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Abstract: In this study, potassium peroxymonosulfate was added to an electrolytic cell
with an iron anode to achieve the dual flocculation and sulfate-radical-driven oxidative
degradation of organic matter in shale gas flowback wastewater. The effects of current
density, solution pH, and potassium peroxymonosulfate concentration on organic mat-
ter degradation were investigated. The results showed that chemical oxygen demand
(COD) removal reached 93.4% at a current density of 40 mA/cm2, pH 7, and a potas-
sium peroxymonosulfate concentration of 1500 mg/L, surpassing the efficiency of single
electroflocculation (82.4%). The characterization of the coupled electroflocculation and
peroxymonosulfate system confirmed the production of sulfate radicals and identified
Fe2O3 as the primary final product in the treated wastewater. The introduction of sulfate
significantly enhanced organic matter degradation, accelerated the reaction rate and im-
proved the overall efficiency of the treatment process. This study offers valuable insights
into the chemical synergistic treatment approach and its potential applications in organic
wastewater treatment.

Keywords: electroflocculation; potassium peroxymonosulfate; oxidation; sulfate radical;
shale gas flowback wastewater

1. Introduction
Hydraulic fracturing is a cornerstone technique in shale gas extraction, that is widely

applied across the industry [1]. However, this practice raises substantial environmental
concerns, primarily due to the diverse array of chemical additives in fracturing fluids. These
chemicals create flowback wastewater containing a complex mixture of organic compounds
and heavy metals, which poses significant challenges for effective decomposition [2].
This contamination is characterized by elevated levels of chemical oxygen demand (COD),
dissolved solids, and salinity, as well as significant changes in the coloration of the flowback
fluid [3]. The toxic-laden shale gas flowback wastewater is distinct from municipal or
industrial wastewater and poses serious risks to human health, animal well-being, and
ecological balance [4]. Deep-ground injection wells constituted the main method for
managing shale gas wastewater which mainly involved the construction of disposal wells,
which inherently carry significant environmental risks [1,5]. Modern degradation methods,
such as membrane-based processes, biological treatment, and electrochemical oxidation,
offer alternatives but are not without challenges. These methods face issues such as
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insufficient treatment efficiency, high operational costs, and equipment corrosion, limiting
their widespread application [6,7]. Given these challenges, there is an undeniable urgency
to mitigate environmental impacts, necessitating the exploration and adoption of more
sustainable and less hazardous treatment methods.

Electroflocculation, known for its environmental sustainability and effectiveness in wa-
ter purification, operates through anodic dissolution. This process catalyzes the hydrolytic
generation of abundant cations, which subsequently form complexes that aid in removing
suspended particulates from wastewater through entrapment and adsorption. [8,9]. Char-
acterized by its potent pollutant adsorption capacity, this method boasts high treatment
efficiency, cost-effectiveness, and the absence of secondary pollution, positioning it as a
superior alternative within the water treatment spectrum [10,11]. Its application extends
across various domains, including the remediation of oily wastewater and industrial ef-
fluents, underscoring its versatility and wide acceptance in contemporary environmental
management practices. Kausley [12] applied electroflocculation to treat oilfield fractur-
ing wastewater, effectively removing total organic carbon and reducing water hardness.
The study examined the effects of formulated high-concentration salt-containing return
wastewater, low-concentration return wastewater, and the original actual wastewater on
treatment efficiency and energy consumption. The results indicated that higher electrical
conductivity led to increased energy consumption and a more significant flocculation
effect. Gao [13] compared the treatment of uranium-containing wastewater using tradi-
tional flocculation and electroflocculation. The study found that both methods efficiently
removed uranium; however, electroflocculation offered easier automation control, lower
treatment costs, and less floc generation, suggesting it has better prospects for widespread
application. Franco [14] used electroflocculation to remove phosphate from groundwa-
ter and investigated the effects of initial conductivity, power supply, and initial pH on
phosphorus removal efficiency. The results showed that higher conductivity increased
energy consumption and improved the flocculation effect, achieving up to 99% phosphorus
removal within a pH range of 5.5–8. Verma [15] employed an electroflocculation process
with Fe-Al composite electrodes to treat textile wastewater, achieving more than 90% COD
removal and chromaticity under optimized conditions. Ma [16] conducted an experimental
study on treating polysulfur mud system drilling wastewater using electroflocculation,
reporting a COD removal rate of 94.2% after 75 min of treatment. However, the electrofloc-
culation method has certain limitations, such as lower electrode efficiency and high energy
consumption [17]. As a result, enhancing process stability and ensuring long-term efficient
operation have become key research focuses.

The utilization of activated persulfate or peroxymonosulfate to generate sulfate radi-
cals for the degradation of organic contaminants in industrial wastewater, groundwater,
and soil represents an innovative approach that has recently gained recognition [18,19].
This technique involves the activation of persulfate using transition metals or their ions
(such as Fe, Fe2+, Ag+, Cu2+, Mn2+, etc.), and has emerged as a promising solution for envi-
ronmental remediation. Distinguished by its effectiveness in targeting a broad spectrum
of organic pollutants, this method offers a novel pathway for mitigating environmental
pollution challenges associated with industrial activities and contamination in various
matrices. Li et al. [20] explored the dual role of an annular iron sheet as both an electrode
and an activator source, combined with electrolysis techniques, for activating persulfate
or peroxymonosulfate to enhance the degradation of dinitrodiazophenol in an aqueous
solution. However, this system faces drawbacks such as prolonged operation time, low
persulfate oxidation efficiency, and limited utilization rate.

This study integrated potassium peroxymonosulfate into the electroflocculation pro-
cess for treating shale gas flowback wastewater, aiming to overcome the limitations asso-
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ciated with using electroflocculation and transition metal-activated peroxymonosulfate
oxidation independently. The objective was to achieve a synergistic effect between floccula-
tion and oxidative degradation, thereby enhancing the efficiency of wastewater treatment.
Our research focuses on elucidating the degradation mechanism and reaction kinetics by
analyzing the final flocculate, providing a theoretical foundation for further exploration
of the combined approach of electroflocculation and persulfate oxidation in wastewater
remediation.

2. Results and Discussion
The optimum parameters for the electroflocculation treatment of shale gas flowback

wastewater were established through a series of single-variable experiments, resulting in a
current density of 30 mA/cm2, an inter-electrode distance of 2 cm, and a solution pH of
8.5. Within this operational framework, the COD removal efficiency achieved was 82.4%,
accompanied by a reduction in the mass of iron electrodes by 0.1058 g. Especially, the
potassium peroxymonosulfate triple salt typically consists of the following proportions by
weight: KHSO5 (42.8%), KHSO4 (~22.0%), and K2SO4 (~35.2%). According to Equation (1)
and accounting for the proportion of KHSO5 in the potassium peroxymonosulfate complex,
an initial concentration of potassium peroxymonosulfate of about 1200 mg/L was chosen
for further optimization.

Fe2+ + HSO−
5 → Fe3+ + SO−

4 ·+ OH− (1)

2.1. Process Optimization of Collaborative Wastewater Treatment
2.1.1. Influence of Current Density on COD Removal Rate

Elevating the current density in the electroflocculation process enhances floc formation
and hydrogen production, thus increasing the method’s efficiency. However, excessively
high current densities can cause electrode polarization and form a passivation layer, which
may reduce the process’s effectiveness. Given the significant impact of current density on
electroflocculation performance, careful regulation is essential.

This study investigated the effects of current densities ranging from 10 to 50 mA/cm2

on the degradation efficiency of shale gas flowback wastewater using an electroflocculation
system combined with potassium peroxymonosulfate. As shown in Figure 1, the optimal
removal efficiency of 70.3% was achieved at a current density of 40 mA/cm2. This peak
efficiency resulted from the increased rate of Fe2+ generation at higher current densities,
significantly improving flocculation. Additionally, the activation of potassium peroxy-
monosulfate boosted the production of sulfate radicals, further aiding in the degradation
of organic compounds in the wastewater. However, when the current density exceeded
40 mA/cm2, the removal efficiency decreased. This decline is due to the adverse effects
of high current densities on the flocculation process, which diminished its effectiveness.
Moreover, the rapid generation of Fe2+ at higher concentrations led to its quick interaction
with sulfate radicals (as described in Equation (2)), resulting in the rapid depletion of these
radicals and a subsequent reduction in the system’s degradation capacity. Consequently,
the experiment proceeded with an optimal 40 mA/cm2 current density.

Fe2+ + SO4
−· → Fe3+ + SO4

2− (2)

2.1.2. Influence of pH on COD Removal Rate

The efficacy of the electroflocculation process is significantly influenced by the so-
lution’s pH, as it affects the production of hydrogen and oxygen species [21]. As shown
in Figure 2, the pH plays a crucial role in the combined treatment of shale gas flowback
wastewater using electroflocculation and potassium peroxymonosulfate. COD removal
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efficiency improves with increasing the pH to 7, where the maximum COD removal rate
reaches 85.2%. This optimal performance is primarily due to the favorable dissolution rate
of iron under these conditions, which promotes the formation of sulfate radicals. In more
acidic environments, the accelerated fragmentation of peroxymonosulfate leads to higher
concentrations of sulfate radicals [22,23]. However, this increase also triggers more frequent
quenching reactions among free radicals, reducing their availability to react with organic
pollutants. With increasing the pH to 8.5, Fe2+ primarily exists as Fe(OH)2, Fe(OH)3 (as
shown in the Equation (3)), and other hydrolyzed products, reducing the effective activa-
tion of PMS by Fe2+ and the generation of reactive species. In mildly alkaline conditions,
OH− ions compete with pollutants for reactive radicals [24,25], resulting in a decrease in
COD removal efficiency. The results demonstrate that a pH of 7 is the most conducive to
achieving the highest efficacy in this synergistic treatment approach.

Fe2++3OH− → Fe(OH)3 (3)
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Figure 1. Effect of time on COD removal at different current densities. 
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2.1.3. Influence of Potassium Peroxymonosulfate Concentration on COD Removal Rate

The degradation of organic compounds via sulfate-radical-mediated pathways in-
volves three fundamental mechanisms: hydrogen abstraction, electron transfer, and ad-
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dition across double bonds [26]. The effect of varying potassium peroxymonosulfate
concentrations on wastewater treatment efficiency, ranging from 900 to 2100 mg/L, are
illustrated in Figure 3. The data show an initial positive relationship between the perox-
ymonosulfate concentration and removal efficiency. At a potassium peroxymonosulfate
concentration of 1500 mg/L, the removal rates for COD and TOC reached their maximum
values of 93.4% and 86.7%, respectively, with a conductivity of 27.8 mS/cm. These results
are likely attributable to the reactions occurring during electrocoagulation coupled with
PMS activation, as described by Equations (1) and (4)–(6) [27,28]. However, beyond this
concentration, the treatment effectiveness began to decline. This decrease is primarily due
to the excessive reaction between sulfate radicals and sulfate ions or other sulfate radicals
as shown in the Equations (7) and (8), which reduced the utilization rate of sulfate radi-
cals and, consequently, the system’s ability to treat organic pollutants in wastewater [29].
Therefore, a concentration of 1500 mg/L for potassium peroxymonosulfate was selected
for subsequent experiments, balancing treatment efficacy with economic feasibility.

SO4
−·+ H2O → OH·+ HSO−

4 (4)
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SO4
−·+R − H (organic matter) → R+ + HSO−

4 (5)

OH·+R − H (organic matter) → R+ + H2O (6)

SO2−
4 + SO4

−· → S2O2−
8 (7)

SO4
−·+ SO4

−· → S2O2−
8 (8)

2.2. Preliminary Kinetic Analysis
2.2.1. Influence of Current Density on Reaction Parameters

The relationship between ln(COD0/CODt) and time, and the corresponding fitting
parameters under different current densities, are illustrated in Figure 4 and Table 1 re-
spectively. The experiment conditions were the same as Section 2.1.1. It can be observed
from the figure that linear fitting curves were obtained consistently across various current
densities. The observed results indicate that the collaborative wastewater treatment adheres
to the first-order reaction kinetics model, with the slope of the fitting curve representing
the reaction rate (r). It can be observed from the graph that as current density increases, the
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r value rises from 0.0177 to 0.0380. However, at a current density of 50 mA/cm2, there is a
decrease in the r value to 0.0187 due to elevated sulfate radical concentration inhibiting its
activity and subsequently reducing the reaction rate.
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Table 1. Time to kinetic fitting parameters at different current densities.

Current Density
(mA/cm2) Kinetic Reaction Equations Reaction Rate

(min−1) R2

10 InCOD0
InCODt

= 0.0117t − 0.0324 0.0117 0.957
20 InCOD0

InCODt
= 0.0140t − 0.0147 0.0140 0.988

30 InCOD0
InCODt

= 0.0241t − 0.0519 0.0241 0.936
40 InCOD0

InCODt
= 0.0380t + 0.0540 0.0380 0.968

50 InCOD0
InCODt

= 0.0187t + 0.0454 0.0187 0.994

2.2.2. Preliminary Kinetic Analysis Under Optimal Conditions of Electroflocculation and
Cooperative Treatment

The kinetic analysis of the combined electroflocculation and potassium peroxymono-
sulfate treatment of flowback wastewater under optimal conditions is represented in
Figure 5. This analysis demonstrates that including potassium peroxymonosulfate does
not modify the kinetic order of the electroflocculation process, with both treatments adher-
ing to first-order kinetics. The relevant kinetic equations and parameters are detailed in
Table 2. The addition of potassium peroxymonosulfate enhances the rate constant from
0.0575 to 0.0860, signifying not only the generation of sulfate radicals but also their efficacy
in expediting the breakdown of organic contaminants into smaller molecules, including
organic acids, through electrochemical reactions. Moreover, these processes potentially
lead to the further oxidation of such molecules into carbon dioxide and water, highlighting
the efficiency of potassium peroxymonosulfate in augmenting the degradation capabilities
of the electroflocculation treatment.
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Table 2. Coordination and electroflocculation fitting parameters of synergism and electrofloccula-
tion kinetics.

Fitting Equation Reaction Rate
(min−1) R2

Electroflocclation with
peroxymonosulfate

InCOD0
InCODt

= 0.0860t − 0.1092 0.0860 0.992

Electroflocculation InCOD0
InCODt

= 0.0575t − 0.135 0.0575 0.959

2.3. Characterization of Flocculation Products and Electrochemical Analysis
2.3.1. XRD Patterns of Flocculation Products

The XRD diffraction patterns (Figure 6) of the flocculated products show a mixture
of broad and narrow peaks. The presence of these peaks suggests that multiple phases
may exist within the sample or that there could be contributions from non-crystalline
or amorphous materials. A comparison with the standard card (JCPDS 76-1821) reveals
that the dominant crystal planes at (015), (202), and (123) correspond to the characteristic
diffraction peaks of hexagonal Fe2O3. The peak intensity observed for the collaborative
treatment is significantly enhanced compared to that for the conventional flocculation
method, resulting in sharper peaks. This enhancement indicates an improvement in the
crystallinity of nano-Fe2O3 [29]. The diffraction peaks at 38.5◦ and 70.6◦ observed in the
XRD patterns may correspond to secondary phases or impurities. Based on Crystallography
Open Database database matching, these peaks align well with SnO2 (2θ = 38.3◦, 70.6◦) and
less strongly with Fe2S4, which suggests that these peaks might originate from different
phases or experimental artifacts, such as reflections from the sample holder or residual
salts present in the treated wastewater. Moreover, experimental artifacts such as reflections
from the sample holder or residual salts (e.g., K2SO4 or FeSO4) may contribute to these
peaks. The addition of potassium peroxymonosulfate almost does not alter the primary
flocculation products during the treatment of electroflocculated wastewater. The resulting
sludge primarily comprises iron and ferrous polyhydroxyl polymers, with Fe2O3 being
generated through dehydration.
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Figure 6. XRD spectrum of flocculated product.

Based on the half-peak width of the three main crystal faces (015), (107), and (123),
the average crystallite size of Fe2O3 is calculated using the Debye-Scherrer Equation (9).
After electroflocculation treatment, the crystallite size is 69.1 nm, while after collabora-
tive treatment, it decreases to 61.6 nm. This reduction suggests that adding potassium
peroxymonosulfate effectively activates the process and inhibits organic matter degrada-
tion by sulfate radicals, thereby limiting the growth of Fe2O3 crystallites [29]. Addition-
ally, these narrow peaks of electroflocculation with peroxymonosulfate likely arise from
secondary phases or impurities introduced during the experimental process. Potential
explanations include: (1) the collaborative treatment may have induced the formation of
small amounts of secondary phases with higher crystallinity compared to the primary
phase of Fe2O3. These phases could include oxides, sulfates, or hydroxides formed due to
the interaction between potassium peroxymonosulfate and other ions in the solution [30].
(2) Narrow peaks might correspond to unreacted salts or byproducts from the reaction,
such as crystallized compounds.

Dhkl =
0.89λ
Bcosθ

(9)

Here, Dhkl is the crystallite size (nm), λ is the X-ray wavelength (0.154 nm), B is the
half-peak width (rad), and θ is the diffraction angle (◦).

2.3.2. FT-IR Spectra of Flocculation Products

The FT-IR analysis of the flocculation products, as illustrated in Figure 7, reveals the
distinct absorption frequencies of infrared light, which elucidate the presence of various
chemical bonds and functional groups within the spectrum. Notably, the electroflocculation
process, both independently and in conjunction with potassium peroxymonosulfate treat-
ment, shows considerable overlap in the absorption bands. The peaks at 3423 cm−1 and
3434 cm−1 indicate the stretching vibrations of the hydroxyl hydrogen bond (-OH), high-
lighting the formation of iron hydroxyl complexes in the flocculation products. Similarly,
the absorption peaks at 1654 cm−1 and 1632 cm−1 are attributed to the water-associated
-OH groups. The vibrational spectral bands corresponding to the Fe-O bonds in hematite
are identified at 607 cm−1 and 621 cm−1. These results suggest that the flocculation prod-
ucts derived from treating flowback wastewater via electroflocculation, either alone or in
combination with potassium peroxymonosulfate, are primarily composed of iron oxides
and bound water molecules, with dehydration processes converting these complexes to
Fe2O3 as a predominant end product. Furthermore, the FT-IR spectra from the combined
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treatment method reveal the presence of strong S=O stretching vibrations at 1195 cm−1

and 1109 cm−1, which were not observed in the electroflocculation products. This dif-
ference may be explained by the interaction between the complexing agents and sulfate
radicals in the solution, or possibly the result of redox reactions between sulfate radicals
and organic compounds in the electroflocculation with the peroxymonosulfate system.
This underscores the enhanced reactive pathways facilitated by the addition of potassium
peroxymonosulfate in the treatment process, leading to a distinct chemical signature in the
flocculation products.
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2.3.3. SEM of Flocculation Products

Figure 8 presents the SEM images of flocculated products. The surface products in
Figure 8a display an uneven and disordered distribution. At a magnification of 1000×,
irregular particles with predominantly mesoporous dimensions are observed, which seem
to contribute to the agglomeration of the flocculates [31]. This observation suggests that the
flocculation process involves the incorporation of non-degraded polymeric organic matter.
In contrast, the surface of the product in Figure 8b exhibits a rough and fluffy texture,
with a relatively uniform distribution of the flocculated product. Fine particles adorn the
surface, indicating that the polymeric organic matter in the wastewater has been effectively
degraded and adsorbed by the floc [32]. This observation highlights the strong adsorption
and sweeping capabilities of the floc.

2.3.4. EDS Element Analysis

The EDS analysis of flocculation products, as shown in Figure 9 and detailed in
Table 3, reveals the elemental composition of flocculates derived from both individual
electroflocculation and its combined application with peroxymonosulfate. The analysis
indicates the predominance of elements such as oxygen (O), sodium (Na), sulfur (S),
chlorine (Cl), and iron (Fe) within the flocculates. In particular, the flocculates obtained
from electroflocculation alone show iron (Fe) and oxygen (O) as the major components,
with atomic percentages of 36.72% and 59.87%, respectively. These proportions peak in
the flocculates from the combined method, highlighting the enhanced efficiency of the
synergistic approach. A distinctive characteristic of the flocculates from the combined
treatment, compared to electroflocculation alone, is the presence of sulfur (S), suggesting
the involvement of sulfate radicals in the flocculation process due to peroxymonosulfate
activation. The atomic S ratio is approximately 1:4, reflecting the oxidative dynamics
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facilitated by sulfate radicals during treatment. Additionally, trace amounts of Na+ and Cl−

ions were observed, likely remnants of the high salinity characteristic of the wastewater
being treated. These ions are encapsulated within the flocculation products, indicating the
complex nature of the treatment matrix and the comprehensive removal capabilities of the
combined electroflocculation and peroxymonosulfate method.
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Table 3. Element composition and proportion of flocculation products.

Element Electroflocculation Electroflocculation with
Peroxymonosulfate

O 59.87 63.54
Na 2.44 0.87
S _ 8.91
Cl 0.98 0.72
Fe 36.72 25.96

2.3.5. CV Analysis

The CV results, as presented in Figure 10, reveal significant differences between the
electroflocculation method alone and the electroflocculation-peroxymonosulfate combined
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treatment. Electroflocculation alone produces only a weak oxidation peak, indicating that
the oxidation reaction at the electrode is largely irreversible. In contrast, the shift to a
more positive potential in the electroflocculation-peroxymonosulfate system implies the
formation of reactive species, suggesting the generation of strongly oxidizing substances,
such as sulfate radicals, which are stronger oxidants than hydroxyl radicals. Furthermore,
the significant increase in peak current observed with the addition of peroxymonosulfate in-
dicates the enhanced electrical conductivity of the solution, which accelerates the oxidation
rate of organic matter.
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Figure 10. EDS of flocculation product: electroflocculation and electroflocculation with peroxy-
monosulfate.

3. Experimental and Materials
3.1. Materials

All the reagents were analytically pure without any purification. The original shale
gas flowback wastewater was taken from a shale gas production base in a pale yellow
turbid state in Yibin, Sichuan Province, China. The characteristics and parameters of shale
gas flowback wastewater were as shown in Table 4.

Table 4. The characteristics and basic parameters of shale gas flowback wastewater.

Color COD
(mg/L) TOC (mg/L) NH3 − N

(mg/L)
NO−

3 − N
(mg/L)

NO−
2 − N

(mg/L) pH Conductivity
(ms/cm)

Light
yellow 3799 1312 1688 247 16.4 8.5 26.8

3.2. Experimental Methods

The pure iron electrode (3 cm long, 2 cm wide, 0.3 cm thick) was polished with
2000 mesh sandpaper, immersed in diluted hydrochloric acid for 10 min to remove surface
impurities, cleaned ultrasonically, and dried completely. The pure iron electrode served
as the anode, while a titanium plate (7 cm long, 1 cm wide, 0.3 cm thick) functioned
as the cathode. A volume of 500 mL of shale gas flowback wastewater was introduced
into the electrolytic cell, and a precision DC power supply was used to optimize the
current density. Reaction conditions, such as pH and electrode spacing, were adjusted
to enhance the treatment efficiency of the electroflocculation process. The amount of
potassium peroxymonosulfate added was determined based on the mass change of Fe2+

and the reaction formula (1) involving activated peroxymonosulfate. Sampling and analysis
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were conducted at 5-min intervals to investigate the combined effects of current density,
pH (by using 1 M H2SO4 or NaOH to adjust the pH to the target value), and KHSO5

nanoparticle concentration (900~2100 mg/L) on treatment efficiency and explore initial
reaction kinetics. The resulting flocculation products were vacuum-dried at 40 ◦C for 24 h
before being prepared for testing. Characterization of these samples provided insights into
the reaction mechanism underlying the collaborative wastewater treatment.

3.3. Characterization and Electrochemical Properties

The COD of the wastewater was determined using the oxidation microreflux method
both before and after treatment, with the experimental results representing the average
values from three tests. The X-ray diffraction (XRD) analysis of the flocculated products was
performed using a Shimadzu XRD-7000 diffractometer (Japan) to determine their primary
phase structures. The test conditions for XRD were as follows: Cu-Kα radiation with a
wavelength of 0.154 nm, operated at 40 kV and 40 mA. The scanning range was 10◦~80◦,
with a step size of 0.02◦ and a scanning rate of 2◦/min. The morphology, structure, and
chemical composition of the flocculated products were examined using scanning electron
microscopy and energy-dispersive spectroscopy (SEM-EDS) with a Nippon Electron JSM-
7800F SEM (JEOL Ltd., Tokyo, Japan). Fourier-transform infrared (FT-IR) spectra of the
flocculation products were obtained using a Tensor27 Fourier infrared spectrometer (Bruker
Optics, Ettlingen, Germany) to identify the main functional groups. The test range selected
in this study was 500–4000 cm−1.

Cyclic voltammetry (CV) was used to determine the reversibility of the redox reaction.
CV potentiostatic method was adopted in cyclic voltammetry potentiostatic mode by
using an electrochemical workstation (CHI660, Chenhua, Shanghai, China). The working
electrode was the iron electrode, the counter electrode was the platinum electrode, and the
reference electrode was the saturated Ag/AgCl electrode. The scanning rate was 10 mV/s,
the scanning range was −1~1 V, with 50 mL shale gas flowback wastewater was mixed
with 50 mL 1 mol/L KOH as the electrolyte.

4. Conclusions
In this study, potassium peroxymonosulfate was introduced into an electrolytic setup

using iron as the anode and a titanium plate as the cathode to treat shale gas fracturing
flowback wastewater. The process involved anodic electrolysis, where the organic con-
taminants in the wastewater were oxidized and degraded by sulfate radicals generated
through the activation of peroxymonosulfate by Fe2+. Simultaneously, Fe2+ was oxidized
to Fe3+, which then combined with hydroxide ions in the solution to form Fe(OH)3, a
flocculating agent. This mechanism facilitated both the flocculation and oxidative degrada-
tion of the wastewater, achieving a comprehensive treatment approach. The key findings
of the study indicated that the combined use of electroflocculation and potassium per-
oxymonosulfate significantly enhances the treatment efficiency of flowback wastewater.
Operational parameters were optimized to a current density of 40 mA/cm2, a pH of 7, and a
potassium peroxymonosulfate concentration of 1500 mg/L, under which the COD removal
efficiency reached an impressive 93.4%. In comparison, the COD removal efficiency with
electroflocculation alone was recorded at 82.4%. The phase analysis of the flocculated
material confirmed the effective generation of Fe2+, which activated the potassium perox-
ymonosulfate, leading to the production of highly reactive sulfate radicals. Additionally,
detecting Fe2O3 within the treated material confirmed the oxidation of Fe2+ to Fe3+. As a
result, the sulfate radicals facilitated the degradation of complex organic pollutants in the
wastewater, thereby accelerating reaction kinetics and enhancing the overall effectiveness
of the treatment process.
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