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The catalytic removal of carbon monoxide and methane produced from human activi-
ties is an important method for eliminating these pollutants, and can solve their associated
environmental problems. So far, heterogeneous catalysis has been considered one of the
most appropriate and sustainable strategies to remove pollutants that are harmful to the
atmosphere. This Special Issue within the Section “Environmental Catalysis”, “Advances
in Catalytic Oxidation of Methane and Carbon Monoxide (2nd Edition)”, is a collection of
seven articles, including three original papers and four review papers, which address the
issues of CO oxidation, CH4 combustion, and the partial oxidation of CH4 to oxygenates.

The catalytic oxidation of CO at low temperatures is an important aspect of air purifica-
tion. Since the discovery of CO oxidation catalyzed by TiO2-supported nanoparticles (NPs)
at a temperature far below 0 ◦C, reported by Haruta et al. in 1987 [1], Au NPs supported on
reducible metal oxides [2–6] have gained much attention. Since the catalytic performance
of Au NPs significantly depends upon the particle size and the type of support used [7], a
large number of preparation methods have been developed to enable the loading of noble
metal NPs onto different supports [7–9], in which Au works as the CO adsorption site, and
O2 is activated in the oxygen vacancies of the reducible metal oxide supports [9–12].

In contribution 1, Takahashi et al. investigated Au clusters supported on defect-rich
Ni-Ti oxides derived from ultrafine layered double hydroxides (LDHs) for CO oxidation at
an ambient temperature. The authors found that the rich hydroxyl groups at the edge sites
of the LDHs could serve as the anchoring sites for the metal nanoparticles (NPs), and the
transformation of the LDHs into mixed metal oxides (MMOs) gave rise to abundant oxygen
vacancies favorable for O2 activation during the CO oxidation process, thus exemplifying
the high activity rate and good hydrothermal stability of the Au/Ni-Ti MMO/SiO2 catalyst.
In contribution 2, Timmer et al. presented an investigation into the active phase of RuO2
in a catalytic CO oxidation reaction, employing operando CO diffuse reflectance infrared
Fourier transform spectroscopy (DRIFTS) and online mass spectrometry (MS). By utilizing
the combined techniques of DRIFTS and MS, the authors clarified the active phase of RuO2
supported on rutile TiO2 (RuO2@TiO2) during a CO oxidation reaction, and concluded that
the partially reduced RuO2@TiO2 catalyst was the most active during CO oxidation, and this
was independent of the reducing or oxidizing condition and whether the starting material
was the fully oxidized or partially reduced RuO2@TiO2 catalyst. Qin et al. (contribution 3)
studied CO oxidation over Au/SBA-15 modified with TiO2 films grown via atomic layer
deposition (ALD), and found a synergy between the Au and TiO2 phases when it related
to the bonding and conversion of CO, which could be controllably tuned by varying the
synthesis parameters. Simultaneously, the authors also suggested that the ALD of TiO2
films could be an effective way to maximize the Au–TiO2 interface sites, which would be
beneficial for the activation of molecular oxygen.

As the main component of natural gas, incomplete methane combustion results in
wasted resources and aggravates air pollution. Over the last twenty years, the global
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warming potential of CH4 has been shown to be at least 72 times higher than that of CO2,
inducing a strong greenhouse effect on the atmosphere. CH4 with a regular tetrahedral
structure is the most stable hydrocarbon, meaning it is difficult to activate and oxidize under
mild conditions. The conventional combustion of natural gas requires high temperatures
(>1500 ◦C) and produces pollutants (e.g., carbon monoxide and nitrogen oxides) that must
be completely eliminated. As of late, the complete catalytic oxidation of methane (i.e.,
catalytic methane combustion) has been one of the most promising pathways for removing
emitted methane, in which the key issue is the availability of high-performance catalysts. In
the past few decades, a large number of catalysts have been developed for the combustion
of methane, including transition metal oxides, noble metals, mixed metal oxides (such as
perovskites (ABO3), double perovskites (A2BBO6), perovskite-like oxides (A2BO4), and
pyrochlore (A2B2O7)), and hexaaluminates. In recent years, several reviews on catalytic
methane combustion have been reported in the literature [13–17].

Of the abovementioned catalysts, porous materials are the most promising candidates.
For example, Dai and coworkers (contribution 4) summarized the recent progress made
in preparation methods and applications of ordered porous oxides. They supported
the use of noble metal catalysts for methane combustion, and suggested that their well-
ordered and -developed three-dimensional porous structure, large surface area, ultrahigh
component dispersion, fast mass transfer, low-temperature reducibility, reactant activation
ability, and strong metal–support interaction were accountable for their good catalytic
activity, hydrothermal stability, and moisture and sulfur resistance. Additionally, the
authors envisioned a future trend in the development of oxide materials for industrial
applications. In contribution 5, Wu et al. summarized the development of zeolite-based
catalytic materials for the activation of the C–H bonds in CH4 and the mechanisms of
complete and selective methane oxidation. In the developed catalysts, a Pd/zeolite material
was used for the complete oxidation of methane to CO2 and H2O, while Fe- and Cu-
zeolite materials were employed for the partial oxidation of methane to methanol (MTM),
formaldehyde, formic acid, etc. The authors also proposed possible perspectives and
challenges for zeolite-based catalysts in future research and practical applications.

Direct MTM conversion is an ideal strategy for significantly reducing transportation
and storage costs [18]. The partial oxidation of MTM as a liquid fuel and chemical feedstock
has been considered one of the most desirable methane conversion pathways. In the past
few years, many efforts have been made to explore new catalyst systems and design strate-
gies for direct methanol production from methane under mild conditions with controlled
oxidation processes [19–21].

Zhao and coworkers (contribution 6) presented an overview of a rational design of
catalysts for the direct conversion of methane to methanol based on a descriptor approach,
in which they explored the suitable energy, electronic, and structural descriptors to construct
and understand the linear scaling relationships between the fundamental physicochemical
properties of the catalysts and their catalytic activities in direct MTM conversion. According
to the selectivity descriptor, the limitation of the inverse scaling relationship between
methane conversion and methanol selectivity was discussed, and how this limitation can be
exceeded to achieve the simultaneous enhancement of activity and selectivity. The authors
believed that their descriptor-based review article provided theoretical insights into the
understanding, optimization, and rational design of efficient catalysts for direct MTM
conversion. In contribution 7, Tavani et al. explored MTM oxidation over iron and copper
sites in metal–organic frameworks (MOFs). They focused on the utilization of diverse
spectroscopic techniques to clarify the electronic and structural properties of iron- and
copper-embedded MOF catalysts at microscopic levels and their reaction pathways and
intermediates, and also discussed the catalytic efficiency and selectivity of these MOF-based
materials for the MTM reaction. In the end, the authors provided a perspective on possible
directions for future research on advancing the use of MOFs for the MTM reaction.
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Hence, this Special Issue allows readers to gain a clear insight into the oxidation of
CO and the complete or particle oxidation of methane over the supported transition metal
or noble metal catalysts.
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