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Abstract: BiOBr with different preferred growth orientation facets would show a different pho-
tocatalytic performance. When decorated in situ with metallic Bi nanoparticles, Bi/BiOBr would
commonly display an enhanced photocatalytic performance. In this paper, the BiOBr nanoplates with
preferred growth orientation (102) facet and (110) facet were first synthesized using a hydrothermal
method. Then, some metallic Bi nanoparticles were modified in situ onto the (110)BiOBr nanoplates,
which was expected to show a much more enhanced photocatalytic performance. All samples were
characterized using XRD, FE-SEM, TEM, N2 adsorption–desorption, UV–vis and XPS. FE-SEM and
TEM images showed that the grain size of the metallic Bi particles was about 5 nm to 10 nm. UV–vis
spectra showed that, after some metallic Bi nanoparticles were modified on (110)BiOBr nanoplates,
the light absorbance in the visible light region at 400–700 nm became stronger and their optical band
gap became larger. N2 adsorption–desorption tests showed that the Bi(x)/(110)BiOBr nanosheets
possessed larger specific surface areas than that of the (102)BiOBr and (110)BiOBr nanoplates. The
XPS results showed that Bi(x)/(110)BiOBr contained more oxygen vacancies and a more negative
value of the conduction band minimum. The photocatalytic performance of (102)BiOBr, (110)BiOBr
and Bi(x)/(110)BiOBr were tested in the photocatalytic degradation of rhodamine B under visible light
irradiation for 2 h; their photocatalytic efficiency was 45%, 75% and 80%, respectively. In comparison
to (102)BiOBr, (110)BiOBr exhibited much higher photocatalytic activity, while for Bi(x)/(110)BiOBr,
despite the surface Plasmon resonance effect, a larger specific surface area and more oxygen vacancies,
the enhancement of the efficiency was limited, which might have resulted from the larger optical
band gap.

Keywords: BiOBr; metallic Bi; SPR effect; larger band gap; oxygen vacancy

1. Introduction

Two-dimensional layered structures like graphene [1,2], MoS2 [3,4] and bismuth-based
materials [5,6] have attracted much attention in the last two decades, especially BiOX (X = Cl,
Br, I) materials [7–9]. BiOBr is a promising layered photocatalyst with low cost, non-toxicity,
high photostability, an appropriate band gap and remarkable exceptional electronic and
optical properties, and has great potential application in energy storage and environmental
purification [10,11]. However, the high recombination rate of photogenerated electron-
hole pair impedes its practical application [9,12,13]. Researchers have spent much effort on
compositing BiOBr with other semiconductors [14,15] and dopping other elements on Bi sites
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or Br sites [16–19], which could lower the high recombination rate of a photogenerated electron-
hole pair to some degree. Some scholars find that BiOBr with (001) exposed facets possesses
better photocatalytic performance than that of (110) exposed facets [20–25]. However, the
research on the (102) and (110) exposed facets and in situ metallic Bi-decorated on BiOBr with
specific exposed facets [26–29] is still far from enough. Some types of artificially synthesized
dye produced by printing and dyeing factories are serous pollutants in water and are difficult
to be degradated naturally but are easily removed using a semiconductor under sunlight [30].
Among them, rhodamine B (RhB) was regarded as the most difficult to be photodegradated,
so RhB was often a target pollutant to test the photocatalytic performance of various materials.

Herein, we first synthesized BiOBr nanoplates under two different temperatures with
a hydrothermal method. It was interesting that the preferred growth orientation facets of
the two samples were different; one was (102) facet and the other was (110) facet, which
were named as (102)BiOBr and (110)BiOBr, respectively. Since (110)BiOBr possessed the
better photocatalytic performance, some metallic Bi nanoparticles were in situ modifiedon
2 mmol (110)BiOBr nanoplates to form Bix/(110)BiOBr (x = 0.5 mmol, 1.0 mmol and
1.5 mmol) nanosheets. Usually, the surface Plasmon resonance (SPR) effect resulting from
the metallic Bi nanoparticles [27,31,32] greatly enhances the photocatalytic performance of
Bix/(110)BiOBr nanosheets; however, we found that it was not the case.

2. Results and Discussion
2.1. Structure and Photocatalytic Performance

Figure 1A showed the XRD patterns of standard BiOBr peaks and the two prepared
BiOBr samples under different hydromel synthesis temperatures. The (102)BiOBr and
(110)BiOBr samples displayed almost the same diffraction peaks without any other impurity
peaks. The six sharp diffraction peaks located at 10.84◦, 25.15◦, 31.68◦, 32.25◦, 46.20◦ and
57.14◦ could be attributed to the (001), (101), (102), (110), (200) and (212) facets through the
standard BiOBr phase (JCPDS number: 09-0393); their lattice constants are listed in Table S1.
The significant difference between the two samples was that the strongest peak was (102)
facets and (110) facets, respectively, which implied that the preferred growth orientation
was different in (102)BiOBr and (110)BiOBr. In Figure 1B, after in situ decoration with
different amount of metallic Bi nanoparticles, the three Bix/(110)BiOBr samples show no
peaks of any impurities but three peaks of the metallic Bi (JCPDS number: 05-0519). The
metallic Bi could form in situ on the surface of the (110)BiOBr sample in the hydrothermal
synthesis process under the reduction in Bi(NO3)3•5H2O by glycol.
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Figures 2A,B, S1 and S2 show the morphology and element mapping of (102)BiOBr and
(110)BiOBr; both were nanoplates about 300–600 nm width and no obvious difference could
be observed. After in situ decoration with different amounts of metallic Bi nanoparticles,
the morphology of Bi/(110)BiOBr changed from stacked nanoplates to stacked nanosheets,
as shown in Figure 2C–E. As shown in Figures S3–S5, in the three Bix/(110)BiOBr samples,
the Bi, Br and O elements were evenly distributed. The presence of metallic Bi nanoparticles
can be clearly observed in Figure 2G,H. The grain size of the metallic Bi particles was about
5 nm to 10 nm.

Figure 3A,B shows the photocatalytic performance of degradating the RhB of the above
five samples under visible light. After being in darkness for 30 min, the concentration of
RhB decreased to 97%, 67%, 87%, 82% and 78% for (102)BiOBr, (110)BiOBr and the three
Bix/(110)BiOBr samples, respectively. After 2 h visible light irradiation, about 45.1% and
75.2% of RhB were photocatalytically degradated using the (102)BiOBr sample and the
(110)BiOBr sample, respectively. As shown in Figure 3B, the photocatalytic performances of
the three Bix/(110)BiOBr samples were 79.0%, 80.8% and 79.2%, respectively, which were
all better than that of the (110)BiOBr sample, as expected; the improvement was also not
notable, as expected. Since the specific surface area, the optical band gap and the amount
of oxygen vacancy would affect the photocatalytic performance of removing RhB, we study
the above factors to clarify the difference in the photocatalytic performances among the
five samples.

Catalysts 2024, 14, x FOR PEER REVIEW 3 of 16 
 

 

which were all better than that of the (110)BiOBr sample, as expected; the improvement 
was also not notable, as expected. Since the specific surface area, the optical band gap and 
the amount of oxygen vacancy would affect the photocatalytic performance of removing 
RhB, we study the above factors to clarify the difference in the photocatalytic perfor-
mances among the five samples. 

 
Figure 1. XRD pattern of (A) the (102)BiOBr and (110)BiOBr samples, (B) Bix/(110)BiOBr samples. 

 

Figure 2. Cont.



Catalysts 2024, 14, 654 4 of 15Catalysts 2024, 14, x FOR PEER REVIEW 4 of 16 
 

 

 

 

Figure 2. Cont.



Catalysts 2024, 14, 654 5 of 15Catalysts 2024, 14, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. SEM images of (A) (102)BiOBr, (B) (110)BiOBr, (C) Bi(0.5 mmol)/(110)BiOBr, (D) Bi(1.0 
mmol)/(110)BiOBr, (E) Bi(1.5 mmol)/(110)BiOBr and TEM images of (F), (G) Bi(1.0 
mmol)/(110)BiOBr. 

 
Figure 3. The photocatalytic performance of removing RhB using (A) the (102)BiOBr and 
(110)BiOBr samples, (B) Bix/(110)BiOBr samples. 
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[33,34]. As shown in Figure S7, their pore diameter distribution histograms displayed no 

Figure 2. SEM images of (A) (102)BiOBr, (B) (110)BiOBr, (C) Bi(0.5 mmol)/(110)BiOBr, (D) Bi
(1.0 mmol)/(110)BiOBr, (E) Bi(1.5 mmol)/(110)BiOBr and TEM images of (F), (G) Bi(1.0 mmol)/
(110)BiOBr.
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Figure 4A shows N2 adsorption–desorption isotherms of (102)BiOBr and (110)BiOBr.
Both samples exhibited reversible type III isotherms with H2-type hysteresis loops [33,34].
As shown in Figure S7, their pore diameter distribution histograms displayed no obvious
difference. The specific surface areas of the two samples are 9.7021 and 14.2066 m2/g,
respectively (listed in Table S2). Usually, the greater the specific surface area, the greater
the active site; thus, (110)BiOBr would possess a higher photocatalytic performance in
removing RhB than that of (102)BiOBr. For the three Bix/(110)BiOBr samples, they also ex-
hibited reversible type III isotherms with H2-type hysteresis loops and their specific surface
areas were 15.8608, 21.2600 and 17.4544 m2/g, which implied that the three Bix/(110)BiOBr
samples would possess higher photocatalytic performances in removing RhB than that of
(110)BiOBr.
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Figure 4. N2 adsorption–desorption curves of (A) (102)BiOBr and (110)BiOBr; (B) Bi(0.5 mmol)/
(110)BiOBr, Bi(1.0 mmol)/(110)BiOBr and Bi(1.5 mmol)/(110)BiOBr.

2.2. Optoelectronic Performance and Active Species

Figure 5 shows the UV-vis DRS of (102)BiOBr, (110)BiOBr and the three Bix/(110)BiOBr
samples. Compared with (102)BiOBr, (110)BiOBr displayed lower absorption in both short
wavelength and long wavelength, while its absorption edge was a bit red-shifted, which
implied that its optical band gap (Eg) would be smaller. Furthermore, compared with
(110)BiOBr, the three Bix/(110)BiOBr displayed lower absorption in the short wavelength
but higher absorption in the long wavelength, while the obvious blue-shift of the absorption
edges implied that their Eg values would be larger, which might be a result of the quantum
confinement effect caused by morphological changes and interfacial interactions between
metallic Bi and (110)BiOBr. The Eg values of all the samples were calculated through
the Tauc plot and listed in Figure S7 and Table S3. Since the Eg value of (110)BiOBr was
smaller than that of (102)BiOBr, it was reasonable to deduce that the (110)BiOBr would
display a higher photocatalytic performance in removing RhB than that of (102)BiOBr,
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which was in accordance with the previous photocatalytic performance listed in Figure 3.
But for the three Bix/(110)BiOBr samples, their Eg values were obviously larger than that
of (110)BiOBr; this seemed to conclude that they would display a lower photocatalytic
performance in removing RhB than that of (110)BiOBr because of the extreme decrease
in the photogenerated electron-hole pairs, which was contrary to the results shown in
Figure 3. It could also be clearly observed in Figure 5 that each of the three Bix/(110)BiOBr
samples displayed a wider light-absorption enhancement between 400 and 700 nm than
that of (102)BiOBr and (110) BiOBr, which resulted from the SPR effect of the metallic Bi
nanoparticles [26–28,35,36]. Usually, the SPR effect would promote visible-light absorption
to produce more photogenerated electron-hole pairs, resulting in an enhancement of
photocatalytic activity [26–28,35,36], which is in accordance with the photocatalytic activity
shown in Figure 3.
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Figure 5. UV-vis absorption spectra of all the samples.

In order to investigate the surface chemical states and the amount of oxygen vacancy, we
conducted XPS measurement on the (102)BiOBr, (110)BiOBr and Bi(1.0 mmol)/(110)BiOBr
samples. Figures 6A–C and S8 showed the XPS spectra and the high resolution XPS scanned
over Bi-4f, Br-3d, O-1s and C-1s peaks of the selected three samples, which clearly demon-
strated the existence of Bi3+, Br− [28,36]. The deconvolution of the O-1s peaks of the
three samples is listed in Figure 6D–F; the three peaks around 530.0 eV, 531.5 eV and
532.5 eV corresponded to the lattice oxygen (OL), oxygen vacancy (OV) and the absorbed
oxygen (OA), respectively [26–28,36]. Their peak area percentages of OL, OV, and OA were
calculated and listed in Table 1. OV always played a dominant role in the photocatalytic
process because OV would become a trap to attract photogenerated electrons, which would
be beneficial for the separation of the photogenerated electron-hole pairs [26,27,36–38].
Usually, the greater the amount of OV, the better the photocatalytic performance will be.
However, we can clearly see in Table 1 that the proportion of OV in the (102)BiOBr sample
(16%) was a bit larger than that in the (110)BiOBr sample (14%), while the proportion of OV
in the Bi (1.0 mmol)/(110)BiOBr sample was 19%.

Figure 7A showed the photocurrents of the five samples. After alternating on or off
lights every 20 s for 160 s, the photocurrents of the (102)BiOBr sample and (110)BiOBr
sample were about 2.13 µA and 3.11 µA; the three Bix/(110)BiOBr samples were 3.44 µA,
9.04 µA and 6.82 µA, respectively. Apparently, the photocurrent of the (110)BiOBr sam-
ple was larger than that of the (102)BiOBr sample and the photocurrents of the three
Bix/(110)BiOBr samples were all larger than that of the (110)BiOBr sample. Usually, the
lower the recombination rate of the photogenerated electron-hole pairs is, the higher the
photocurrent will be. Since the Bi(1.0 mmol)/(110)BiOBr sample possessed the SPR effect
as well as the highest amount of OV, it displayed the highest photocurrent value.
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(102)BiOBr 65% 16% 19%
(110)BiOBr 68% 14% 18%

Bi(1.0 mmol)/(110)BiOBr 65% 19% 16%



Catalysts 2024, 14, 654 9 of 15
Catalysts 2024, 14, x FOR PEER REVIEW 9 of 16 
 

 

 

 
Figure 7. (A) The photocurrents and (B) PL spectra of all the samples. 

To investigate the separation efficiency of the photogenerated electron-hole pair, we 
presented the PL spectra in Figure 7B. For all the samples, the peak around 425 nm could 
be attributed to the intrinsic excitation of BiOBr, while the broadened peak from 550 nm 
to 675 nm for (102)BiOBr and (110)BiOBr could be attributed to the impurity excitation 
[8,10]. It was clear that the ranking of the PL intensity for the five samples was 
(102)BiOBr, (110)BiOBr, Bi(0.5 mmol)/(110)BiOBr, Bi(1.5 mmol)/(110)BiOBr and 
Bi(1.0)/(110)BiOBr, in which the trend was contrary to that of the photocatalytic perfor-
mance of removing Rh B in Figure 3 and the photocurrent in Figure 7A. Since the PL in-
tensity was closely related to the recombination rate of the photogenerated electron-hole 
pairs, the higher the recombination rate was, the larger the PL intensity would be, but the 
worse the photocatalytic performance would be. 

To probe the active species in the photocatalytic process, we tested the photocata-
lytic removal of RhB with different scavengers for the selected three samples shown in 
Figure 8. It was obvious that the main active species was superoxide radical (·O2−) for the 
selected three samples, with a few of the other three active species: photogenerated elec-
trons (e−), photogenerated holes (h+) and hydroxyl radicals (·OH). 

Figure 7. (A) The photocurrents and (B) PL spectra of all the samples.

To investigate the separation efficiency of the photogenerated electron-hole pair, we
presented the PL spectra in Figure 7B. For all the samples, the peak around 425 nm could
be attributed to the intrinsic excitation of BiOBr, while the broadened peak from 550 nm to
675 nm for (102)BiOBr and (110)BiOBr could be attributed to the impurity excitation [8,10].
It was clear that the ranking of the PL intensity for the five samples was (102)BiOBr,
(110)BiOBr, Bi(0.5 mmol)/(110)BiOBr, Bi(1.5 mmol)/(110)BiOBr and Bi(1.0)/(110)BiOBr, in
which the trend was contrary to that of the photocatalytic performance of removing Rh B in
Figure 3 and the photocurrent in Figure 7A. Since the PL intensity was closely related to the
recombination rate of the photogenerated electron-hole pairs, the higher the recombination
rate was, the larger the PL intensity would be, but the worse the photocatalytic performance
would be.

To probe the active species in the photocatalytic process, we tested the photocatalytic
removal of RhB with different scavengers for the selected three samples shown in Figure 8.
It was obvious that the main active species was superoxide radical (·O2

−) for the selected
three samples, with a few of the other three active species: photogenerated electrons (e−),
photogenerated holes (h+) and hydroxyl radicals (·OH).
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Figure 8. Photocatalytic removal of RhB with four scavengers by (A) (102)BiOBr, (B) (110)BiOBr and
(C) Bi(1.0mmol)/(110)BiOBr.

2.3. Photocatalytic Mechanism

To clarify the reason for the difference in the photocatalytic performance of removing
Rh B using the five samples, we split them into two groups, of which we will explain
them one by one; the first group consists of the (110)BiOBr and (102)BiOBr samples, and
the second group consists of four samples, the (110)BiOBr and the three Bix/(110)BiOBr
samples. For the first group, the (110)BiOBr sample possessed a larger specific surface area,
smaller Eg and a slightly smaller amount of oxygen vacancy than that of the (102)BiOBr
sample. Usually, the larger specific surface area and the smaller are the two main positive
factors for the enhancement of photocatalytic performance, while the smaller amount of
oxygen vacancy is the main negative factor for the enhancement of the photocatalytic
performance. Since the amount of oxygen vacancy in the (110)BiOBr sample was only
a bit smaller than that in the (102)BiOBr sample, this negative factor would only result
in a slight decrease in the photocatalytic performance. The overall outcome between the
two main positive factors and one minor negative factor was that the (110)BiOBr sample
could photocatalytically remove 75.2% of RhB while the (102)BiOBr sample could only
photocatalytically remove 45.1% of RhB.

For the second group, the Eg of the three Bix/(110)BiOBr samples was 3.18 eV, 3.18 eV
and 3.19 eV, respectively, which were all obviously larger than that of the (110)BiOBr
sample (3.05 eV). Usually, a much larger Eg is a huge negative factor for the photocatalytic
performance of removing Rh B. The specific surface area of the three Bix/(110)BiOBr were
all larger than that of the (110)BiOBr sample, which was a positive factor for photocatalytic
performance. The amount of oxygen vacancy of the Bi(1.0 mmol)/(110)BiOBr sample (19%)
was obviously larger than that of the (110)BiOBr sample (14%), which would be a notable
positive factor for photocatalytic performance. The SPR effect shown in Figure 5 was also a
notable positive factor. So, after the competition between the one negative factor and three
positive factors, the photocatalytic performance of the three Bi/(110)BiOBr samples was
only enhanced to about 80%, which was only a bit better than that of the (110)BiOBr sample,
as shown in Figure 3. As for the three Bix/(110)BiOBr samples, they showed almost the
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same morphology and Eg; the differences in their specific surface area were so small that
they showed almost the same photocatalytic performance of the removal RhB resulting
from the SPR effect.

Figure 9 displayed the structure of BiOBr nanosheets with decorated metallic Bi
nanoparticles. When irradiated under visible light, the BiOBr nanosheets would produce
photogenerated electron-hole pairs; the photogenerated electron would transfer from
BiOBr nanosheets to the metallic Bi nanoparticles and then react with oxygen to generate
superoxide radical (·O2

−) to photocatalytically remove RhB.
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Figure 10 showed the energy level of (102)BiOBr, (110)BiOBr and Bi(1.0 mmol)/(110)BiOBr.
Their position in the valence band maximum was obtained through XPS data in Figure S9 and
listed in Table S4, while the position of the conduction band minimum could be calculated
by adding the Eg to the value of the above valence band maximum. For (102)BiOBr and
(110)BiOBr, the Eg of the latter was smaller than that of the former, so more photogenerated
electrons were produced and reacted with oxygen to form superoxide radical (·O2

−).
For (110)BiOBr and Bi(1.0 mmol)/(110)BiOBr, though the latter possessed a larger Eg,
the metallic Bi would attract the photogenerated electrons and facilitate the transfer and
separation of the photogenerated electron-hole pairs, which eventually would enhance
the photocatalytic performance. As for the main species in the photocatalytic process,
the photogenerated electrons would shift down to the level of 0.33 eV and react with
oxygen to form superoxide radical (·O2

−). But the photogenerated holes (h+) would
hardly shift down to the level of 2.38 eV or 2.40 eV or react with H2O or OH− to form
hydroxyl radicals (·OH). The mobility of the photogenerated hole (h+) was much lower
than that of the photogenerated electron. So, the main species in the above photocatalytic
process was superoxide radical (·O2

−) with a minor amount of photogenerated electrons
(e−), photogenerated holes (h+) and hydroxyl radicals (·OH). The corresponding reaction
equations are listed below:

Bi/BiOBr + hv = h+ + e− (1)

e− + O2 =·O2
− (2)

·O2
− + RhB = CO2 + H2O + other inorganic compound (3)
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3. Materials and Methods
3.1. Materials

The starting materials, bismuth nitrate pentahydrate (Bi(NO3)3·5H2O, ≥99.0%), potas-
sium bromide (KBr, ≥99.0%), anhydrous ethanol (CH3CH2OH, ≥99.7%), ethylene glycol
(HOCH2CH2OH, ≥99.5%) and rhodamine B (RhB), all of them were AR grade and pur-
chased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All the chemical
materials in the experiment were used without any further purification.

3.2. Preparation of (102)BiOBr and (110)BiOBr

The (102)BiOBr and (110)BiOBr nanoplates were synthesized using a one-step hy-
drothermal method. In a typical synthesis, 1.5 mmol KBr was placed in 16 mL of anhydrous
ethanol, which was then transferred to an ultrasonic cleaner and dispersed for 10 min.
Then, at room temperature, the same stoichiometric Bi(NO3)3·5H2O was slowly put into
the above dispersion and magnetically stirred for 2 h. The mixture was then poured into a
stainless steel autoclave, sealed and heated at 180 ◦C ((102)BiOBr) and 140 ◦C((110)BiOBr)
for 12 h, respectively. The stainless steel autoclave was then naturally cooled to room
temperature. The resulting precipitate was collected using centrifugation and washed
several times with deionized water and ethanol. Finally, it was dried in a drying oven at
60 ◦C for 12 h and some light yellow powder was obtained.

3.3. Preparation of Bi/(110)BiOBr

The (110)BiOBr nanoplates decorated with different amounts of metallic Bi, Bix/(110)
BiOBr/(x = 0.5 mmol, 1.0 mmol and 1.5 mmol) samples were also prepared using the
hydrothermal method. First, under the condition of ultrasonic dispersion, the prepared
2 mmol (110)BiOBr sample was added to 80 mL glycol, and a certain amount of Bi(NO3)3·5H2O
(0.5 mmol, 1 mmol, 1.5 mmol) was added to the solution for 2 h via magnetic stirring and
stirred magnetically for 10 min. The mixture was poured into a stainless steel autoclave,
sealed and heated at 180 ◦C for 10 h; then, the stainless steel autoclave was naturally cooled
to room temperature, the resulting precipitate was collected using centrifugation, washed
several times with deionized water and ethanol and finally dried in a drying oven at 60 ◦C to
obtain some gray-black powder.
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3.4. Material Characterization

The crystal structure of all the samples was determined using X-ray diffraction (XRD,
MXP18, MAC Science, Tokyo, Japan). The morphology of all the samples was characterized
using scanning electron microscopy (SEM, JSM-7800F, Japanese Hitachi, Tokyo, Japan).
The UV-vis diffuse reflectance absorption (UV-vis DRS) spectra were acquired with an
UV-vis spectrophotometer (UV-5800PC, Shanghai Metash Instruments Co., Ltd., Shanghai,
China). N2 adsorption–desorption isotherms were recorded using a BET test system
(ASAP 2460, Mike Co., Ltd., Columbus, OH, USA). To probe the recombination rate of the
photogenerated electron-hole pairs, the photoluminescence (PL) spectra were recorded
(FLS1000, Edinburgh Instruments Co., Ltd., Edinburgh, UK).

The photoelectrochemical properties were characterized using a computer-controlled
CHIe660C electrochemical workstation (Shanghai Chenhua Co., Shanghai, China) with
a standard three-electrode system. The saturated calomel electrode (SCE) and platinum
mini grid were used as the reference electrode and counter electrode, respectively. When
measuring the photocurrents, the working electrode was a pretreated indium tin oxide
(ITO) glass coated with the sample to be tested. The supporting electrolyte was 0.5 M
Na2SO4 solution, the applied potential was 0.05 V and a 300 W Xe lamp was used as the
excitation light source.

3.5. Photocatalytic Testing

The photocatalytic performance was evaluated using the photodegradation of RhB in
aqueous solution. A 50 mg photocatalyst was dispersed into a solution of 100 mL pollu-
tants (RhB~5 mg/L) and stirred in the dark for 30 min to reach the adsorption–desorption
equilibrium. The mixture was then exposed to visible light. The visible light source was a
halogen lamp (300 W, λ > 420 nm). During the whole photocatalytic test, a certain height
was maintained between the light source and the liquid surface of the solution. At specified
intervals, 3 mL of the solution was drawn through a syringe and the photocatalyst was
removed with a strainer plug. Then, the residual concentrations of RhB were determined
using UV-visible spectrophotometer (Shanghai Metash Instruments Co., Ltd., UV-5800PC,
Shanghai, China). The scavenging tests were performed according to the above experimen-
tal procedure for the (102)BiOBr, (110)BiOBr, (110)BiOBr and Bi(1.0)/(110)BiOBr samples.
Isopropyl alcohol(IPA), ascorbic acid (AA), potassium bromate (PB) and citric acid (CA)
were added to the reaction solution as scavengers for hydroxyl radicals (·OH), superoxide
radicals (·O2

−), electron (e−) and photogenerated- holes (h+), respectively.

4. Conclusions

In summary, the (110)BiOBr owes its much better photocatalytic performance, com-
pared to that of (102)BiOBr, to its smaller Eg and larger specific surface area, despite its
smaller amount of oxygen vacancy. When decorated with metallic Bi nanoparticles, despite
the negative influence of the larger Eg, the Bix/(110)BiOBr samples still has a larger specific
surface area and a greater amount of oxygen vacancy than that of (110)BiOBr; together
with the SPR effect as a result of the metallic Bi, their recombination rates of photogen-
erated electron-hole pairs become lower, which eventually enhances their photocatalytic
performance. These efficient BiOBr-based catalysts would be suitable candidates in water
treatment, removing organic pollutants to ensure a sustainable and green environment.
Since the conduction band minimum of BiOBr is higher than −1 eV, the BiOBr-based
catalysts might be suitable for CO2 photoreduction into CO and other chemicals.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal14090654/s1, Table S1: The lattice constants of all the samples; Figure S1:
Element Mapping of the (102)BiOBr sample; Figure S2: Element Mapping of the (110)BiOBr sample;
Figure S3: Element Mapping of the Bi(0.5mmol)/(110)BiOBr sample; Figure S4: Element Mapping of
the Bi(1.0mmol)/(110)BiOBr sample; Figure S5: Element Mapping of the Bi(1.5mmol)/(110)BiOBr
sample; Figure S6: The pore diameter distribution of all the samples; Table S2:The BET specific surface
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area of all the samples; Figure S7: The optical band gap(Eg) of all the samples through Tauc plot;
Table S3: The optical Gap (Eg) of all the samples; Figure S8: Bi-4f, Br-3d, O-1s and C-1s of the three
samples; Figure S9:The valence band maximum of the three samples; Table S4: The valence band
maximum of the selected thee samples obtained from Figure S9.
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