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Abstract: Photocatalysis is a promising technology for efficient sewage treatment, and designing a
reactor with a stable loading technique is crucial for achieving long-term stability. However, there
is a need to improve the current state of the art in both reactor design and loading techniques
to ensure reliable and efficient performance. In this study, we propose an innovative solution by
employing polydimethylsiloxane as a bonding layer on a substrate of 3D-printed polyacrylic resin.
By means of mechanical extrusion, the active layer interacts with the bonding layer, ensuring a stable
loading of the active layer onto the substrate. Simultaneously, 3D printing technology is utilized
to construct a photocatalytic reactor resembling a “Kongming Lantern”, guaranteeing both high
activity and durability. The reactor exhibited remarkable performance in degrading organic dyes
and eliminating microbes and displayed a satisfactory purification effect on real water samples.
Most significantly, it maintained its catalytic activity even after 50 weeks of cyclic degradation. This
study contributes to the development of improved photocatalysis technologies for long-term sewage
treatment applications.

Keywords: photocatalysis; reactor; loading technique; long-term life; sewage treatment

1. Introduction

In recent years, the rapid development of the social economy and urbanization has
led to an increasing demand for water resources in every country [1,2]. However, this
has resulted in a significant rise in water pollution, which poses new challenges to con-
ventional sewage treatment technologies [3]. Therefore, it is imperative to develop green,
environmentally friendly, and efficient sewage treatment technologies in order to achieve
the goal of “double carbon”, encompassing both carbon peak and carbon neutrality [4,5].
Hence, there is an urgent need to address these challenges and develop responsive sewage
treatment technologies that are sustainable, eco-friendly, and efficient.

Advanced oxidation technology (AOP) involves the generation of highly reactive
oxygen species (ROS) with strong oxidation capabilities, accomplished through various
means such as a high temperature, pressure, light, electricity, and sound [6]. These ROS
possess the ability to oxidize complex organic compounds that are difficult to degrade in
water, converting them into smaller, less toxic molecules. Common AOP methods comprise
photochemical oxidation, acoustic chemical oxidation, ozone oxidation, electrochemical ox-
idation, and Fenton oxidation. Among these methods, photocatalytic oxidation stands out
as a technology that aligns best with the requirements of environmentally friendly carbon
sinks [7]. It utilizes semiconductor materials with specific energy band structures to treat
slightly polluted water environments by degrading or eliminating both organic pollutants
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and harmful microorganisms. Despite continuous research efforts, the development of
various photocatalyst materials with broad-spectrum responses in line with the principles
of green development has been achieved. Examples of such materials include bismuth-
based materials [8], tungsten-based materials [9], and g-C3N4 [10]. However, nanoparticle
photocatalyst materials encounter the drawback of being challenging to recover and reuse
once introduced into water [7]. Therefore, the implementation of catalyst supports is an
effective approach to enable the recycling of photocatalysts and prevent them from causing
secondary pollution in water [11–15].

Currently, the commonly used support methods for photocatalysts include the in situ
growth method [16–19] and the spraying method [20–22]. Previously, Xu et al. [18] prepared
Ag-modified β-Bi2O3/Bi2O2.7 heterostructure films on a polyvinyl chloride (PVC) polymer
matrix using the one-step hydrothermal method, which showed that the degradation rate
of Rhodamine B (Rh B) reached 97% within 150 min. The inactivation rate of Escherichia
coli (E. coli) was >99.99% within 18 h, and it had anti-adhesion properties of Escherichia coli.
Meanwhile, Liu et al. [23] prepared a photocatalytic coating based on WO3-TiO2 nanorods
(MWT)/PDMS on the substrate using the spraying method. The superhydrophobic prop-
erties of the surface give it the function of self-cleaning and allow it to degrade surface
organic pollutants. However, after five cycles of degradation, the degradation efficiency
of NO under visible light gradually decreased by 4.74% without special treatment due
to the adhesion of oxidation products. A comparison of the two methods revealed that
the spraying method allows for a strong attachment of the photocatalytic material to the
substrate. However, the presence of the coating hinders the exposure of certain active sites.
In contrast, the in situ growth method demonstrates higher activity and a faster degradation
rate. Nevertheless, the film tends to detach over time in real water conditions due to the
weak bond between the film layer and the substrate. As a result, this reduces durability,
leading to potential secondary pollution in the water environment. Hence, it is crucial to
identify a method that achieves a balance between activity and longevity, specifically by
providing an appropriate binding force at the interface [24].

The utilization of polymeric materials, including polyacrylonitrile, polyvinylidene
fluoride, polystyrene, polymethyl methacrylate, waterborne polyurethane, and polyethy-
lene terephthalate, has recently emerged as a viable solution for fabricating photocatalytic
films [25–30]. In photocatalytic reactors, polydimethylsiloxane (PDMS) is commonly em-
ployed due to its exceptional properties such as high optical transparency, heat resistance,
and chemical inertness [31–33]. However, methods like electrospinning, direct spraying, or
dipping onto metal sheet/mesh, conductive glass, or polymer fiber substrates often result
in weak adhesion between the photocatalytic active layer and the substrate [34]. Li et al. [35]
used electrodeposition technology to prepare a two-dimensional g-C3N4/Cu2O/Cu com-
posite coating on a 316L stainless steel surface. Due to the synergistic bactericidal effect of
copper ions and the production of reactive oxygen species promoted by the coating, the
coating quickly eliminated Escherichia coli and Staphylococcus aureus within 1 h under both
light and dark conditions. Therefore, achieving a firm and uniform active layer on the sub-
strate is crucial. In this study, we propose a novel approach using a mechanical extrusion
method to prepare photocatalytic reactor components with three layers: a substrate, binder
layer, and active layer.

Three-dimensional printing, an additive manufacturing technology that has under-
gone decades of development and maturation [36], converts 3D model data into intricate ob-
jects by adding materials. This straightforward and efficient technology has the potential to
create optimized substrate structures for photocatalysts, including complex designs [37–39],
resulting in an enhanced specific surface area and an increased load capacity of the pho-
tocatalytic material. Moreover, widely used polymer materials such as polypropylene
resin and epoxy resin [40–43] not only enable the production of transparent substrates,
improving the efficiency of light transmission during the reaction process, but also fulfill
the requirements of green chemistry due to their odorless and non-toxic properties. Further-
more, substrates manufactured through 3D printing exhibit remarkable mechanical and
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chemical stability, making them affordable and allowing for rapid production. In previous
studies, 3D printing has been combined with photocatalyst loads to build photocatalytic
reactors that can be used for water purification. In the study by Zheng et al. [38], they fixed
photocatalyzed graphite carbon nitride onto chitosan to prepare g-C3N4/chitosan hydrogel
beads (GCHB) and filled them in quartz tubes, and then they used 3D printing technology
to fabricate reflectors for CPC reactors and used them to adhere reflected aluminum bands.
Schreck et al. [44] proposed an aerogel that used a 3D-printed polymer scaffold to support
nanoparticles and optimized its photocatalytic performance by adjusting the geometry of
the scaffold to control the geometry of the photocatalyst for the photocatalytic reaction.
Xu et al. [45] proposed a simple method for synthesizing iodine-deficient BiOI-engineered
films on 3D-printed polymers at mild room temperature and pressure by adjusting the
pH of the BiOI solution only. Although the degradation rate of Rh B was 99.67% and the
inactivation rate of Escherichia coli was >99.99%, the photocatalytic performance decreased
significantly, and the surface film fell off with the progress of cyclic sterilization degrada-
tion times. Hence, they are favorable choices for constructing photocatalytic reactors and
treating polluted water environments [46,47].

The objective of this study is to employ PDMS as a binder to fabricate a durable and
efficient photocatalytic water purification device, resembling a “Kongming Lantern”, by
creating a photocatalytic active layer on a 3D-printed substrate in an environmentally
friendly manner. Instances of photocatalytic water purification devices demonstrating
both stable, effective catalytic activity, and longevity are limited, making this work highly
distinctive and innovative. Firstly, a scanning electron microscope (SEM, Regulus 8100,
Hitachi, Ibaraki, Japan) was used to examine the surface of the active layer and its adhesive
interaction with the binding layer. Subsequently, the photocatalytic activity of the reactor
was evaluated using common model dyes and bacteria, including Rhodamine B (Rh B),
methylene blue (MB), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus), and the
effectiveness was determined through testing with actual water samples. Finally, cyclic
experiments and simulated scour experiments were conducted to verify the load stability of
the photocatalytic active layer. This strategy enhances the current state of the art in reactor
design and loading techniques, aiming to ensure reliable and efficient performance.

2. Results
2.1. The Characterization of the Reactor

Figure 1a illustrates the optical changes observed on the substrate’s surface during the
preparation of the photocatalytic active layer. In Figure 1a, (i) shows the original substrate,
(ii) shows the substrate brushed with PDMS resin, (iii) shows the PDMS layer shaken with
BiOI powder, and (iv) shows the substrate after mechanical extrusion. Figure 1c reveals
that the mechanical extrusion used in layer preparation results in an uneven distribution
of BiOI powder in the groove and varying thicknesses of the PDMS brush on the bonding
layer, leading to an uneven surface thickness. Figure 1d,f,g further demonstrate that in
certain areas, PDMS flows into the gaps between materials and wraps around BiOI. This
occurrence is a result of the interaction between the adhesive layer and the surface’s active
layer, wherein the extrusion force exerted by the vice pushes the BiOI material into the
adhesive layer, simultaneously causing the PDMS to wrap the catalyst material on the
surface. Consequently, BiOI becomes firmly fixed on the surface, forming a photocatalytic
active layer due to its adhesive properties. This observation is confirmed by Figure 1h,
which showcases some BiOI particles in the adhesive layer as a result of the mutual
extrusion force between layers. Additionally, specific regions like that shown in Figure 1e
display an exposed adhesive layer or substrate, possibly due to inadequate compaction of
the powder in the groove and insufficient PDMS content to hold the catalyst material in
place. It is worth noting that for a photocatalytic active layer, the exposure of active sites
to reactants is crucial. Considering that PDMS spills into the material due to mechanical
extrusion, the element distribution on the active layer surface is characterized using EDS
(Bruker xflash3160 spectrometer, Billerica, MA, USA). Figure 2 demonstrates the evenly
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distributed and abundant catalyst components Bi and I in the randomly selected region,
while the main components of PDMS (C, O, and Si) are equally distributed in this area. This
verifies that the active sites are exposed on the surface, promoting the effective progress
of the photocatalytic reaction. Additionally, it confirms that the spillage of PDMS resin,
resulting from mutual extrusion, securely loads the surface catalyst material. The 3D
rendering provides a depiction of the substrate’s transparent middle layer and the layer
containing the active layer.
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The light absorption capacity of pure BiOI and BiOI loaded on a substrate prepared
using 3D printing technology was analyzed using UV-vis DRS (Hitachi U4100 UV–vis
spectrometer, Hitachi, Ibaraki, Japan) and is depicted in Figure 3. The transparent substrate
shows a relatively stable absorption intensity in the ultraviolet and visible light absorption
regions. Both pure BiOI and BiOI loaded on the substrate display a similar trend in curve
variation, with the light absorption edge occurring around 600 nm. Thus, the loaded
material has a significant impact on the light absorption performance of the active layer
substrate depending on the wavelength. Additionally, the figure illustrates a slight increase
in the absorption strength after loading BiOI onto the substrate. This increase can be
attributed to the transparent properties of the polypropylene resin used in the substrate
and the PDMS resin used in the bonding layer.
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2.2. An Evaluation of the Photocatalytic Performance of the Water Purification Reactor Device

The reactor components fabricated using 3D printing technology provide advantages
in terms of mass production and ease of replacement in case of damage, as they can be
readily retrieved from water. Furthermore, the self-selecting power lamp source used in
this study facilitates the rapid occurrence of photocatalytic reactions, distinguishing it from
many other reactors constructed. To assess the photocatalytic water purification capability
of the reactor in a sewage environment, typical model dyes (Rh B and MB) and model
bacteria (E. coli and S. aureus) were chosen for this study.

In the experiment to evaluate the degradation of organic dyes, the reactor was initially
immersed in a solution with a dye concentration of 10 mg/L and a solution volume of



Catalysts 2024, 14, 645 6 of 14

60 mL. After a 30 min period of darkness to establish adsorption–desorption equilibrium,
the reactor was irradiated using a 12 W LED for 2 h. Throughout the process, the samples
were periodically extracted for testing and observation, as shown in the figure. Figure 4
illustrates the outstanding photocatalytic activity of the constructed reactor, achieving a
degradation efficiency of 99.66% for Rh B and 88.10% for MB. Meanwhile, the figure also
shows the degradation rate in the reaction tank when the reactor skeleton is not loaded with
catalysts, and the results show that the pure photolysis reaction without the introduction
of a photocatalyst has no obvious effect on the concentration of dye. An analysis of the
curves indicates an initially rapid degradation rate for both dyes, followed by a gradual
decrease. These experimental findings emphasize the effectiveness of the photocatalytic ac-
tive layer fabricated using the mechanical extrusion method, which demonstrates excellent
degradation performance against a broad range of macromolecular dyes.
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Extensive research has focused on the photocatalytic eradication effect of BiOI on
Gram-negative E. coli and Gram-positive S. aureus. However, additional research is re-
quired to investigate the photocatalytic bactericidal effect of the reactor constructed using
this material. After a 2 h irradiation period, both E. coli and S. aureus, initially present at
colony concentrations of 8.8 × 105 CFU/mL and 9.37 × 105 CFU/mL, respectively, exhib-
ited a bactericidal effect of 99.99% (Figure 5a,c). The use of model dyes or model bacteria
to simulate real sewage environments is crucial for guiding the practical application of
photocatalytic reactors. However, evaluating the water purification capabilities of the con-
structed photocatalytic reactor in real water environments and assessing its effectiveness
over time is crucial. Water samples collected from a natural lake underwent photocatalytic
treatment to meet the drinking water standard of a colony count below 100 CFU/mL. In
this study, water samples from the lake were regularly collected and cultured in beef paste
medium during photocatalytic sterilization. As shown in Figure 5b,d, the initial bacterial
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concentration in the collected water sample was approximately 3.7356 log10 CFU/mL.
After 4 h of light exposure, the bacterial concentration decreased to 1.8129 log10 CFU/mL,
meeting the international drinking water quality standards. In comparison to the bacterici-
dal effect observed in simulated water environments, the reactor demonstrated a slower
microbial kill rate in real water samples, possibly due to the higher complexity of microbial
species and communities present in actual water environments.
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2.3. Load Stability of Photocatalytic Water Purification Reactor

The majority of reported photocatalytic reactors primarily emphasize high catalytic
activity, overlooking the significance of load stability. However, it is essential to construct re-
actors capable of withstanding the demands of real-world working environments. Utilizing
3D printing to fabricate specific reactor components can enhance the anti-aging properties
and chemical stability of polypropylene resin, ensuring its long-lasting performance in
water. Furthermore, incorporating a jack-type connection between accessories enables the
swift replacement of damaged parts.

2.3.1. The Recycling Stability of the Reactor

The Rh B dye was used as a standard for cyclic photocatalytic degradation to assess
the recycling stability of the reactor. Each cycle consisted of a 0.5 h dark condition followed
by a 2 h light condition. After each cycle, the solution inside the reactor was replaced
with a solution of the same concentration and volume, and the cycle was restarted. The
degradation activity, as shown in Figure 6, remained consistently within the range of
92.50 ± 4% after 50 cycles without any noticeable downward trend. A degradation curve
was generated to represent the degradation process at the 0th, 10th, 20th, 30th, 40th, and
50th cycles. The degradation rate consistently exhibited similarity throughout, indicating
the stable loading of the photocatalytic active layer onto the polypropylene resin substrate
via mechanical extrusion.

The substrate was observed under an SEM after 50 cycles. The SEM images showed no
significant detachment of the photocatalytic active layer compared to the images obtained
before cyclic degradation (Figure 6c). This observation further suggests that the active sites
were not covered even after 50 cycles of degradation testing, affirming the sustained high
catalytic activity of the reactor.
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2.3.2. Simulated Scour Stability of Reactor

To evaluate the suitability of the interfacial binding force and resistance to water flow
scouring in the photocatalytic water purification reactor, an experiment was conducted.
The reactor was submerged in a beaker filled with 3 L of water and stirred at 1000 rpm
for 24 h to simulate limiting water scouring. The resulting figure shows the condition of
the active layer after scouring (Figure 7). Importantly, no significant detachment of the
active layer was observed on the substrate surface following exposure to high-speed water
flow for 24 h. Additionally, a comparison of the photocatalytic activity and rate constant
of Rh B degradation in the reactor before and after scouring demonstrated the effective
and relatively stable loading of BiOI onto the substrate surface under the influence of
PDMS resin.
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3. Materials and Methods
3.1. Chemicals and Materials

All chemicals and reagents used in this study for experimental applications were of
analytical grade and deemed suitable for use without further purification, adhering to
established standards. Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), potassium iodide
(KI), and ethylene glycol (EG) were specifically obtained from Sinopharm Chemical Reagent
Co., Ltd. The 3D printing resin and PDMS employed in the 3D printer were procured
from Taobao.

3.2. Synthesis of BiOI

Amounts of 4 mmol of Bi(NO3)3·5H2O and 4 mmol of KI were dissolved separately
in 30 mL and 10 mL of EG, respectively. Each solution was stirred using a magnetic
stirrer for 1 h. The resulting solutions, referred to as solution A and solution B, were
obtained. Solution A was then slowly added to solution B with continuous stirring for
2 h. The resulting mixture was transferred to a Teflon reactor and allowed to react at a
temperature of 413 K for 1 h. Subsequently, the mixture was centrifuged, and the resulting
precipitate was washed three times with deionized water and anhydrous ethanol. Finally,
the precipitate was dried in an oven at a temperature of 333 K for 12 h [48].

3.3. The Preparation and Characterization of the Photocatalytic Active Layer

To prepare the highly efficient and durable photocatalytic active layer of BiOI, the
following steps were performed (Figure 8): In Step 1, the BiOI powder was finely ground
to ensure the absence of large particles. In Step 2, the powder was evenly distributed
by carefully pouring it into a 3D-printed square flute container specifically designed for
this purpose. In Step 3, on one side of the 3D-printed cuboid polymer substrate made
of polyacrylic polymer (PP), a PDMS resin was applied in a 10:1 ratio. In Step 4, a small
amount of BiOI powder was transferred into a centrifuge tube, followed by the placement
of the PP base with the PDMS layer inside the tube. The mixture was briefly shaken before
removing the base from the tube. In Step 5, the base was then positioned in the groove,
covered, and subjected to mechanical extrusion for a duration of 3 min. This entire process
is illustrated in the figure provided below. The square groove prototype in the self-designed
3D printing device was inspired by the glass groove used in the XRD test. The cuboid
shape of the base promotes the formation of a stable photocatalytic active layer through
mechanical extrusion and is also utilized in the construction of the subsequent reactor.
The measurements, carried out using scanning electron microscopy (SEM, Regulus 8100),
a metallographic microscope (OLYMPUS BX53M, Olympus, Tokyo, Japan), and UV–vis
diffuse reflectance absorption (UV–vis DRS, Hitachi U4100 UV–vis spectrometer), are used
in this study.
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3.4. The Design of the Photocatalytic Reactor Based on the “Kongming Lantern” Standard

In this study, we present a novel design for a photocatalytic reactor device, drawing
inspiration from the traditional Chinese “Kongming lantern” (Figure 9). The device is
composed of two main components: the “lamp shade” and the “wick”, which function
as the carrier for the photocatalytic material and the light source, respectively. The “lamp
shade” consists of two octagonal bases and eight individual “lamp surfaces”, each equipped
with a photocatalytic active layer. For the light source, the appropriate “wick” can be chosen
depending on the desired LED power. In our specific research, we utilized a 12 W LED light
source combined with BiOI to conduct a series of subsequent experimental investigations.
In this reactor, the LED light is 5 mm away from the photocatalytic active layer, and its
maximum light intensity is 163.7 W/m2. Under this light intensity, the utilization rate of
the active layer can reach 77.78%. When a photocatalytic reaction is performed, the reactor
is placed in a square container filled with ice water to further eliminate the heat emitted
during the reaction [49].
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3.5. Evaluation of Photocatalytic Activity

The photocatalytic activity of the water purification reactor was investigated using
two methods: the degradation of colored organic dyes and microbial killing tests. To con-
duct a comprehensive assessment of its effectiveness, a custom cylindrical container with
specific dimensions (Φ = 50 mm; h = 100 mm) was 3D-printed to simulate a contaminated
water environment. In the following test experiments, the solutions were prepared in
advance and added to the reaction tank before the reaction began, while these solutions
were prepared directly without any intervention in their temperature and pH value. For
example, Rhodamine B solution for photocatalytic degradation experiments was always
kept at room temperature with pH = 6.9 ± 0.1.

3.5.1. Photocatalytic Degradation of Different Colored Organic Dyes

For the sake of evaluating the photocatalytic degradation activity of macromolecular
organic dyes commonly found in polluted water, Rh B and MB were selected as repre-
sentative dyes for testing purposes. In addition, the reactor that was not loaded with a
photocatalyst was placed directly in the reaction tank to check the pure photolysis reaction.

In order to adapt to the capacity of the reaction pool and better evaluate the degra-
dation capacity of the reactor, 60 mL of Rh B or MB solution with a concentration of
10 mg/L was added to the reaction tank [50]. After the reactor device and 12 W LED light



Catalysts 2024, 14, 645 11 of 14

source were placed in the reaction pool, the reactor was darkened for 30 min, and then the
light source was turned on for 2 h. Specific experimental procedures can be found in the
Supplementary Materials Text S1.

3.5.2. Bactericidal Activity against Conventional Gram-Negative and
Gram-Positive Bacteria

Utilizing insights from previous laboratory research, the Gram-negative bacteria E.
coli and the Gram-positive bacteria S. aureus were chosen as model organisms to assess
the reactor’s efficacy in eliminating microorganisms within polluted water. To replicate
real-world conditions, bacterial concentrations comparable to those found in domestic
polluted water, i.e., 105 CFU/mL, were employed. Taking the capacity of the reaction tank
into account, 60 mL of “standardized cell suspension” was added to the reaction tank,
and then the constructed reactor and 12 W LED light source were also put into it. Specific
experimental procedures can be found in the Supplementary Materials Text S2.

3.5.3. Photocatalytic Microbial Killing Activity in Environmental Water Samples

To thoroughly evaluate the reactor’s water purification capabilities within a genuine
water environment, water samples were extracted from a lake in Qingdao, China (36.07◦ N,
120.35◦ E). Due to the wide variety of bacteria in the water and different requirements
for nutrition and other growth conditions, it is impossible to find a medium under one
condition to make all bacteria in the water grow and reproduce, so an ordinary beef extract
peptone AGAR medium plate is usually used to grow out of the bacterial colony, from
which it can calculate the total number of bacteria in the water as an approximation. After
simple filtration of the obtained environmental water sample, 60 mL of the sample is added
to the reaction pool, and the reactor device and 12 W LED light source are also put into
it while adhering to industry standards (Water quality—Determination of total bacteria—
Plate count method, HJ 1000-2018, published by the Ministry of Ecology and Environment
of China in 26 December 2018) for measuring the reactor’s water purification efficiency. The
effect of water purification shall refer to the national sanitary standard for drinking water
(Standards for drinking water quality, GB 5749-2022, published by the Standardization
Administration of China in 15 March 2022) [51]. Specific experimental procedures can be
found in the Supplementary Materials Text S3.

3.6. Stability Test of Photocatalytic Active Layer Loading
3.6.1. Cyclic Stability Test of Reactor’s Photocatalytic Activity

For the sake of assessing the practical applicability of the reactor, it is crucial to
evaluate its reusability and stability. Building upon the results of previous photocatalytic
performance tests, we conducted a cyclic stability test using Rh B. The test involved
alternating periods of 0.5 h in a dark state and 2 h under light conditions. The concentration
and volume used were the same as those described in Section 3.5.1.

3.6.2. Stability Test of Material Loading in Simulated Oceanic Current
Erosion Environment

Considering the potential application scenarios of the photocatalytic reactor, including
both freshwater and seawater environments, the stability of the reactor’s loaded materials
in the presence of water flow erosion becomes a critical aspect to examine. To simulate these
conditions, we subjected the photocatalytic reactor to extreme/current oceanic currents
with high-speed agitation using a mixer. Additionally, with the assistance of 3D printing,
we scaled up certain components of the original device to better evaluate their performance.

4. Conclusions

To achieve a more stable photocatalyst load on the substrate and optimize the balance
between catalytic activity and reactor lifespan, a PDMS bond layer was applied to the
surface of the 3D-printed substrate. Interaction forces were generated through mechan-
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ical extrusion to ensure the stable loading of the active layer onto the bond layer. The
construction of the photocatalytic reactor included the use of polyacrylic resin accessories
known for their transparency, stable mechanical properties, and chemical stability. This
approach allowed for customizable LED power to meet specific usage needs and prompt
replacement based on the active layer’s service life. The reactor exhibited outstanding
photocatalytic performance with a degradation rate of 99.66% for Rh B and 88.10% for MB.
It effectively eliminated E. coli and S. aureus, achieving a kill rate exceeding 99.99% within
2 h. Furthermore, the reactor demonstrated significant water purification capabilities for
real water samples, meeting international drinking water quality standards within 4 h.
Notably, the developed photocatalytic reactor unit combines high catalytic activity with
long-term durability, surpassing existing units. Even after 50 weeks of cyclic degradation,
an average degradation rate of 92.50% was consistently maintained, demonstrating sus-
tained performance. This proposed photocatalytic reactor offers new insights and solutions
for advancing green water purification technologies in line with “double carbon” goals.
Additionally, it establishes a new benchmark for the loading method of photocatalytic
materials and the optimization of reactor configuration.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/catal14090645/s1, Text S1. Photocatalytic degradation of different
colored organic dyes; Text S2. Bactericidal activity against conventional Gram-negative and Gram-
positive bacteria; Text S3. Photocatalytic microbial killing activity in environmental water samples.
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