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Abstract: The efficient removal of dyes and Cr(VI) from wastewater is imperative.
Therefore, a mixed metal oxide CuMoV(450) derived from a polyoxometalate-based
metal-organic framework (POMOF) [Cu(2,2’-bipy)][Cu(2,2"-bipy),]2[PMogVO4,]02H,0
(CuMoV) was synthesized by calcination, fully characterized by XRD, XPS, FI-IR, and
SEM methods, and explored for the heterogeneous catalytic degradation of methylene
blue (MB) dye and the catalytic reduction of Cr(VI) in aqueous media over NaBH, under
mild conditions. The removal rates for MB and Cr(VI) were 95.9% (30 min) and 96.5%
(2.0 min), respectively. The pseudo-first-order rate constants of MB degradation and Cr(VI)
reduction were 0.093 min~! and 1.536 min—!, respectively. The highly catalytic reusability
of CuMoV(450) was confirmed by the recycling experiments. Moreover, the possible mech-
anisms of MB degradation and Cr(VI) reduction were proposed. The catalytic activities of
CuMoV(450) were much better than those of its parent compound CuMoV, proving that
POMOFs were good candidates for the preparation of mixed metal oxides with excellent
catalytic performances. This work not only indicates that CuMoV(450) has the potential to
be a satisfied catalyst for wastewater remediation via catalytic degradation and reduction,
but also gives a clue to synthesize mixed metal oxides with excellent catalytic properties by
the calcination of POMOFs.

Keywords: MB degradation; Cr(VI) reduction; mixed metal oxide; POMOFs

1. Introduction

Developing novel efficient technology to deal with wastewater containing various
dyes including methylene blue (MB) is urgent, because such wastewater can bring about
serious environmental and health problems. So far, a series of physical, chemical, and
biological techniques, such as adsorption, photocatalysis, electrochemical degradation,
biodegradation, and Fenton reaction, have been used to address the issue of dye wastewater
treatment [1]. However, these techniques often require complex procedures, external
energy, and stimulants [1]. Hence, exploring other simple and effective processes for dye
wastewater treatment is more desirable in the field of environmental remediation.

Industrial wastewater with heavy metals composition is another source of water
pollution [2]. Hexavalent chromium Cr(VI) is one of the most dangerous and ubiquitous
metal environmental pollutants, which is highly toxic and carcinogenic to various living
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organisms [2]. Till now, adsorption, reduction, chemical precipitation, and membrane
filtration and photocatalytic technology methods have been explored to remove Cr(VI) [2,3].
Among the various methods employed, the chemical reduction of Cr(VI) to Cr(IIl) was the
most preferred and widely studied, because Cr(Ill) is relatively inert and non-toxic and
a micro-nutrient for the human body [2,4]. To date, the dominant reductive catalysts are
noble metal nanoparticles (NPs) [5]. It is an urgent task to find a noble-metal-free catalyst
with high catalytic reduction activity because noble metals are too rare to be practically
applied as catalysts.

Recently, heterogeneous catalysis, which can degrade organic pollutants including
dyes under ambient conditions, has been regarded as a potential method to deal with dye
wastewater [1]. This type of chemical catalysis is of great interest due to the easy operation
without external energy or chemical stimulants. But reports about the degradation of
environmental contaminants under ambient conditions are rare [6].

Metal oxides have been widely used in heterogeneous catalysis, energy storage and
conversion, sensors, and biomedical fields [7]. Desirable metal oxides are expected to
oxidize and remove organic compounds in the dark without adding external energy and
chemical stimulants [6]. Metal oxides, especially perovskites with the formula of ABO3, are
the most studied mixed oxides in heterogeneous catalysis [6,8]. But it is necessary to search
for other types of catalysts due to the formation of a carbonate phase on perovskites and
the structural collapse during the reaction [8].

Polyoxometalates (POMs) are a special class of metal MoV, MoV!, NbY, TaV, VV,
and WV1) oxide polyanion clusters with highly tunable functional characteristics, ranging
in size from nanometer to micrometer, and they are explored in various areas such as
medicine, catalysis, and electrochemistry [9]. POMs are excellent precursors to prepare
well-dispersed, nanoscale, and porous metal composites, such as multi-metallic oxides and
carbides [10].

Metal-organic frameworks (MOFs) are crystalline porous compounds composed of
covalently bonded metal ions or metal clusters and organic ligands [11]. POM-based metal—-
organic frameworks (POMOFs) are composed of POM units and metal-organic fragments.
POMOFs were usually synthesized by the self-assembly of POM precursors or simple
salts, metal ions, and organic ligands under hydro-/solvo-/iono-thermal conditions or
a conventional aqueous solution [12]. POMOFs integrate the advantages of both POMs
and MOFs.

POMOFs have been widely investigated in the fields of acid catalysis, oxidation
catalysis, photocatalysis, electrocatalysis, and others [12]. POMs are one branch of metal
oxides, and thus POMOFs can be carbonized to obtain chemically doped porous carbon-
coated nanosized transition-metal (Mo, W, V from POM) oxides or carbides. Lin et al.
first synthesized MoO3;@CuO material using the POMOFs precursor through a pyrolysis
route [13]. Yu et al. prepared the MoO,@PC-RGO hybrid material from POMOFs/GO
composite at a relatively low carbonization temperature [14]. The works of Lin and Yu
prove that POMOFs could be transformed into metal oxides by calcination. In recent
years, metal oxides as catalysts for the removal of wastewater pollutants have attracted
extensive attention in the research community [15,16]. Metal nano-oxides formed by the
elements titanium (Ti), manganese (Mn), copper (Cu), and zinc (Zn) with oxygen were
obtained [10]. Mixed metal oxides exhibit more unique physicochemical properties than
single metal oxides. The high specific surface area and excellent catalytic activity of mixed
metal oxides were important for wastewater treatment [10]. Liu et al. prepared porous
MnFe;0O4 and CoFe;O4 nanocomposites to degrade MB with an efficiency of 99.7% [1].
Bhatia et al. synthesized ternary metal oxides Ag,O/NiO/ZnO to effectively catalyze the
reduction of a variety of nitro phenols, dyes, and their mixtures [12].
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The advantage of using POMOFs as precursors is that their pyrolysis products nor-
mally incorporate at least two metal oxide components with ideal dispersing homogene-
ity [11]. Literature research indicates that no mixed metal oxides derived from POMOFs
were used in heterogeneous catalysis for the degradation of dye and catalytic reduction of
Cr(VI) to Cr(III).

Inspired by the previous works, a POMOF precursor [Cu(2,2’-bipy)][Cu(2,2’-bipy)z]>
[PMoV1gV;VV3IVO4(VIVO),]e2H,0 (CuMoV) was synthesized by hydrothermal tech-
nique. The target mixed metal oxide CuMoV(450) was obtained by the calcination of
CuMoV at 450 °C. CuMoV(450) was studied as a heterogeneous catalyst for the removal
of MB and Cr(VI). This is the first report about the dye and Cr(VI) removal performance
of mixed metal oxides originating from POMOF. The results of this work provide the
foundation for the development of mixed metal oxides arising from POMOFs as catalysts
for the practical application of environmental remediation.

2. Results and Discussion
2.1. Characterization of CuMoV and CuMoV(450)

TG measurement was carried out to investigate the effect of calcination on the structure
of CuMoV. The TG curve of CuMoV shows that the initial weight loss of 1.29% up to
310 °C was caused by the loss of six crystal water molecules; afterward, the rapid weight
loss of 27.83% was due to the decomposition and extraction of 2,2'-bipy ligands up to
420 °C (Figure S1) [17]. Lastly, the POM sub-unit began to decompose above 450 °C [18].
The TG results confirm that the calcination temperature of 450 °C was enough to prepare
mixed metal oxides.

The successful synthesis of CuMoV was solidified as shown in Figure S2. It can be
seen that the XRD pattern of the prepared CuMoV was consistent with the simulated
one according to CIF files (CCDC number: 656018), verifying that the CuMoV sample
kept the single-crystal structure. The characteristic diffraction peaks of Keggin type POM
unit appeared at 8.04° (1 0 0), 10.46° (11 1) and 19.56° (0 2 2), respectively [19]. Figure 1a
displays that the XRD patterns of CuMoV and its calcined product CuMoV(450) were dif-
ferent. Figure 1b states that CuMoV(450) was composed of V,05, VO,, x-M0QO3, CuMoOy,
(VO)MO0oOy, and Cuz(POy),. The diffraction peak located at 21.79° corresponded to the (11
0) crystal plane of V,Os (PDF no. 76-1803). The diffraction peaks of VO, (PDF no. 76-0673)
were mainly distributed at 36.80° (—1 1 1) and 41.70° (—2 2 1). The peaks of x-MoO3 (PDF
no. 05-0508) were located at 38.58° (1 3 1) and 42.38° (1 4 1) [13]. The diffraction peaks
CuMoOQO, (PDF no. 89-0228 were located at 25.08° (0 1 2),29.30° (—1 —2 2), and 43.44° (1
—3 3), respectively [13]. Diffraction peaks were also observed for the mixtures (VO)MoOj4
(PDF no. 74-1508), Cu3(POy); (PDF no. 70-0494) at 26.96° (2 0 0), 28.31° (11 1), and 30.55°
(01 2), and 32.20° (—1 1 0), respectively [20].

The FT-IR spectra of CuMoV and CuMoV(450) are shown in Figure 2. The FT-IR
spectrum of CuMoV displays the characteristic peaks of the Keggin unit generated by
(M-O)(M=Mo/V) (731 cm ™1, 789 cm~!, and 937 cm~ 1), and P-O stretching vibrations
(1030 cm~! and 1050 cm™!), respectively. The series peaks in the range of 1100 cm~!-
1600 cm~! were attributed to the 2,2"-bipyridine ligand [21]. No peaks of the Keggin
unit and 2,2’-bipyridine appeared in the FI-IR spectrum of CuMoV(450). Instead, the
peaks derived from Cu-O, V-O-V, and V=0 bonds were found at 613 ecm~!, 770 em ™1,
and 1053 cm !, respectively [22,23]. The peaks at 871 cm~! and 960 cm ! belonged to the
Mo=0 bond in MoO3 [24]. The peaks at 745 cm~! and 1112 cm ™! corresponded to the
stretching vibration of v,5(O-P-O) [25].
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Figure 1. (a) XRD patterns of CuMoV and CuMoV(450). (b) Analysis of XRD patterns of Cu-

MoV (450).
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Figure 2. FT-IR spectra of CuMoV and CuMoV(450).

SEM analysis was carried out to check the effect of calcination on the morphology of

CuMoV. Figure 3a shows that the morphology of CuMoV was block in shape, and the

surface of CuMoV was smooth. Figure 3b reveals that the calcination promoted the partial

collapse of the block morphology and the generation of the surface pores.
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Figure 3. SEM images of CuMoV (a) and CuMoV(450) (b).

The chemical purity and stoichiometry of CuMoV and CuMoV(450) were also investi-
gated by EDX analysis (Figure S3). The EDX spectra indicate the presence of C, N, P, Mo,
O, V, and Cu elements in CuMoV, and CuMoV(450) was composed of P, Mo, O, V and
Cu elements.

XPS analysis was performed to determine the elemental composition and chemical
valences of CuMoV and CuMoV(450). The survey spectra given in Figure 4a suggest
that both CuMoV and CuMoV(450) contained P, Mo, O, V, and Cu elements. The high-
resolution XPS spectra of O 1s, P 2p, Cu 2p, Mo 3d, and V 2p are shown in Figure 4b—f. The
O 1s spectrum shows three peaks with binding energy at 530.4 eV, 530.8 eV, and 531.6 eV,
corresponding to O-V/0O-Mo, O-P, and O-Cu bonds, respectively (Figure 4b) [26-28]. The
peaks observed at 133.1 eV and 133.4 eV in the P 2p spectrum were attributed to the
P-O bond (Figure 4c). There were some differences in the Cu 2p spectra of CuMoV and
CuMoV(450), as indicated in Figure 4d. For CuMoV, the peaks corresponding to Cu 2p3,»
and Cu 2p; /, of Cu®" were located at 934.4 eV and 954.2 eV, respectively, with satellite
peaks at 943.2 eV and 962.7 eV [29,30]. For CuMoV(450), the corresponding peaks were
slightly shifted to 935.0 eV and 954.8 eV due to the existence of CuO. There were also
differences in the Mo 3d spectra of CuMoV and CuMoV(450) (Figure 4e). For CuMoV,
the two peaks that appeared at 232.3 eV and 235.4 eV belonged to Mo 3d5,, and Mo 3d3,,
of Mo®*, respectively [31]. For CuMoV(450), the peaks attributed to Mo 3ds,, and Mo
3d3/, of Mo®* were located at 232.8 eV and 236.0 eV, and the peaks assigned to Mo>* were
appeared at 232.4 eV and 235.1 eV. The existence of Mo®* might be due to the capture of
the trace oxygen vacancies during calcination by Mo®" [32]. The V 2p spectra of CuMoV
and CuMoV(450) in Figure 4f were basically the same. The peaks near 516 eV and 523 eV
were assigned to V 2p3,, and V 2p1 /, of V4, and the peaks near 517 eV and 524 eV were
assigned to V 2p3, and V 2p; s, of V°*, respectively [33]. The binding energy, weight ratio,
and atomic ratio of the above-mentioned elements for CuMoV and CuMoV(450) are listed
in Table S1.
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Figure 4. XPS spectra of CuMoV and CuMoV(450): (a) survey spectra; (b) O 1s; (c) P 2p; (d) Cu 2p;
(e) Mo 3d; (f) V2p.

2.2. Degradation of MB

The heterogeneous catalytic activities of CuMoV(450) were evaluated through MB
degradation, and CuMoV was used as a positive control. The MB degradation rates were
41.6% (CuMoV) and 95.9% (CuMoV(450)) in 30 min, respectively, and MB itself could not
degrade under the same conditions (Figure 5a). It is evident that the catalytic activities of
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CuMoV(450) were far superior to that of CuMoV. Consequently, the following research
was focused on CuMoV(450).

1.0
1.0 C .
(@) rof———=wm— ®) . (©) T e
3 —— MB with CuMoV N ! _,“.‘
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Figure 5. (a) Control experiments of MB degradation in 30 min, (b) In (C¢/Cp) as a function of
time (t) for MB degradation in 30 min, (c¢) Changes in absorption spectra of MB solution during the
degradation process. CuMoV(450) dosage = 80 mg, [MB] = 0.01 mM (50 mL), [pH] = 6.8.

The dosage of CuMoV(450), the initial pH value of the MB solution, and the concentra-
tion of the MB solution all had a certain effect on MB degradation, and the corresponding
results are illustrated in Figure S4. Figure 5b represents the plot of In (C;/Cp) against
time under the optimum conditions (0.01 mM MB, pH = 6.8, 80 mg CuMoV(450)). The
calculated values of the rate constants Kapp and R? were 0.093 min—! and 0.955, respec-
tively, confirming that MB degradation obeyed the pseudo-first-order reaction kinetics. The
slight deviation of the linear fitting was caused by the different intervals of sampling time.
The color of the MB solution changed from blue to colorless in 30 min, and the intensity
of the characteristic peaks of MB at 292 nm and 664 nm gradually decreased they until
disappeared, demonstrating that the MB molecule was degraded (Figure 5c).

To find the key reactive oxygen species (ROS) responsible for MB degradation, dif-
ferent radical scavengers were added to the reaction system. 1,4-benzoquinone (p-BQ),
isopropanol (IPA), and L-histidine were used as *O,H/*O;,~, *OH, and 10, scavengers,
respectively [1,34].

The inhibitory effect of the added scavengers on MB degradation was in the following
order IPA > L-histidine > p-BQ (Figure 6a). That is to say, all the examined active species
played roles in MB degradation and followed the order of *OH > 10, >°0,7 /*O,H, and
the *OH radical was the most dominant. Furthermore, *OH-trapping photoluminescence
(PL) spectra of the system in terephthalic acid (TA) solution were measured to confirm the
formation of *OH radicals (Figure 6b) [35]. *OH can react with non-fluorescent TA to form
highly fluorescent 2-hydroxyterephthalic acid [35]. The PL emission peak of the system in
TA solution (0.5 M NaOH, 0.5 mM TA) at 425 nm stemmed from 2-hydroxyterephthalic
acid increased with prolonging time, suggesting that the yield of *OH radicals increased
over time during MB degradation.

Based on the above results, a possible MB degradation mechanism was pro-
posed [36,37]. MB molecules firstly donated electrons into CuMoV(450) via active V°*
and Mo®* (Equations (1) and (2)), then the generated V** and Mo’* reacted with dis-
solved O; to give birth to *O,~ (Equations (4) and (5)), and the further reaction of *O,~
produced diverse reactive oxygen species (Equations (6)—(8)). The possible reduction
of Mo® by V#* in Equation (3) might contribute to the increased production of e~ and
*O, 7, and thus boost the degradation rate. More *OH radicals might be generated as
shown in Equations (9) and (10). The disproportionation of *OH radicals should con-
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tribute to the yield of 'O, (Equation (11)) [38]. Ultimately, MB/MB* was degraded by
*OH/*0,~ /HO,* /10, (Equation (12)).

=V + MB — =V* + MB* + e (1)
=Mo®" + MB — =Mo" + MB* + e~ ()
=Mo®" + =V & =Moo’ + =V°* 3)
=V¥* + 0, = *0, + =V 4)
=Mo" + O, — *0,~ + =Mo®* (5)
*0,” +H* = HO,* (6)

2HO,* « O, + H,O, ?)

*0,” + Hy0; — O, + *OH + OH ™ (8)
H,O, + =V* — OH™ + *OH + =V°* )
H,0, + =Mo’* — OH™ + *OH + =Mo°* (10)
4°0OH — 'O, + 2H,0 (11)
MB/MB™* + *OH/*0, /HO,*/'0, — degradation products (12)

The MB degradation intermediates were analyzed by the HPLC-MS technique. Twelve
intermediates with m/z of 261, 249, 227, 198, 195, 174, 163, 157, 102, 106, 130, and 145 were
found during the degradation process (Figure 7a). Such results imply that demethylation,
deamination, and ring-opening reactions occurred during MB degradation [39,40]. The
above analysis leads to the speculation of a possible degradation pathway of MB (Figure 7b).

1.0
(a) e ——noscavengerl (D) S
p-BQ —— 1 min
0.8
\\ T ) —— 5 min
<G ——*——L histidine z —— 10 min
B Jo —— 20 min
A4 7> ; :
* — 4 —— 30 min
O 0.4 \ = S
0.2- ! = :
0-0 T T T T T : T
0 5 10 15 20 25 30 400 425 450
Time (min) Wavelength (nm)

Figure 6. (a) Effect of different scavengers on MB degradation. (b) PL spectra of TAOH solutions
in CuMoV(450) /MB system. CuMoV(450) dosage = 80 mg, [MB] = 0.01 mM (50 mL), [pH] = 6.8,
[p-BQ] =5 mM, [IPA] = 0.1 M, [L-histidine] = 0.1 M, [TAOH] = 0.5M NaOH + 0.5 mM TA.
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Figure 7. (a) Mass spectra of MB solutions at 30 min. (b) Proposed degradation pathway of MB.
Additionally, the efficiencies of MB degradation over CuMoV(450) and other metal
oxides were compared, and the results are listed in Table 1. In terms of dosage, reaction time,
and the efficiency of MB removal, CuMoV(450) exhibited the best degradation performance.
Table 1. Comparison of MB degradation efficiency over different metal oxides.
Catalyst Dosage (mg) [MB] (mM) Time (min) Efficiency (%)
Fe,O3@Y [41] 150 0.01 60 61.5
TiO, nanoparticles [42] 300 0.06 250 93.1
MnOx-PP [43] 400 0.05 60 99.5
CuMoV(450) 80 0.01 30 95.9

2.3. Reduction of Cr(VI)

The catalytic reduction activity of CuMoV(450) was investigated by using K,Cr,Oy as
a Cr(VI) source and NaBHj as a reducing agent. The reduction progress was judged by
monitoring the UV-vis absorption changes at 370 nm, which is the characteristic peak of
the Cr(VI) solution [44]. Figure 8a indicates that neither NaBH4 nor CuMoV/CuMoV(450)
could reduce Cr(VI) to Cr(IlI), and the best result could be only achieved on condition that
CuMoV(450) and NaBHj, coexisted in the solution. In the NaBH;-CuMoV(450) system,
the yellow color of the Cr(VI) solution transformed into colorless in 2.0 min, illustrating
that all the Cr(VI) was completely reduced to Cr(III) [44]. The stronger catalytic activity of
CuMoV(450) indicates that the calcination treatment could evidently improve the catalytic
activity of CuMoV.
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Figure 8. (a) Control experiments of Cr(VI) reduction, (b) The linear correlation between In(C/Cy)
and reaction time for Cr(VI) reduction over CuMoV(450), (c) Time-varying UV-vis spectra of Cr(VI)
reduction over CuMoV(450) under optimum conditions. [KyCr,O7] = 0.1 mM, [NaBHy] = 8 mM,
CuMoV/CuMoV(450) dosage = 40 mg, [NaOH] =1 M.

The catalytic reduction of Cr(VI) was affected by the dosage of CuMoV(450), the initial
concentration of Cr(VI) and NaBHj, and the corresponding experimental results are given
in Figure S5. Under the optimum conditions, the reduction rate of Cr(VI) was 96.5% in
2 min. The pseudo-first-order reaction kinetic model was taken to calculate the Kapp and
R?, and the dates were 1.536 min~—! and 0.958, respectively (Figure 8b). The changes in
the UV-vis spectra indicate that the characteristic absorption peak of the Cr(VI) solution
gradually weakened until it disappeared (Figure 8c). Furthermore, the colorless super-
natant solution obtained after Cr(VI) reduction turned green with the treatment of NaOH,
authenticating the production of the Cr(IlI) complex (hexahydroxochromate(III)) [45]. The
above-mentioned experimental phenomena confirmed the successful reduction of toxic
Cr(VI) to nontoxic Cr(III).

The mechanism of the catalytic reduction was closely related to the electron donor
(NaBHy) and electron acceptor (Cr(VI)). At first, NaBH, disassociated to generate BH,~
ions, which react with water to yield BO,~, H*, and e~ (Equation (13)). Then, CuMoV(450)
mediated the transport of H* and e~ to Cr(VI) and pushed the completion of the reduc-
tion [44]. CuMoV(450) accepted electrons from NaBH, and then transferred to Cr(VI).

BH;~ +2H,0 — BO,™ +8H" + 8e~ (13)

Table 2 presents the catalytic reduction abilities of CuMoV(450) and other mixed metal
oxides. It is obvious that CuMoV(450) was more efficient than other catalysts with respect
to lower NaBHy concentration and shorter time.

Table 2. Comparison of Cr(VI) reduction over different catalysts.

Catalyst

Dosage
(mg)

[Cr(VD] [NaBH4]
(mM) (mM)

Time
(min)

Efficiency
(%)

CeVOS-3 [46]
2-AgMoOS [44]
CuMoV(450)

15
40
40

0.3 7 4
0.1 200 24
0.1 8 2

60.0
96.6
96.5

2.4. Recyclability

The recyclability of CuMoV(450) for MB degradation or catalytic reduction of Cr(VI)
was investigated to assess its economic and practical value. It was tested three times
consecutively and after each use, CuMoV(450) was simply filtered out from the reaction
systems, washed with water and acetonitrile three times, and then dried overnight at room
temperature. Figure 9a shows that CuMoV(450) could be reused for three cycles with a
slight decrease in catalytic ability. Furthermore, the FT-IR spectra displayed in Figure 9b
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reveal that no observable change could be found in the FT-IR spectra of the freshly prepared
and the recycled CuMoV(450). Such results not only confirm that CuMoV(450) is a stable
and recyclable catalyst, but also suggest that CuMoV(450) has application potential in the
field of environmental remediation.

(a) 100- 95.93_1 025 %590'1 (b) Fresh CuMoV(450)
§ 1 85.9 — After MB degradation
7 ~ —— After Cr(VI) reduction
80 S
A
W
60 - =
= 2]
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Degradation of MB Reduction of Cr (VI) Wavenumber (cm ™)

Figure 9. (a) MB degradation rate and Cr(VI) reduction rate in different recycle runs. (b) FT-IR spectra
of CuMoV(450) before and after MB degradation/Cr(VI) reduction.

3. Experimental
3.1. Chemicals and Reagents

All the chemicals were analytical grade and purchased from Nanjing Wanging reagent
company (Nanjing, China). The deionized water was used in all the catalytic experiments.

3.2. Synthesis of CuMoV and CuMoV(450)

CuMoV was synthesized according to the literature method [47]. NayMoO,e2H,0
(0.73 g, 3.0 mmol), NH4 VO3 (0.35 g, 3.0 mmol), CuSO,e5H,0 (0.75 g, 3.0 mmol), 2,2"-bipy
(0.234 g, 1.5 mmol), HyC,0402H,0 (0.19 g, 1.5 mmol), and HyO (13.5 mL, 750 mmol) were
mixed in a molar ratio of 2:2:2:1:1:500 and stirred for 2 h. The pH of the mixture was then
adjusted to 4 using a dilute H3 POy solution. The mixture was sealed in a 25 mL Teflon-lined
autoclave and heated at 180 °C for 72 h. CuMoV were obtained as black rhombic blocky
crystals after natural cooling to room temperature.

CuMoV was calcined at 450 °C for 2 h in a muffle and the obtained material was
denoted as CuMoV(450), where 450 indicated the calcination temperature.

3.3. Chemical Analysis

The chemical structures of CuMoV and CuMoV(450) were analyzed by X-ray photo-
electron spectroscopy (AXIS UltraDLD, Shimadzu, Kyoto, Japan), Fourier infrared spec-
troscopy (Bruker Vertex 80 FTIR spectrometer, Billerica, MA, USA), Scanning electron
microscope (FEI Quanta 200, Hillsboro, OR, USA), and energy dispersive X-ray spec-
troscopy (Oxford X-Act, Abingdon, UK). XRD analysis was performed using a Rigaku
XRD Ultima IV diffractometer (Rigaku, Tokyo, Japan) employing nickel-filtered Cu K«
radiation (wavelength 1.5406 A) over a range of 5°< 20 < 50°. Thermogravimetric analysis
was performed using a CHY-1200 box furnace (Henan Chengyi Equipment Technology
Co., Ltd., Zhengzhou, China). Fluorescence analysis was run with LS55 (PerkinElmer,
Waltham, MA, USA). The intermediates of MB degradation were detected by HPLC-MS
(Agilent 5975¢, Santa Clara, CA, USA) in positive ion mode with m/z ranging from 50 to 800
with acetonitrile as the mobile phase. The UV-vis spectra for monitoring MB degradation
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and Cr(VI) reduction were recorded on a TU-1901 UV-visible spectrophotometer (Beijing
Purkinje General Instrument Co., Ltd., Beijing, China).

3.4. Catalytic Activities Evaluation
3.4.1. MB Degradation

The reaction was carried out by dispersing CuMoV(450) in an MB solution with the
required dosage at 25 °C without external reagents or energy input. If necessary, the pH
of the MB solution was adjusted by 0.1 M HCI or NaOH, and the original pH of the MB
solution was 6.8. 3 mL samples were taken out at given time intervals, filtered with a
0.45 um filter, and immediately measured the temporal UV-vis spectral variations of the
MB solution. The absorbance of the sample was monitored at 664 nm, and the degra-
dation rate and the quasi-first-order rate constant K,p,, were calculated by the following
Equations (14) and (15), respectively.

Degradation rate = (C;/Cp) x 100% (14)

In (C¢/Cp) = —Kappt (15)

where Cy and C; represent the initial concentration and the concentration at t time, respec-
tively. All experiments were repeated three times and data were averaged.

3.4.2. Cr(VI) Reduction

After the specified quantity of CuMoV(450) and freshly prepared NaBHy solution
with a concentration of 10 mM were added to the K,Cr,O7 solution (0.1 mM, 50 mL), the
reduction began. Then, 3 mL samples were taken out at given time intervals, filtered with a
0.45 um filter and immediately measured the temporal UV-vis spectral variations of the
Cr(VI) solution. The reduction rate and the pseudo-first-order rate constant Kapp, were
calculated by the following Equations (16) and (17), respectively.

Reduction rate = (C¢/Cp) x 100% (16)

In (C¢/Cp) = —Kappt (17)

where Cy and C; represent the initial concentration and the concentration at t time, respec-
tively. All experiments were repeated three times and data were averaged.

4. Conclusions

In summary, a mixed metal oxide CuMoV(450) built on a POMOF [Cu(2,2'-
bipy)][Cu(2,2-bipy)2]2[PMo VgV V V3V Ou0(VIVO),]02H,0O (CuMoV) by calcination at
450 °C was successfully yielded. CuMoV(450) showed significantly improved activities for
the heterogeneous catalytic degradation of MB and catalytic reduction of Cr(VI) compared
to the parent CuMoV. Whether in MB degradation or Cr(VI) reduction, only a slight loss in
the catalytic activities occurred after the third cycle. The catalytic activities of CuMoV(450)
were superior to the other corresponding metal oxide catalysts in the heterogeneous cat-
alytic degradation of MB and catalytic reduction of Cr(VI). What is even more commendable
is that CuMoV(450) possessed both catalytic activities and excellent performance. The easy
preparation, good stability, reusability, and excellent multi-functional performances make
CuMoV(450) promising from both environmental and economic aspects. This is the first
mixed metal oxide derived from a POMOF that was used as a catalyst in both oxidation
and reduction. Furthermore, this work provides a clue to design new green heterogeneous
catalysts based on POMOF for wastewater treatment.



Catalysts 2025, 15,76 13 of 15

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ catal15010076/s1, Figure S1: TG curves of CuMoV; Figure 52: Sim-
ulated and measured XRD data of CuMoV; Figure S3: EDS mapping for CuMoV (a) and CuMoV(450)
(b); Figure S4: (a) Effect of CuMoV(450) dosage on the degradation process, [MB] = 0.01 mM (50 mL),
[pH] = 6.8. (b) Effect of pH on the degradation process, [MB] = 0.01 mM (50 mL), CuMoV(450)
dosage = 80 mg. (c) Effect of initial concentration of MB on the degradation process, CuMoV(450)
dosage = 80 mg, [pH] = 6.8; Figure S5: (a) Effect of CuMoV(450) dosage on the reduction process,
[Cr(VI)] = 0.1 mM (50 mL), [NaBH4] = 8 mM. (b) Effect of NaBH4 concentration on the reduction
process, [Cr(VI)] = 0.1 mM (50 mL), CuMoV(450) dosage = 40 mg. (c) Effect of initial concentration
of Cr(VI) on the reduction process, CuMoV(450) dosage = 40 mg, [NaBH,] = 8 mM; Table S1: XPS
results of CuMoV and CuMoV(450): the surface element content, binding energy, weight ratio and
atomic ratio.
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