Sites during Oxidation of CO on A Au/TiO2 Catalyst. Science 2011, 333, 736–739. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, A.; Zhang, T.; Mou, C.-Y. Catalysis by Gold: New Insights into the Support Effect. Nano Today 2013, 8, 403–416. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Y.; Yang, F.; Evans, J.; Rodriguez, J.A.; Liu, P. CO Oxidation on Gold-Supported Iron Oxides: New Insights into Strong Oxide–Metal Interactions. J. Phys. Chem. C 2015, 119, 16614–16622. [Google Scholar] [CrossRef]
- Odarchenko, Y.; Martin, D.J.; Arnold, T.; Beale, A.M. CO Oxidation over Supported Gold Nanoparticles as Revealed by Operando Grazing Incidence X-ray Scattering Analysis. Faraday Discuss. 2018, 208, 243–254. [Google Scholar] [CrossRef]
- Ferraz, C.P.; Navarro-Jaén, S.; Rossi, L.M.; Dumeignil, F.; Ghazzal, M.N.; Wojcieszak, R. Enhancing the Activity of Gold Supported Catalysts by Oxide Coating: Towards Efficient Oxidations. Green Chem. 2021, 23, 8453–8457. [Google Scholar] [CrossRef]
- Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chem. Rev. 2019, 120, 464–525. [Google Scholar] [CrossRef]
- Gustafson, J.; Balmes, O.; Zhang, C.; Shipilin, M.; Schaefer, A.; Hagman, B.; Merte, L.R.; Martin, N.M.; Carlsson, P.A.; Jankowski, M.; et al. The Role of Oxides in Catalytic CO Oxidation over Rhodium and Palladium. ACS Catal. 2018, 8, 4438–4445. [Google Scholar] [CrossRef]
- Ishida, T.; Koga, H.; Okumura, M.; Haruta, M. Advances in Gold Catalysis and Understanding the Catalytic Mechanism. Chem. Rec. 2016, 16, 2278–2293. [Google Scholar] [CrossRef]
- Fujitani, T.; Nakamura, I. Mechanism and Active Sites of the Oxidation of CO over Au/TiO2. Angew. Chem. Int. Ed. 2011, 50, 10144–10147. [Google Scholar] [CrossRef]
- Widmann, D.; Behm, R.J. Activation of Molecular Oxygen and the Nature of the Active Oxygen Species for CO Oxidation on Oxide Supported Au Catalysts. Acc. Chem. Res. 2014, 47, 740–749. [Google Scholar] [CrossRef]
- Xie, S.H.; Liu, Y.X.; Deng, J.G.; Yang, J.; Zhao, X.T.; Han, Z.; Zhang, K.F.; Lu, Y.; Liu, F.D.; Dai, H.X. Carbon Monoxide Oxidation over rGO-Mediated Gold/Cobalt Oxide Catalysts with Strong Metal–Support Interaction. ACS Appl. Mater. Interfaces 2020, 12, 31467–31476. [Google Scholar] [CrossRef]
- Ciuparu, D.; Lyubovsky, M.R.; Altman, E.; Pfefferle, L.D.; Datye, A. Catalytic Combustion of Methane over Palladium-Based Catalysts. Catal. Rev. 2002, 44, 593–649. [Google Scholar] [CrossRef]
- Gélin, P.; Primet, M. Complete Oxidation of Methane at Low Temperature over Noble Metal Based Catalysts: A Review. Appl. Catal. B 2002, 39, 1–37. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y.B. Nanostructured Perovskite Oxides as Promising Substitutes of Noble Metals Catalysts for Catalytic Combustion of Methane. Chin. Chem. Lett. 2018, 29, 252–260. [Google Scholar] [CrossRef]
- Bashan, V.; Ust, Y. Perovskite Catalysts for Methane Combustion: Applications, Design, Effects for Reactivity and Partial Oxidation. Int. J. Energy Res. 2019, 43, 7755–7789. [Google Scholar] [CrossRef]
- Nkinahamira, F.; Yang, R.J.; Zhu, R.S.; Zhang, J.W.; Ren, Z.Y.; Sun, S.L.; Xiong, H.F.; Zeng, Z.Y. Current Progress on Methods and Technologies for Catalytic Methane Activation at Low Temperatures. Adv. Sci. 2023, 10, 2204566. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Sarangi, P.K.; Bhatia, L.; Singh, A.K.; Shadangi, K.P. Conversion of Methane to Methanol: Technologies and Future Challenges. Biomass Conv. Bioref. 2022, 12, 1851–1875. [Google Scholar] [CrossRef]
- Cui, X.J.; Huang, R.; Deng, D.H. Catalytic Conversion of C1 Molecules under Mild Conditions. EnergyChem 2021, 3, 100050. [Google Scholar] [CrossRef]
- Yu, T.; Li, Z.; Lin, L.; Chu, S.Q.; Su, Y.; Song, W.Y.; Wang, A.Q.; Weckhuysen, B.M.; Luo, W.H. Highly Selective Oxidation of Methane into Methanol over Cu-Promoted Monomeric Fe/ZSM-5. ACS Catal. 2021, 11, 6684–6691. [Google Scholar] [CrossRef]
- Yu, T.; Li, Z.; Jones, W.; Liu, Y.S.; He, Q.; Song, W.Y.; Du, P.F.; Yang, B.; An, H.Y.; Farmer, D.M.; et al. Identifying Key Mononuclear Fe Species for Low-Temperature Methane Oxidation. Chem. Sci. 2021, 12, 3152–3160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, H.; Wang, J. Advances in Catalytic Oxidation of Methane and Carbon Monoxide (2nd Edition). Catalysts 2024, 14, 642. https://doi.org/10.3390/catal14090642
Dai H, Wang J. Advances in Catalytic Oxidation of Methane and Carbon Monoxide (2nd Edition). Catalysts. 2024; 14(9):642. https://doi.org/10.3390/catal14090642
Chicago/Turabian StyleDai, Hongxing, and Junhu Wang. 2024. "Advances in Catalytic Oxidation of Methane and Carbon Monoxide (2nd Edition)" Catalysts 14, no. 9: 642. https://doi.org/10.3390/catal14090642
APA StyleDai, H., & Wang, J. (2024). Advances in Catalytic Oxidation of Methane and Carbon Monoxide (2nd Edition). Catalysts, 14(9), 642. https://doi.org/10.3390/catal14090642