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Abstract: In this study, a novel Z-scheme heterojunction photocatalyst was developed
by integrating g-C3N4 nanoplates into ZnIn2S4 microspheres. X-ray photoelectron spec-
troscopy analysis revealed a directional electron transfer from g-C3N4 to ZnIn2S4 upon
heterojunction formation. Under irradiation, electrochemical tests and electron param-
agnetic resonance spectroscopy demonstrated significantly enhanced charge generation
and separation efficiencies in the ZnIn2S4/g-C3N4 composite, accompanied by reduced
charge transfer resistance. In photocatalytic CO2 reduction, the ZnIn2S4/g-C3N4 composite
achieved the highest CO yield, 1.92 and 5.83 times higher than those of pristine g-C3N4

and ZnIn2S4, respectively, with a notable CO selectivity of 91.3% compared to H2 (8.7%).
The Z-scheme heterojunction mechanism, confirmed in this work, effectively preserved the
strong redox capabilities of the photoinduced charge carriers, leading to superior photocat-
alytic performance and excellent long-term stability. This study offers valuable insights
into the design and development of g-C3N4-based heterojunctions for efficient solar-driven
CO2 reduction.

Keywords: ZnIn2S4/g-C3N4; photocatalytic CO2 reduction; z-type heterojunction

1. Introduction
With the rapid development of modern industry, the emission of CO2 and other green-

house gasses has increased significantly, contributing to global warming and posing a
severe threat to the survival of humans and other organisms [1,2]. Compared to conven-
tional carbon dioxide capture strategies, such as physical adsorption and geological storage,
which are often associated with high energy consumption, the conversion or reuse of CO2

offers a more sustainable and promising approach. This strategy not only addresses energy
and environmental challenges, but also holds significant potential for practical and feasible
applications [3–5].

Various technologies have been developed to convert CO2 into hydrocarbons or high-
value-added chemicals, including thermal catalysis, biocatalysis, photoelectrocatalysis,
electrocatalysis, and photocatalytic reduction [6,7]. Converting CO2 into CO and other
useful low-carbon fuels in a renewable and environmentally friendly manner not only
helps reduce atmospheric CO2 concentrations but also facilitates “closed-loop” carbon
fixation. Among these methods, the photocatalytic reduction of CO2, which mimics the
natural photosynthesis process, uses solar energy and photocatalysts (artificial photosyn-
thesis) to catalytically convert CO2 and H2O into solar fuels and high-value chemicals,
such as C1 products (CO, CH4, CH3OH, HCOOH) and C2 products (C2H4, C2H6, C3H6,
C2H5OH) [8,9].
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However, despite the demonstrated activity of various semiconductor photocatalysts
for CO2 reduction, their practical applications are hindered by the slow separation and
transport kinetics of photogenerated carriers and poor product selectivity. These limitations
necessitate further advancements [10,11]. Among photocatalysts, graphite-phase carbon
nitride (g-C3N4) has gained attention due to its visible light response (bandgap of about
2.7 eV), non-toxicity, good biocompatibility, excellent chemical and thermal stability, and
ease of synthesis. These properties make g-C3N4 suitable for applications such as water
splitting for hydrogen production, artificial photosynthesis, the degradation of organic
pollutants, and CO2 reduction [12–14]. Like most photocatalysts, pure g-C3N4 synthe-
sized via conventional calcination suffers from rapid electron–hole recombination and
limited exposed active sites. These shortcomings can be addressed through nanostructure
modification, heterojunction construction, or combination with cocatalysts. Among these
strategies, constructing heterojunction structures has proven to be one of the most effective
methods for enhancing photocatalytic performance due to its ability to facilitate efficient
electron–hole pair separation and transfer [15,16]. For example, Luo et al. [17] prepared
ultrathin CsPbBr3/g-C3N4 nanosheets using a simple electrostatic self-assembly process.
Under AM 1.5 G light source irradiation, these nanosheets effectively reduced CO2 to
CH4 and CO. In situ X-ray photoelectron spectroscopy (XPS) revealed a direct Z-scheme
charge transfer mechanism at the CsPbBr3 and g-C3N4 interface, achieving efficient charge
separation and high redox potential.

Zinc indium sulfide (ZnIn2S4, ZIS), a chemically stable and non-toxic material, pos-
sesses suitable energy band positions (2.06–2.85 eV) for the reduction of CO2 into hydro-
carbon fuels. However, a high charge recombination rate and a short lifetime of photo-
generated electrons caused by the bandgap limit its photocatalytic efficiency [18,19]. The
formation of heterojunctions by combining ZnIn2S4 with other wide bandgap semicon-
ductors has been widely recognized as an effective strategy to enhance photocatalytic
performance [20–22].

Shao et al. [23] constructed a 3D/2D g-C3N4/ZnIn2S4 hollow spherical heterostructure
by growing modified ZnIn2S4 nanosheets on the surface of g-C3N4 microspheres. This
composite material combines the advantages of a hollow structure, including enhanced
light absorption and increased active sites, with the heterostructure’s ability to improve
photogenerated electron migration and separation. These features effectively address the
significant issue of photogenerated electron recombination observed in the individual
components. Similarly, Chen et al. [24] fabricated a spatial distribution heterojunction
via the in situ growth of ZnIn2S4 nanosheets (ZIS) on g-C3N4 microtubes (T-CN), which
demonstrated excellent performance in photocatalytic CO2 reduction. Their experimental
findings revealed that the spatial distribution of ZIS nanosheets on T-CN enhances light
absorption, accelerates interfacial charge transfer, and increases CO2 adsorption capacity,
collectively contributing to the superior catalytic activity of the composite.

In this study, two-dimensional g-C3N4 nanoplates were integrated with ZnIn2S4 fea-
turing a distinctive nanoflower structure using a simple mechanical stirring method. The
photocatalytic activity and stability of the resulting ZnIn2S4/g-C3N4 composite were sys-
tematically evaluated in CO2 reduction reactions. The findings revealed that the ZnIn2S4/g-
C3N4 heterojunction significantly outperformed pure g-C3N4 nanoplates and ZnIn2S4

nanoflowers in photocatalytic CO2 reduction, achieving an enhanced yield. Moreover, the
composite exhibited high selectivity for CO over H2, underscoring its potential for efficient
and targeted photocatalytic applications.
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2. Results and Discussion
2.1. Characterization of the Samples

The crystal structures of the samples were analyzed using XRD patterns, as shown in
Figure 1. Bare g-C3N4 exhibits two characteristic diffraction peaks at approximately 13.1◦

and 27.4◦, corresponding to the (100) and (002) planes, respectively (JCPDS No.87-1526).
These peaks represent the in-plane tri-s-triazine unit repetition and the interlayer stacking of
aromatic ring structures. For ZnIn2S4 and the ZnIn2S4/g-C3N4 composite, five prominent
diffraction peaks at 21.29◦, 27.66◦, 47.35◦, 52.19◦, and 55.57◦ are assigned to the (006), (102),
(110), (116), and (202) planes of ZnIn2S4, respectively (JCPDS No.72-0305) [25]. In the
composite, a weak diffraction peak corresponding to the g-C3N4 (100) plane is observed,
while the (002) plane of g-C3N4 partially overlaps with the (102) plane of ZnIn2S4.
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Figure 1. XRD patterns of g-C3N4, ZnIn2S4 and 1:2 ZnIn2S4/g-C3N4.

The microstructures of ZnIn2S4 and ZnIn2S4/g-C3N4 were examined through FESEM
images. As shown in Figure 2a, ZnIn2S4 exhibits a distinct three-dimensional layered
spherical nanoflower structure. In Figure 2b, the integration of ZnIn2S4 with g-C3N4

results in g-C3N4 nanosheets being inserted into the folds of the ZnIn2S4 structure, leading
to a significantly rougher surface. The energy-dispersive spectroscopy (EDS) analysis
(Figure 2c–h) confirms the presence of C, N, Zn, In, and S elements in the composite
material. Moreover, the distribution maps reveal that the C and N elements from g-C3N4

are uniformly dispersed and surround the Zn, In, and S elements originating from ZnIn2S4.
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Figure 2. FESEM images of (a) ZnIn2S4 and (b) 1:2 ZnIn2S4/g-C3N4, along with (c–h) the correspond-
ing elemental mappings of Zn, In, S, C, and N in 1:2 ZnIn2S4/g-C3N4.

XPS spectra were employed to investigate the structure and surface elemental com-
position of the different samples. In the full survey spectrum (Figure 3a), the elements
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C, N, Zn, In, and S are detected in the ZnIn2S4/g-C3N4 composites, which is consistent
with the EDS results. In Figure 3b, the C1s peaks in both g-C3N4 and ZnIn2S4/g-C3N4 can
be deconvoluted into two components: one at approximately 284.8 eV corresponding to
graphite carbon (C-C), and another at 288.0 eV attributed to sp2-bonded carbon (N-C=N).
Compared to pristine g-C3N4, the intensity of the N-C=N peak in ZnIn2S4/g-C3N4 is
weaker, likely due to the shielding effect of ZnIn2S4 [24]. In Figure 3c, the N 1s spectra of
g-C3N4 and ZnIn2S4/g-C3N4 exhibit three peaks at 398.4 eV, 399.9 eV, and 401.0 eV, which
correspond to C-N=C, three-coordinate C-(N)3, and surface amino groups, respectively.
A small peak at 404.1 eV is attributed to the π-excitation of the C-N heterocyclic ring.
Figure 3d–f show the XPS spectra of the constituent elements in ZnIn2S4. Specifically, the
Zn 2p peaks are observed at 1044.9 eV (Zn 2p1/2) and 1021.8 eV (Zn 2p3/2), the In 3d peaks
appear at 451.9 eV (In 3d3/2) and 444.3 eV (In 3d5/2), and the S 2p peaks are located at
161.6 eV (S 2p1/2) and 160.5 eV (S 2p3/2) [26]. Furthermore, by comparing the binding
energy shifts in key elements before and after the combination of ZnIn2S4 and g-C3N4,
electron transfer can be inferred. The binding energies of C 1s and N 1s in ZnIn2S4/g-C3N4

both increase by approximately 0.1 eV compared to bare g-C3N4, suggesting a decrease in
electron cloud density around the g-C3N4 in the composite. In the contrast, the binding
energies of Zn 2p, In 3d, and S 2p decrease by 0.2–0.7 eV, indicating an increase in electron
cloud density around the ZnIn2S4 component. These XPS results provide evidence for
directional electron transfer from g-C3N4 to ZnIn2S4 upon excitation by external energy.
A more detailed understanding of the electron transfer pathway will be further explored
using in situ XPS, ultraviolet photoelectron spectroscopy (UPS), and density functional
theory (DFT) calculations in future studies [27,28].
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The response ranges of different materials to incident irradiation were evaluated using
UV-Vis absorption spectra. As shown in Figure 4a, the light absorption edges of pristine
g-C3N4, ZnIn2S4, and the ZnIn2S4/g-C3N4 composite extend to approximately 430 nm,
530 nm, and 450 nm, respectively. The bandgap energy (Eg) was determined by plotting
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the relationship between (αhν)2 and photon energy (hν). Based on the absorption spectra
shown in Figure 4b, the calculated bandgap energies of g-C3N4, ZnIn2S4, and ZnIn2S4/g-
C3N4 are 2.86 eV, 2.34 eV, and 2.74 eV, respectively. These results demonstrate that the
composite material can be excited by visible light. Photoluminescence (PL) emission, which
is typically attributed to the recombination of free carriers, provides insight into the degree
of electron–hole recombination. Figure 4c shows the PL spectra of the materials under
320 nm excitation. The primary emission peak of pristine g-C3N4 is observed at 453 nm,
resulting from bandgap luminescence. ZnIn2S4 exhibited the weakest PL intensity among
them, reflecting its inherently poor photoluminescence properties compared to g-C3N4.
This can be attributed to the lower total amount of photogenerated carriers produced under
identical irradiation conditions. These observations are consistent with findings reported
in previous studies on ZnIn2S4, g-C3N4, and ZnIn2S4/g-C3N4 composites [24,29,30]. After
forming the ZnIn2S4/g-C3N4 composite, the significant reduction in emission peak intensity
indicates that the recombination of photogenerated carriers is effectively suppressed.
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Electrochemical tests provide further insight into the energy band positions of the sam-
ples. Mott–Schottky (M-S) curves were employed to determine the semiconductor type and
the conduction band (CB) potential. As shown in Figure 5, the positive slopes of the tangent
lines drawn from the M-S curves of g-C3N4, ZnIn2S4, and ZnIn2S4/g-C3N4 confirm their n-
type semiconductor characteristics. Moreover, for all three samples, the tangent lines at dif-
ferent test frequencies consistently intersect at the same point on the x-axis. This horizontal
intercept corresponds to the flat band position (Efb) of the semiconductor, which is typically
approximately equal to the CB position for n-type semiconductors. After correction for
the reference electrode (Ag/AgCl, +0.199 eV), the CB positions of g-C3N4, ZnIn2S4, and
ZnIn2S4/g-C3N4 were determined to be −0.52 eV, −0.69 eV, and −0.63 eV, respectively.
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The transient photocurrent response under alternating light and dark conditions,
as well as the impedance characteristics of the samples, were evaluated. As shown in
Figure 6a, the ZnIn2S4/g-C3N4 composite exhibits the highest transient photocurrent re-
sponse compared to the pristine samples, indicating improved charge separation efficiency
under illumination. Additionally, EIS was used to compare the electron transfer resistance
of the samples. Figure 6b shows that the Nyquist plot of ZnIn2S4/g-C3N4 has a signifi-
cantly smaller semicircular arc diameter than those of the other two samples, indicating
the lowest charge transfer resistance. This result highlights the superior photogenerated
carrier transfer capability of the composite material.
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Figure 6. (a) Transient photocurrent response curves of g-C3N4, ZnIn2S4, and 1:2 ZnIn2S4/g-C3N4

under light on/off cycles. (b) Nyquist plots of g-C3N4, ZnIn2S4, and 1:2 ZnIn2S4/g-C3N4.

2.2. Photocatalytic Reduction Activity of CO2

To validate the CO2 reduction process, several essential blank tests were conducted.
As Shown in Figure 7, a comparison between Group 1 and the control groups (Groups
2 to 4) revealed no significant production of CO or H2 in the latter three groups. This
indicates that no observable CO2 transformation occurred under those conditions. These
results confirm that the production of CO and H2 in Group 1 is solely attributed to the
photocatalytic reduction of CO2 facilitated by the 1:2 ZnIn2S4/g-C3N4 composite.
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Figure 7. CO2 reduction performance under various conditions: (1) photocatalytic CO2 reduction
using a 1:2 ZnIn2S4/g-C3N4 composite under light irradiation; (2) reaction with light and CO2 but
without the catalyst; (3) reaction without light, but with the catalyst and CO2; (4) reaction with light
and the catalyst, where CO2 is replaced by Ar.
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The photocatalytic properties of the g-C3N4, ZnIn2S4, and ZnIn2S4/g-C3N4 hetero-
junction were evaluated through the photocatalytic reduction of CO2, with the primary gas
products (CO and H2) monitored over an eight-hour irradiation period. Figure 8a compares
the photocatalytic performance of pristine g-C3N4, ZnIn2S4, and ZnIn2S4/g-C3N4 compos-
ites with various mass ratios. After 8 h of irradiation, all composite samples displayed
significantly higher CO2 reduction product yields than pure g-C3N4 or ZnIn2S4, demon-
strating the superior catalytic efficiency of the heterostructure. Compared to similar systems
listed in Table 1, the ZnIn2S4/g-C3N4 heterojunction demonstrates exceptional high pho-
tocatalytic performance, further highlighting its superiority and effectiveness [24,31–34].
With increasing mass ratios of ZnIn2S4 to g-C3N4, the product yields initially increased,
reaching a maximum at a 1:2 ratio, and then decreased. The best-performing compos-
ite achieved a high selectivity for CO (91.3%) over H2 (8.7%) and a maximum CO yield
of 3743.14 µmol·g−1, which is 1.92 and 5.83 times higher than those of pristine g-C3N4

(1941.49 µmol·g−1) and ZnIn2S4 (641.68 µmol·g−1), respectively. The reduced efficiency at
higher loading is likely due to material agglomeration and light shielding, which hinder
photogenerated carrier separation and reaction progress.
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As shown in Figure 8b, CO and H2 were continuously produced during the CO2

reduction process. Figure 8c explores the effect of photocatalyst loading on CO2 reduction.
The yields of CO and H2 exhibit a volcano-shaped trend with increasing amounts of
ZnIn2S4/g-C3N4 coated on the glass plate, reaching the maximum at a photocatalyst
dosage of 10 mg.

For practical applications, the long-term photocatalytic stability of ZnIn2S4/g-C3N4

was assessed in cyclic experiments (Figure 8d). Over three cycles, the CO yield remained sta-
ble after each 8 h reaction period, demonstrating excellent durability of the ZnIn2S4/g-C3N4
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composite. These results further confirm the stability and potential of the heterojunction
for long-term photocatalytic CO2 reduction applications.

Table 1. Comparison of photocatalytic performance with other Z-scheme systems.

Catalyst Reactant Solution Light
Source Product Activity Ref.

g-C3N4/Au/ZnIn2S4
bpy+CoCl2+TEOA+solvent

(CH3CN:H2O=3:2)
300 W Xe

lamp CO 242.3 [31]

bulk g-C3N4/ZnIn2S4 CH3CN+H2O+TEOA 300 W Xe
lamp CO 1453 [24]

nanosheet
g-C3N4/ZnIn2S4

CH3CN+H2O+TEOA 300 W Xe
lamp CO 970 [24]

microtubes
g-C3N4/ZnIn2S4

CH3CN+H2O+TEOA 300 W Xe
lamp CO 342 [24]

Nb doped
TiO2/g-C3N4

H2O 30 W white
bulbs CO 420 [32]

g-C3N4/ZnIn2S4 H2O 300 W Xe
lamp CO 467.8

Cu2V2O7/g-C3N4 H2O 20 W white
bulbs CO 166 [33]

SnS2/S-CTFs TEOA
300 W Xe

lamp
(Visible)

CO 123.6 [34]

2.3. Photocatalytic Mechanism of ZnIn2S4/g-C3N4 Heterojunction

Electron paramagnetic resonance (EPR) spectroscopy was employed to identify the ac-
tive radicals generated during the reaction. TEMPO, a spin-labeling agent for photoinduced
electrons and holes, is reduced by electrons to form hydroxylamine (TEMPOH), resulting in
a suppression of TEMPO’s EPR signals [35]. As shown in Figure 9, under dark conditions,
the sample dispersed in water with soluble TEMPO exhibits a characteristic triple-splitting
peak with an intensity ratio of 1:1:1. Upon 30 s of xenon light irradiation, the peak inten-
sities in both the g-C3N4 and ZnIn2S4/g-C3N4 samples significantly decrease, indicating
the generation of photoinduced electrons. Notably, the reduction in peak intensity is much
greater for ZnIn2S4/g-C3N4 than for bare g-C3N4. This result provides compelling evidence
of the enhanced production of photoinduced electrons in ZnIn2S4/g-C3N4, correlating with
its improved photocatalytic performance in CO2 reduction.
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Figure 9. TEMPO spin-trapping EPR spectra of g-C3N4 and 1:2 ZnIn2S4/g-C3N4, showing photoin-
duced electron signals recorded in water.

Based on the experimental results, a possible mechanism for the photocatalytic reduc-
tion of CO2 by ZnIn2S4/g-C3N4 is proposed and illustrated in Figure 10. Under xenon
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light irradiation, electrons (e−) in the valence band (VB) of both ZnIn2S4 and g-C3N4 are
excited to their respective conduction band (CB), leaving behind positive holes (h+) in the
VB. Considering the CB and VB energy levels of these two semiconductors, two potential
electron transfer pathways can occur between ZnIn2S4 and g-C3N4: the traditional Type-II
heterojunction or the direct Z-scheme heterojunction. In the Type-II mechanism, excited
electrons tend to transfer to the CB with the more negative potential, while holes move to
the VB with the more positive potential. Although this pathway enhances the separation
of charge carriers, it reduces the oxidation and reduction capabilities of the photocatalyst.
Conversely, in the direct Z-scheme mechanism, electrons in the CB of one semiconductor
recombine directly with holes in the VB of the other, preserving the strong reduction and
oxidation abilities of the remaining charge carriers [36].
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Figure 10. Proposed charge transfer mechanism for the efficient photocatalytic CO2 reduction process
facilitated by the ZnIn2S4/g-C3N4 heterojunction.

Evidence from XPS spectra (Figure 3) confirms electron transfer from g-C3N4 to
ZnIn2S4, indicating the formation of a Z-scheme heterojunction in the ZnIn2S4/g-C3N4.
Many studies [37–40] have shown that the Z-scheme configuration improves photoinduced
charge generation and reduces charge transfer resistance, as corroborated by the electro-
chemical and EPR results in this work. Additionally, the composite exhibits a significantly
suppressed recombination of photogenerated electron–hole pairs compared to its single
components. In summary, the effective separation and transfer of electron–hole pairs
in the Z-scheme heterojunction significantly enhance the photocatalytic CO2 reduction
performance of ZnIn2S4/g-C3N4.

3. Experimental
3.1. Materials

All reagents were used as received without further purification. Urea (CH4N2O,
99%), zinc sulfate heptahydrate (ZnSO4·7H2O, 99.5%), ethanol (C2H5OH, 99.7%), and
thioacetamide (C2H5NS, TAA, 99%) were purchased from Sinopharm Chemical Reagents
Co., Ltd. (Shanghai, China). Indium chloride (InCl3, 99.99%) was obtained from Shanghai
Aladdin Co., Ltd. (Shanghai, China). Carbon dioxide (CO2, 99.999%) was supplied by
Qingdao Deyi Gas Co., Ltd. (Qingdao, China). 2,2,6,6-tetramethylpiperidine nitrogen
oxide (C9H18NO, TEMPO) was purchased from Sigma Aldrich (Shanghai) Trading Co., Ltd.
(Shanghai, China). Double-distilled deionized water was used throughout this study.
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3.2. Preparation of g-C3N4

g-C3N4 was synthesized via a conventional calcination method [41]. Specifically, 10.0 g
of urea was placed in a crucible and calcined at 550 ◦C for 2 h in an air atmosphere at
a heating rate of 5 ◦C/min. After cooling to room temperature, a light-yellow powder
(g-C3N4) was collected.

3.3. Preparation of Flower-like ZnIn2S4

ZnIn2S4 was prepared using an improved hydrothermal method based on previous
reports [42]. Briefly, 1 mmol of ZnSO4·7H2O, 2 mmol of InCl3 and 2 mmol of TAA were
dissolved sequentially in 60 mL of deionized water and stirred magnetically for 4.5 h. The
solution was then transferred to a 100 mL Teflon-lined stainless-steel autoclave and heated
at 120 ◦C for 2 h. After cooling to room temperature, the precipitate was washed with
deionized water, centrifuged several times, and dried under vacuum at 60 ◦C for 12 h,
yielding a yellow powder (ZnIn2S4).

3.4. Preparation of ZnIn2S4/g-C3N4 Composite

Firstly, y mg of g-C3N4 was dispersed in 300 mL of deionized water and sonicated for
30 min. Then, x mg of ZnIn2S4 was added, and the mixture was magnetically stirred at
80 ◦C for 2 h. The resulting yellow powder was washed with deionized water, centrifuged
several times, and dried in an oven at 60 ◦C for 12 h. The final product was labeled as
x: y ZnIn2S4/g-C3N4 and stored for subsequent use. The overall preparation process is
illustrated in Scheme 1.
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3.5. Characterizations

The crystal structure and phase composition of the samples were analyzed using
an X-ray diffractometer (XRD, D/MAX-2500V, Rigaku, Tokyo, Japan) with Cu Kα radi-
ation, scanning from 10◦ to 80◦ at a rate of 5 ◦min–1. The morphologies of ZnIn2S4 and
ZnIn2S4/g-C3N4 were examined using a field emission scanning electron microscope (FE-
SEM, Regulus8100, Rigaku). Elemental composition and valence states were determined
via X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher, Waltham, MA,
USA) under high vacuum conditions (>6 × 10−9 mbar). UV-Vis absorption spectra were
recorded on a UV-Vis-NIR spectrophotometer (CARY500UV-VIS-NI, Varian, Palo Alto, CA,
USA) to assess the optical absorption properties of the samples. Photoluminescence (PL)
spectra were measured using a spectrometer (FLS100, Edinburgh, Livingston, UK) with an
excitation wavelength of 310 nm to evaluate the separation efficiency of photogenerated
carriers. Free radicals generated during the reaction were detected via electron param-
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agnetic resonance (EPR) spectroscopy (EPR200 Plus, CIQTEK, Hefei, China) at X-band
frequency (microwave frequency: 9.5 GHz; microwave power: 1 mW).

3.6. Electrochemical Measurements

Electrochemical properties were measured using a CHI 750E electrochemical work-
station (Shanghai Chenhua Instrument Co., Ltd., Shanghai, China) in a standard three-
electrode configuration. The working electrode was prepared by dropping a homogeneous
suspension—containing 4 mg of catalyst, 30 µL of Nafion, 50 µL of isopropanol, and 200 µL
of deionized water—onto fluorine-doped SnO2 (FTO) glass (Yingkou OPV Tech New En-
ergy Co., Ltd., Yingkou, China) with an active area of 1 cm2. An Ag/AgCl electrode and a
carbon electrode were used as the reference and counter electrodes, respectively, with 1 M
NaSO4 solution serving as the electrolyte. The semiconductor energy band structure was
determined using Mott–Schottky plots, photogenerated carrier generation was evaluated
using photocurrent response curves, and electron transfer resistance was analyzed via
electrochemical impedance spectroscopy (EIS).

3.7. Photocatalytic Reduction of CO2

The catalyst was coated onto a circular glass sheet (China Luoyang Float Glass Group
Co., Ltd., Luoyang, China, diameter: 5 cm, thickness: 4.5 mm) for photocatalytic experi-
ments. A specific amount of g-C3N4, ZnIn2S4, or ZnIn2S4/g-C3N4 was mixed with 2 mL of
C2H5OH and ultrasonicated for 5 min. The suspension was then evenly spread on quartz
glass and dried at 60 ◦C until all C2H5OH evaporated.

For a typical photocatalytic reaction, 20 mL of deionized water was added to an 80 mL
gas cylinder, which was connected to a sealed 250 mL glass reactor covered with quartz
glass. The circular glass sheet with the catalyst was placed flat in the reactor, ensuring
the catalyst side faced upward. Prior to illumination, high-purity CO2 was bubbled into
the reactor for 30 min to expel air and create a CO2 atmosphere. A 300 W xenon lamp
(CEL-HXF300, Beijing China Education Au-light Co., Ltd., Beijing, China) served as the
light source. The gas products (CO and H2) were analyzed and quantified every 30 min
using a gas chromatograph (GC, PANNA A60 with a thermal conductivity detector and
a flame ionization detector, a 5A packed column, a box temperature of 50 ◦C, an inlet
temperature of 380 ◦C, and N2 as the carrier gas, Panna Instruments Co., Ltd., Changzhou,
China). The total product yield was calculated by summing the detected values over an
8h reaction period [43,44]. The flow chart for photocatalytic CO2 reduction is presented in
Scheme 2.
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4. Conclusions
In this study, a novel ZnIn2S4/g-C3N4 heterojunction photocatalyst was successfully

synthesized and demonstrated excellent performance for the photocatalytic reduction of
CO2. Compared to pristine g-C3N4 and ZnIn2S4, the composite exhibited significantly
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enhanced separation and transfer efficiency in photogenerated charge carriers, leading
to a substantial improvement in photocatalytic CO2 reduction efficiency. Under 8 h of
irradiation, the composite achieved a maximum total yield of CO at 3743.14 µmol·g−1,
1.92 and 5.83 times higher than that of pristine g-C3N4 (1941.49 µmol·g−1) and ZnIn2S4

(641.68 µmol·g−1), along with a remarkable CO selectivity of 91.3%. Furthermore, this
study confirmed a Z-scheme charge transfer pathway in the ZnIn2S4/g-C3N4 heterojunc-
tion, which preserved the strong redox capabilities of the charge carriers, resulting in
superior photocatalytic performance. These findings highlight the potential of ZnIn2S4/g-
C3N4 as a highly active, stable, and durable Z-scheme heterojunction photocatalyst for
solar-driven chemical energy conversion. This work provides valuable insights into the
design of advanced photocatalysts for sustainable energy applications.
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