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Abstract: Recent developments in the synthesis of substituted polyacetylenes have consid-
erably benefitted from advancements in organometallic catalysis; however, most important
developments rely on the advent of Rh-catalyzed living polymerizations. The latter not
only allow the tailoring of well-defined degrees of polymerization with low and narrow
polydispersity but also enable access to stereochemical well-defined cis-transoidal poly-
mers with a helical structure. These novel polymers open new avenues for application
in photonics and electronics. Rh-catalyzed living polymerizations are mild and concise
metal-catalyzed polymer syntheses that not only allow for the decoration of sidechains with
multiple functionalities, including chiral units, but also enable enantioselective induction
of helical chirality, memory of chirality, well-defined copolymerization, and end-group
functionalization at both termini. This review summarizes recent developments in metal-
catalyzed syntheses of substituted polyacetylenes, with a special focus on Rh-catalyzed
living polymerizations.

Keywords: conducting polymers; functional π-systems; polyacetylenes; Rh-catalyzed
living polymerization; transition metal catalysis

1. Introduction
Conductive organic polymers have represented a significant paradigm shift because

organic materials and, in particular, polymers have long been considered to be insulating
materials. Less than fifty years ago, electrically semiconducting and conducting polymers
began their remarkable rise, becoming essential components of organic electronics with
significant technical potential [1–3]. Their applications are multifold, spanning electrolumi-
nescence in organic light-emitting diodes (OLEDs) for converting electricity into light [4,5],
to photoconductors [6] and organic solar cells (OSCs) for converting sunlight into electric-
ity [7,8]. Consequently, numerous updates on the synthesis, characterization, properties,
and applications of electrically conductive organic polymers have been published over
time [9–11].

From a structural point of view, (semi)conducting organic polymers are widely ex-
tended π-electron systems, and first materials, such as aniline black, date back to the early
days of organic chemistry in the first half of the 19th century. Many other polycondensates
were prepared thereafter; however, without knowledge of their unusual conductivity po-
tential [12–14]. It was not until Shirakawa, Heeger, and MacDiarmid in the 1970s achieved
a breakthrough by synthesizing and characterizing an electrically conductive “doped”
polyacetylene film [15,16]. In 2000, the three pioneers were awarded the Nobel Prize in
Chemistry for their success in synthesizing the first stable organic polymer with a specific
electrical conductivity similar to that of metals—electrically conductive polyacetylene [17].
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This discovery opened up a whole new world of “plastic electronics” and conjugated
polymers, such as polyacetylene (PA), poly-p-phenylene (PPP), polypyrrole, polythiophene,
and many others, were suddenly seen in a whole new light as (semi)conductive organic
materials (Figure 1).
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Figure 1. Selected conjugated polymers.

From the perspective of basic research, PA is an excellent model for one-dimensional
conductors with considerable potential for the discovery of novel electronic materials,
including magneto-optical properties [18]. With the disclosure of new PA syntheses, such
as metathesis-based processes [19–21], increasingly substituted PAs have become avail-
able [22]. These materials differ significantly from traditional unsubstituted PAs in terms of
conjugation, synthesis, architectural diversity, and functionality. These materials can show
high gas permeability, improved mechanical properties (e.g., softness and ductility), ther-
mal stability, helicity, photoelectronic functionalities, and nonlinear optical and magnetic
properties. In particular, the Rh-catalyzed polymerization of substituted acetylenes has
opened new avenues to network-type conjugated PAs [23] and helical PAs with circular
polarized luminescence (CPL) [24] for potential application in displays, biomedical diag-
nostics, and sensorics [25]. In addition, helical PAs can be employed for transformation
into helical graphite [26]. PAs functionalized with electron-donating substituents have
been shown to exhibit hole-conducting properties, rendering them potential organic pho-
toconductors in xerography [27–29]. Finally, due to their rigidity, disubstituted PAs form
micropores, which are suitable for gas and liquid separation and the highest permeabil-
ity has been observed in poly[1-(trimethylsilyl)-1-propyne] (PTMSP) [30,31]. Therefore,
this overview summarizes recent developments in the synthesis of substituted PAs by
catalytic methods.

2. Structural Aspects of Substituted Polyacetylenes and Mechanistic
Scenarios of Polymerization

Despite the described metallic character of doped unsubstituted PA, its potential indus-
trial use is limited due to its inherent instability against oxidation and hydrolysis, as well
as its poor solubility [12]. The processability can be significantly improved by the targeted
functionalization of PAs with solubility-enhancing and electron-rich substituents [32,33].
Substituted PAs can be prepared through the polymerization of mono- or disubstituted
acetylenes. As with unsubstituted PAs, transition metal complexes are suitable catalysts
for polymerization. For successful polymerization, the catalyst system must exhibit high
oxidation stability and tolerance towards various functional groups, considering stereo-
electronic effects [34]. Furthermore, the catalyst influences important parameters, such
as the degree of polymerization, polydispersity, and stereoregularity of the substituted
PA [35]. In principle, PA adopts trans- or cis-configurations of the double bonds, including
transoidal and cisoidal conformations, with respect to the orientation of the substituents
within the polyene backbone (Figure 2).
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Figure 2. Possible configurational conformers of substituted PAs [32].

Although the isomers can undergo thermal or photochemical isomerization, the stere-
oregular preparation of both isomers is possible using the correct catalyst system [36,37].
Polymerization can proceed through two mechanistic scenarios. According to the metathe-
sis mechanism, the formation of trans-PAs occurs, whereas cis-PAs are accessible via the
2,1-insertion mechanism (Scheme 1). Both mechanisms have been elucidated in detail
through 1H NMR and IR experiments [35]. The insertion mechanism can be described in
analogy to Ziegler–Natta polymerization (Scheme 1, top) [38]. Initially, the PA coordinates
with the metal. Subsequently, the alkyne inserts into the metal–carbon bond in a cis-fashion.
The free coordination site on the metal allows this step to be repeated multiple times,
constructing the cis-polyene backbone. The metathesis mechanism was first described by
Chauvin for olefin metathesis and later extended to acetylene polymerization through
the experimental findings of Masuda and Katz (Scheme 1, bottom) [39–41]. Initially, the
alkyne coordinates side-on to the metal carbenoid. A [2+2]-cycloaddition forms a metalla-
cyclobutene intermediate, which then opens via a [2+2]-cycloreversion. The resulting metal
carbenoid allows the continuous insertion of additional monomer units.
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Scheme 1. Schematic representation of the two possible mechanistic scenarios of metal-catalyzed
acetylene polymerization: insertion (top) and metathesis (bottom) pathways [35].

Additionally, PAs can be obtained from precursors in the form of cyclic olefins or
macromolecules [42]. Substituted PAs are accessible via the ring-opening metathesis poly-
merization (ROMP) of cyclooctatetraenes [43,44]. Alternatively, PAs can also be prepared
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through the post-polymerization modification of polyvinyl chloride (PVC) via dehydro-
halogenation [45,46].

3. Catalyst Systems for the Polymerization of Substituted Acetylenes
The synthesis of substituted PAs is typically carried out using transition metal cat-

alysts [42,47–49]. The search for a universally applicable catalyst system, considering
the sensitivity of functional groups, presents a significant methodological challenge as
the substituents on the acetylene influence both the reactivity of the monomer and the
control of polymerization [33]. Generally, both early (e.g., Nb, Ta, Mo, and W) and late
transition metal complexes (e.g., Fe, Ru, Pd, and Rh) are suitable for the polymerization of
monosubstituted acetylenes. Rhodium catalysis is particularly important as it allows for
controlled living polymerization [35,50,51]. Therefore, rhodium-catalyzed polymerization
will be discussed separately (vide infra).

For disubstituted acetylenes, the number of suitable catalyst systems is significantly
limited due to the restricted accessibility of the reaction center caused by the steric effects
of the substituents [32,33]. Sterically demanding diarylacetylenes generally cannot be
polymerized in the presence of late transition metals, but require early transition metal
catalysts, such as tantalum, tungsten, molybdenum, and niobium complexes. Transition
metal chlorides are often combined with organometallic cocatalysts based on stannanes.
Prominent examples include WCl6-Ph4Sn and TaCl5-Bu4Sn [52,53]. However, the appli-
cability of these catalysts is limited due to their high oxophilicity, meaning various polar
functional groups and electron-withdrawing substituents are not tolerated [54]. The use of
palladium catalysts in combination with sterically demanding monophosphane ligands
offers the possibility to extend the substrate scope of polydiarylacetylenes (Scheme 2) [54].
Recently, a similar catalyst system demonstrated excellent functional group tolerance, effi-
ciently polymerizing various propargyl compounds into cis-transoidal PAs with molecular
weights of 5−15 kDa and narrow dispersities (1.4–2.1) [55].
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Scheme 2. Palladium-catalyzed polymerization of disubstituted acetylenes according to Cas-
tanon [54].

Initially, early transition metals based on the Ziegler–Natta catalyst were used for the
polymerization of monosubstituted acetylenes [32]. However, this polymerization method
was characterized by poor control and resulted mostly in polymers with high polydispersi-
ties and low stereoregularities. This issue was mitigated by the use of late transition metals.
Palladium and ruthenium catalysts, for instance, have been developed for the efficient
polymerization of acetylenes (Figure 3) [34]. Pyrazole-coordinated palladium complexes
generally require activation with silver triflate [56]. ortho-Substituted phenylacetylenes can
be polymerized in the presence of ruthenium carbene complexes [57]. Additionally, nickel
carbene complexes can be used after activation with methylaluminoxane (MAO) [58].
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Figure 3. Examples of catalysts for the polymerization of monosubstituted acetylenes: pyrazole
palladium complexes by Darkwa (left) [56], Grubbs–Hovyda ruthenium catalyst (center) [57], and
nickel–carbene complexes by Buchowitz (right) [58].

4. Rhodium-Catalyzed Polymerization of Monosubstituted Acetylenes:
The Path to Living Polymerization

Modern catalytic systems for the polymerization of monosubstituted acetylenes are
predominantly dominated by rhodium(I) complexes, which exhibit high reactivity towards
acetylenes [35]. In particular, such complexes are characterized by high stability in the
presence of various functional groups, such as nucleophilic amines, hydroxy groups, or
azo compounds, considerably expanding the class of monosubstituted polyacetylenes
and controlling processability [32]. Furthermore, rhodium(I) complexes exhibit high tol-
erance towards polar and protic solvents, allowing polymerizations to be conducted in
THF, dichloromethane, alcohols, and even water [59]. This approach can counteract the
known solubility issues of terminal alkynes, and the substituted polyacetylenes obtained as
polymerization products can be precipitated in methanol [50]. Due to the low oxophilicity
of rhodium, rhodium(I) complexes demonstrate low sensitivity to hydrolysis and oxidation,
making them stable for storage [60].

Commercially available phenylacetylene can be considered the simplest terminal
alkyne as a model system for investigating the polymerization of monosubstituted
acetylenes. Initial studies on the rhodium-catalyzed polymerization of phenylacetylenes
date back to 1969 [61]. For instance, the preparation of poly(phenylacetylene) in the
presence of the Wilkinson catalyst, already established for the reaction of olefins, was
possible at high temperatures. However, as confirmed by Kern, the material could only
be obtained with a low degree of polymerization and molecular weights of 1100 Da [62].
It was only through the contributions of Tabata that access to high-molecular-weight
poly(phenylacetylene) using dimeric rhodium(I) complexes became possible. The activa-
tion of [Rh(nbd)Cl2] occurred through dimer cleavage in the presence of triethylamine
(Scheme 3) [63].
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Scheme 3. Base-mediated activation of the dimeric rhodium complex for the polymerization
of phenylacetylenes.

The obtained polyphenylacetylenes exhibited high polydispersities, indicating poor
reaction control. To counteract the high polydispersities, the diene ligands of the binary
rhodium complex can be varied (Figure 4). The complex with tetrafluorobenzobarrelene
(tfbb) as a ligand exhibits particularly high reactivity [64].
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Figure 4. Various diene ligands in binuclear rhodium complexes for the polymerization of monosub-
stituted acetylenes.

The catalytic activity of binuclear rhodium complexes can be significantly increased
by the cocatalytic action of selected organometallic compounds, such as methyllithium
and triethylaluminum, allowing phenylacetylenes with high molecular weights to be
obtained in quantitative yields [65]. Additionally, according to Alper, zwitterionic rhodium
complexes can also be utilized for the production of stereoregular polyphenylacetylenes
(Figure 5). However, their activity requires the addition of hydrosilylation reagents, such
as triethylsilane [66].
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Figure 5. Selected examples of zwitterionic rhodium-(diene)-tetraphenylborate complexes for the
stereoregular polymerization of phenylacetylenes according to Alper [66].

For the application of substituted polyacetylenes in organic electronics, both poly-
dispersity and stereospecificity are of central importance [32]. However, the presented
catalyst systems based on active rhodium complexes only allow access to monosubstituted
polyacetylenes with high degrees of polymerization and broad molecular weight distri-
butions [62]. A solution is provided by the concept of living polymerization, established
by Szwarc [67], which was demonstrated as early as 1936 by Ziegler through the anionic
polymerization of styrene and butadiene. Formally, living polymerization requires the
simultaneous growth of all chains, with the chain ends remaining active, or “alive”, after
polymerization. This approach inhibits chain termination and chain transfer reactions
that prevent controlled polymerization [68]. The living chain end can be deactivated only
through the targeted addition of termination reagents. Consequently, the degree of poly-
merization can be controlled via the monomer/catalyst ratio, allowing for the production of
polymers with defined molecular weights. There is a linear relationship between conversion
and molecular weight [50]. The first suitable catalyst system for the living polymerization
of monosubstituted acetylenes was introduced by Noyori in 1994 and could be generated
from the established rhodium complex in the presence of lithium phenylacetylide and triph-
enylphosphane (Scheme 4) [69]. However, controlled polymerization was only possible
with the addition of dimethylaminopyridine (DMAP).
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The in-situ formation of the rhodium(I)-alkynyl complex is particularly attractive
from an atom-economy perspective. For example, the complex established by Noyori can
be generated from phenylacetylene, sodium methanolate, and triphenylphosphane and
can be used for the polymerization of stereoregular all-cis-poly(phenylacetylene) with a
polydispersity of Ð = 1.5 (Scheme 5). Due to poor reaction yields, the required addition of
Lewis acids for activation, and the lack of possibilities for end-group functionalization, the
Noyori catalyst systems need optimization [62].
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Scheme 5. Stereoregular polymerization of phenylacetylene using the complex [Rh(nbd)Cl]2, accord-
ing to Noyori.

The fact that the controlled polymerization of phenylacetylenes using rhodium(I)
catalysts occurs via a cis-insertion mechanism suggests that polymerization proceeds via a
reactive vinyl-rhodium species. Accordingly, Masuda developed a highly efficient vinyl-
rhodium complex for the living polymerization of phenylacetylenes, which could also be
generated in-situ from the binary rhodium complex (Scheme 6) [70].
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Scheme 6. In-situ formation of the active vinyl-rhodium(I) complex for the living polymerization of
phenylacetylene (top) and the stereoregular polymerization of phenylacetylene (bottom), according
to Masuda [50].

For the first time, this catalyst system enabled the controlled polymerization of para-
substituted phenylacetylenes with electron-donating substituents and various functional
groups, such as esters, propiolates, and propargyl derivatives. Inspired by Masuda’s work,
Taniguchi et al. developed an alternative reaction sequence for the in-situ formation of the
active vinyl-rhodium species [50,51]. Starting from the binuclear rhodium complex, with
an arylboronic acid and triphenylphosphane, the vinyl-rhodium species can be generated
under basic conditions. Furthermore, the choice of the arylboronic acid offers the possibility
of end-capping, as the aryl group is mechanistically incorporated into the polyene backbone
(Scheme 7) [50].
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The mechanistic scenario of the highly stereoregular polymerization was comprehen-
sively elucidated by Taniguchi et al. through NMR studies of the isolated intermediates,
as well as X-ray structural analyses (Scheme 8) [50]. Starting from the binuclear rhodium
complex, an active rhodium species is first generated via base-mediated transmetalation.
The free coordination site is temporarily occupied by the solvent before tolane coordinates
side-on to rhodium. This is followed by the cis-insertion of tolane into the rhodium–carbon
bond, forming the active vinyl-rhodium species. Mass spectrometric and NMR spectro-
scopic investigations suggest that there can be a subsequent insertion of another tolane
unit. The triphenylphosphane used can coordinate to the free coordination site of the active
vinyl-rhodium species.
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Scheme 8. Postulated mechanism for the formation of catalytically active vinyl-rhodium species for
the polymerization of arylacetylenes, according to Taniguchi et al. [50].

Due to steric interactions of triphenylphosphane and the phenyl ring, triphenylphos-
phane can decoordinate to form an η5-complex. The intramolecular π-complex can easily
cleave in the presence of the terminal alkynes used as monomers, with side-on coordination
of the alkyne. The construction of the polyene backbone occurs through the cis-2,1-insertion
of the alkyne into the rhodium–carbon bond (Scheme 9). The final proto-demetalation with
acetic acid allows for termination of the active chain end, resulting in the precipitation of
the polymer.
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In addition to the simple termination of the chain end with acetic acid, targeted
end-capping of the polymer is also possible by adding acrylates and acrylamides [71].
Rhodium(I)-catalyzed conjugate addition of boronic acids and the Michael system provides
access to telechelics with defined molecular weights. This method also yields chiral poly-
acetylenes with defined helicities. The method established by Taniguchi et al. for the poly-
merization of monosubstituted acetylenes can also be transferred from phenylacetylenes to
propargylamides [72]. By optimizing the reaction conditions, polymerizations can even be
performed in water, yielding water-soluble polyacetylenes [60].

5. Syntheses and Properties of Functional Monosubstituted Arylacetylenes
In recent decades, poly(phenylacetylenes) (PPAs) have shown remarkable potential

for forming diverse supramolecular assemblies, such as fibers, nanospheres, liquid crystals,
and hybrid materials [73]. Their helical structure, tunable through functional pendants,
enables unique properties for applications in asymmetric catalysis, nanoreactors, and chiral
recognition. The helicity of PPAs can be proven and investigated using AFM microscopy
and CD spectroscopy [74–76]. In particular, the multicomponent catalytic system for
the well-controlled living polymerization of phenylacetylenes developed by Taniguchi
et al. [50] paved the way for recent applications in synthesizing diversely functionalized
substituted PPAs.

Maeda and Yashima summarized various approaches to the construction of one-
handed helical polyacetylenes using noncovalent chiral interactions with nonracemic
chiral guests, enabling high cooperativity and chiral amplification, inducing nearly single-
handed helices in polymer backbones [77]. The “memory effect” allows dynamic helices
to transform into stable static ones by increasing helix-inversion barriers. These polymers
are useful as chiral materials, such as switchable chiral packing for enantiomer separation,
showcasing unique functionalities beyond conventional helical polymers with covalently
bonded chiral pendants. This strategy offers new possibilities for creating functional helical
polyacetylenes with tunable properties.

Inaba et al. reported the synthesis of star polymers bearing three helical PPA chains
with precisely controlled molecular weights and a polydispersity of less than 1.03, em-
ploying the multicomponent catalyst system (Scheme 10) [78]. The controlled structure of
the polymers was visualized using AFM, corroborating the star-shaped structure. The PA
chains ligated by ester groups were also hydrolyzed and analyzed using size exclusion
chromatography, demonstrating uniform polymerization on each branch. The chiroptical
analysis further reveals chiral amplification of the star-shaped polymer, exerted by the R-
or S-configured N-acyl alanine esters.

Catalysts 2025, 15, x FOR PEER REVIEW 10 of 18 
 

 

analysis further reveals chiral amplification of the star-shaped polymer, exerted by the R- 

or S-configured N-acyl alanine esters. 

 

Scheme 10. Rhodium-catalyzed polymerization of 1,3,5-tris(p-B(pin)phenyl)benzene bearing N-acyl 

alanine esters to star-shaped polymers with precisely controlled PPA sidearms [78]. 

Starting with the formation of the linear polymer branch using a triphenylvinyl–rho-

dium–norbornadiene phosphane complex, Mino et al. prepared star-shaped helical sub-

stituted PPAs bearing L-valine and L-threonine moieties. They showed that the chiroptical 

intensities of the star-shaped polymers were smaller in comparison to the corresponding 

linear polymers in solution, but were larger in films (Scheme 11) [79]. Interestingly, the 

water contact angles and refractive indices of the star-shaped polymers were smaller in 

comparison to the linear polymers. 

 

Scheme 11. Rhodium-catalyzed polymerization of L-valine and L-threonine ligated phenylacety-

lenes, followed by three-fold ligation to a central trialkynyl core through insertion/proto-demeta-

lation, resulting in star-shaped polymers with PPA sidearms [79]. 

The Rh-multicomponent catalyst was successfully applied by Lu et al. to synthesize 

stimuli-responsive helical block copolymers with substituted PPA backbones containing 

dendritic oligoethylene glycol pendants and photoswitchable spiropyran units (Scheme 

12) [80]. These materials unite tuneable thermoresponsivity, amphiphilicity, and 

Scheme 10. Rhodium-catalyzed polymerization of 1,3,5-tris(p-B(pin)phenyl)benzene bearing N-acyl
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Starting with the formation of the linear polymer branch using a triphenylvinyl–
rhodium–norbornadiene phosphane complex, Mino et al. prepared star-shaped helical
substituted PPAs bearing L-valine and L-threonine moieties. They showed that the chiropti-
cal intensities of the star-shaped polymers were smaller in comparison to the corresponding
linear polymers in solution, but were larger in films (Scheme 11) [79]. Interestingly, the
water contact angles and refractive indices of the star-shaped polymers were smaller in
comparison to the linear polymers.
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Scheme 11. Rhodium-catalyzed polymerization of L-valine and L-threonine ligated phenylacetylenes,
followed by three-fold ligation to a central trialkynyl core through insertion/proto-demetalation,
resulting in star-shaped polymers with PPA sidearms [79].

The Rh-multicomponent catalyst was successfully applied by Lu et al. to synthe-
size stimuli-responsive helical block copolymers with substituted PPA backbones con-
taining dendritic oligoethylene glycol pendants and photoswitchable spiropyran units
(Scheme 12) [80]. These materials unite tuneable thermoresponsivity, amphiphilicity, and
reversible helicity switching upon heating. Photoisomerization of the appended spiropyran
moieties does not significantly affect helicity, and the block copolymers form long fibers
with diameters of 25 nm.
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Luminescent polyacetylenes (LEPAs) offer a potential application in organic elec-
tronics [81]. These polyacetylenes are disubstituted containing electron-rich heterocycles.
However, monosubstituted polyacetylenes are typically non-emissive, similar to unsubsti-
tuted polyacetylene, due to the unfavorable energetic positioning of the electronic ground
and excited states [82]. The emission properties of LEPAs can be controlled by the substitu-
tion pattern, as seen for the green fluorescent poly(diphenylacetylene) [42]. Furthermore, by
functionalizing with tetraphenylethene or hexaphenylsilole, PAs with aggregation-induced
emission (AIE) behavior have been reported [83–85].

Phenothiazine, a strong, reversibly oxidizable heterocyclic donor system, is a con-
stituent of many organic optoelectronic materials [86], polymers for energy storage [87],
and fluorescent [88] and OSC dyes [89,90]. However, luminescent phenothiazinyl-based
polyacetylenes have remained unknown until recently.

Starting from 3-ethynyl-substituted phenothiazinyl-merocyanines, soluble phenothiazinyl-
merocyanine substituted PAs were readily accessed using rhodium-catalyzed polymeriza-
tion, as recently demonstrated by Pisetsky, Budny, and Müller (Scheme 13) [91]. Optical
spectroscopy (absorption and emission) revealed that 7-acceptor-substituted phenoth-
iazinyl polyacetylenes with conjugatively ligated merocyanines are emissive in solution,
displaying positive emission solvatochromism. For a few polymers, even distinct solid-state
luminescence was detected.
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Scheme 13. Rhodium-catalyzed polymerization of 3-ethynyl-substituted phenothiazinyl-
merocyanines to emissive phenothiazinyl-merocyanine decorated PAs (inset: emission solvatochro-
mocity of PA (R = indane-1,3-dione-2-ylidene) in solvents of various polarity (from left to right:
n-hexane, cyclohexane, toluene, benzonitrile, and dichloromethane)) [91].

Similarly, Pisetsky and Müller expanded the polymerization of 3-ethynyl-substituted
7-(hetero)aryl-, 7-(diarylamino)-, and 7-stryryl-phenothiazines to the corresponding 3-
functionalized conjugated phenothiazinyl-substituted PAs, bearing extended π-conjugation
in the sidechains (Scheme 14) [92]. As in the phenothiazine-merocyanine PA series, narrow
molecular weight distributions were obtained in most cases. Selected polymers are lumines-
cent (Φf = 0.06), displaying moderate Stokes shifts and positive emission solvatochromism.
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Scheme 14. Rhodium-catalyzed polymerization of 3-ethynyl-substituted 7-(hetero)aryl-, 7-
(diarylamino)-, and 7-stryryl-phenothiazines to conjugated phenothiazinyl PAs [92].

The multicomponent catalytic system of [Rh(nbd)Cl]2, arylboronic acids, dipheny-
lacetylene, and aqueous KOH, enabling well-controlled, living polymerization, further
allows for the introduction of functional groups at the polymer ends and facilitates
terminal modifications with α,β-unsaturated carbonyl compounds, yielding telechelic
poly(phenylacetylene)s [93]. In addition, novel rhodium complexes isolated from this
system provide insights into the polymerization mechanism, which was also extended to
water-soluble and non-conjugated acetylenes.

A unique approach to PPAs was recently presented by He et al., who employed the
Mizoroki–Heck coupling reaction of vinyl bromides to synthesize linear and branched
poly(phenylacetylene)s (Scheme 15) [94]. Starting from α-bromostyrene derivatives as
monomers, the polymer-analogous vinylation reaction proceeded efficiently with potas-
sium carbonate as a base, whereas triethylamine did not show any catalytic reactivity.
The obtained PPAs exhibited a broad molecular weight distribution, indicating typical
step-growth polymerization.
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6. Conclusions
Almost 50 years ago, synthetic advances in polyacetylene synthesis and the discovery

of their (semi)conductivity upon partial oxidation or reduction caused a paradigm shift in
organic (semi)conducting materials, leading to many applications. Although the dream of
replacing metals as conductive materials in electronic devices was not fulfilled, completely
new avenues for the application of organic (semi)conductors arose, initiating a steady quest
for new functional π-systems. Besides long conjugation pathways in polyacetylene, their
structural peculiarities, especially with respect to substituted derivatives, have inspired
synthetic organometallic chemistry, which ultimately provided new types of structurally
well-defined substituted polyacetylenes through living rhodium-catalyzed polymerization
and chain-end functionalization. The obtained materials are helical and open numerous
options for chiroptic applications in photonics and electronics. This review provides only a
snapshot of a rapidly developing and vibrant field in organic materials chemistry. Most
importantly, organometallic synthesis and catalysis are sitting at the forefront of discovering
exciting properties and structural features.
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