Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-)Polymerization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Half-Titanocene Complexes CpTiCl2[S-2-R-6-(PPh2)C6H3]
2a | 2b | |
---|---|---|
Formula weight | 519.68 | 553.30 |
Crystal system | Pna2(1) | P2(1) |
Space group | orthorhombic | monoclinic |
a (Å) | 19.6852(10) | 8.0269(7) |
b (Å) | 22.8729(12) | 13.6834(11) |
c (Å) | 10.3207(6) | 11.5902(9) |
α (°) | 90.00 | 90.00 |
β (°) | 90.00 | 97.3240(10) |
γ (°) | 90.00 | 90.00 |
V (Å3), Z | 4647.0(4), 8 | 1262.63(18), 2 |
Densitycalcd (Mg/m3) | 1.486 | 1.455 |
Absorption coefficient (mm-1) | 0.881 | 0.714 |
F (000) | 2120 | 568 |
Crystal size (mm) | 0.30 × 0.21× 0.15 | 0.30 × 0.24× 0.18 |
θ range for data collection (°) | 1.78 to 26.01 | 1.77 to 26.03 |
Reflections collected | 27237 | 8126 |
Independent reflections | 9135 | 4698 |
Data/restraints/ parameters | 9135/1/532 | 4698/1/307 |
Goodness-of-fit on F2 | 1.041 | 1.030 |
Final R indices [ I > 2σ (I)]: R1, wR2 | 0.0385, 0.0972 | 0.0350, 0.0847 |
Largest diff. Peak and hole (e Å-3) | 0.553 and −0.366 | 0.337 and −0.191 |
2a | 2b | C | D | |
---|---|---|---|---|
Bond Distances in Å | ||||
Ti(1)- S(1)/O(1) | 2.4188(10) | 2.4359(9) | 1.795(2) | 1.8708(13) |
Ti(1)-P(1) | 2.5769(9) | 2.5630(10) | 2.6446(6) | |
Ti(1)-Cl(1) | 2.3121(10) | 2.3106(10) | 2.2582(11) | 2.3320(6) |
Ti(1)-Cl(2) | 2.3139(10) | 2.3207(9) | 2.2478(11) | 2.3453(6) |
Ti(1)-Cp(centroid) | 2.027 | 2.029 | 2.016 | 2.034 |
S(1)/O(1)-C(1) | 1.768(4) | 1.778(3) | 1.369(4) | 1.360(2) |
P(1)-C(2) | 1.813(3) | 1.808(3) | 1.835(3) | 1.7994(19) |
Bond Angles in ° | ||||
Cl(1)-Ti(1)-Cl(2) | 91.73(4) | 91.87(3) | 101.45(4) | 88.96(2) |
O(1)/S(1)-Ti(1)-P(1) | 73.49(3) | 72.69(3) | 72.85(4) | |
Ti(1)-S(1)/O(1)-C(1) | 110.27(11) | 110.66(10) | 161.39(19) | 134.99(11) |
Ti(1)-P(1)-C(2) | 107.67(11) | 109.24(11) | 97.11(6) | |
Cl(1)-Ti(1)-S(1)/O(1) | 129.59(4) | 131.62(4) | 104.48(7) | 127.96(5) |
Cl(2)-Ti(1)-S(1)/O(1) | 81.09(4) | 82.09(3) | 103.92(7) | 90.17(4) |
Cl(1)-Ti(1)-P(1) | 80.08(3) | 79.39(3) | 78.40(2) | |
Cl(2)-Ti(1)-P(1) | 138.03(4) | 135.69(4) | 144.48(2) | |
S(1)/O(1)-C(1)-C(2) | 121.0(2) | 118.7(2) | 117.8(3) | 118.22(16) |
P(1)-C(2)-C(1) | 111.7(2) | 112.8(2) | 117.7(2) | 111.70(14) |
2.2. Ethylene (Co)Polymerization Catalyzed by 2a–c
Entry | Cat. | Al/Ti (molar ratio) | NBE (mol/L) | Yield (mg) | Activity (kg/molTi·h) | Mw b (kg/mol) | Mw/Mn | NBE Incorp. (mol%) c |
---|---|---|---|---|---|---|---|---|
1 | 2a | 100 | 0.3 | 387 | 1858 | 225 | 2.9 | 12.0 |
2 | 2a | 100 | 0.5 | 605 | 2904 | 169 | 2.5 | 24.3 |
3 | 2a | 100 | 0.7 | 337 | 1618 | 143 | 2.2 | 31.2 |
4 | 2a | 100 | 1.0 | 135 | 648 | 112 | 1.8 | 33.8 |
5 | 2a | 50 | 0.5 | trace | - | - | - | - |
6 d | 2a | 100 | 0.5 | 163 | 782 | 121 | 2.4 | 31.8 |
7 e | 2a | 1000 | 0.5 | 130 | 160 | 256 | 2.8 | 30.1 |
8 | 2b | 100 | 0.5 | 90 | 432 | 109 | 2.0 | 26.4 |
9 | 2c | 100 | 0.5 | 288 | 1382 | 299 | 1.8 | 28.5 |
3. Experimental
3.1. General Procedures and Materials
3.2. Synthesis of Half-Titanocene Complexes
3.2.1. Synthesis of Ligands 1a–c
3.2.2. Synthesis of Half-Titanocene Complexes 2a–c
3.2.3. Ethylene (Co-)Polymerization
3.2.4. Crystallographic Studies
4. Conclusions
Acknowledgements
References
- Nomura, K.; Liu, J.Y.; Padmanabhan, S.; Kitiyanan, B. Nonbridged half-metallocenes containing anionic ancillary donor ligands: New promising candidates as catalysts for precise olefin polymerization. J. Mol. Catal. A 2007, 267, 1–29. [Google Scholar] [CrossRef]
- Nomura, K. Half-titanocenes containing anionic ancillary donor ligands as promising new catalysts for precise olefin polymerisation. Dalton Trans. 2009, 38, 8811–8823. [Google Scholar] [CrossRef]
- Redshaw, C.; Tang, Y. Tridentate ligands and beyond in group IV metal α-olefin homo-/co-polymerization catalysis. Chem. Soc. Rev. 2012, 41, 4484–4510. [Google Scholar] [CrossRef]
- Brintzinger, H.H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R.M. Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts. Angew. Chem. Int. Ed. Engl. 1995, 34, 1143–1170. [Google Scholar] [CrossRef]
- Kaminsky, W. New polymers by metallocene catalysis. Macromol. Chem. Phys. 1996, 197, 3907–3945. [Google Scholar] [CrossRef]
- McKnight, A.L.; Waymouth, R.M. Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. Chem. Rev. 1998, 98, 2587–2598. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; Wass, D.F. The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. Angew. Chem. Int. Ed. 1999, 38, 428–447. [Google Scholar] [CrossRef]
- Braunschweig, H.; Breitling, F.M. Constrained geometry complexes—Synthesis and applications. Coord. Chem. Rev. 2006, 250, 2691–2720. [Google Scholar] [CrossRef]
- Sinn, H.; Kaminsky, W. Ziegler-Natta Catalysis. Adv. Organomet. Chem. 1980, 18, 99–149. [Google Scholar]
- Stephan, D.W.; Stewart, J.C.; Guerin, F.; Spence, R.E.; Xu, W.; Harrison, D.G. Phosphinimides as a Steric Equivalent to Cyclopentadienyl: An Approach to Ethylene Polymerization Catalyst Design. Organometallics 1999, 18, 1116–1118. [Google Scholar]
- Nomura, K.; Naga, N.; Miki, M.; Yanagi, K.; Imai, A. Synthesis of Various Nonbridged Titanium(IV) Cyclopentadienyl-Aryloxy Complexes of the Type CpTi(OAr)X2 and Their Use in the Catalysis of Alkene Polymerization. Important Roles of Substituents on both Aryloxy and Cyclopentadienyl Groups. Organometallics 1998, 17, 2152–2154. [Google Scholar] [CrossRef]
- Mahanthappa, M.K.; Cole, A.P.; Waymouth, R.M. Synthesis, Structure, and Ethylene/α-Olefin Polymerization Behavior of (Cyclopentadienyl)(nitroxide)titanium Complexes. Organometallics 2004, 23, 836–845. [Google Scholar] [CrossRef]
- Antiñolo, A.; Carrillo-Hermosilla, F.; Corrochano, A.; Fernández-Baeza, J.; Lara-Sanchez, A.; Ribeiro, M.R.; Lanfranchi, M.; Otero, A.; Pellinghelli, M.A.; Portela, M.F.; et al. Synthesis of Zirconium(IV) Monocyclopentadienyl−Aryloxy Complexes and Their Use in Catalytic Ethylene Polymerization. X-ray Structure of (η5-C5Me5)Zr{2,6-OC6H3(CH3)2}3. Organometallics 2000, 19, 2837–2843. [Google Scholar] [CrossRef]
- Tamm, M.; Randoll, S.; Herdtweck, E.; Kleigrewe, N.; Kehr, G.; Erker, G.; Rieger, B. Imidazolin-2-iminato titanium complexes: Synthesis, structure and use in ethylene polymerization catalysis. Dalton Trans. 2006, 459–467. [Google Scholar]
- Shah, S.A.A.; Dorn, H.; Voigt, A.; Roesky, H.W.; Parisini, E.; Schmidt, H.G.; Noltemeyer, M. Group 4 Metal Amido Fluorides and Chlorides: Molecular Structures and the First Comparison in Ethylene Polymerization Catalysis. Organometallics 1996, 15, 3176–3181. [Google Scholar] [CrossRef]
- Sinnema, P.J.; Spaniol, T.P.; Okuda, J. Non-bridged amido cyclopentadienyl complexes of titanium: synthesis, characterization, and olefin polymerization catalysis. J. Organomet. Chem. 2000, 598, 179–181. [Google Scholar] [CrossRef]
- Kretschmer, W.P.; Dijkhuis, C.; Meetsma, A.; Hessen, B.; Teuben, J.H. A highly efficient titanium-based olefin polymerisation catalyst with a monoanionic iminoimidazolidide π-donor ancillary ligand. Chem. Commun. 2002, 608–609. [Google Scholar]
- Zhang, S.B.; Piers, W.E.; Gao, X.L.; Parvez, M. The Mechanism of Methane Elimination in B(C6F5)3-Initiated Monocyclopentadienyl-Ketimide Titanium and Related Olefin Polymerization Catalysts. J. Am. Chem. Soc. 2000, 122, 5499–5509. [Google Scholar]
- Zhang, W.; Sita, L.R. Highly Efficient, Living Coordinative Chain-Transfer Polymerization of Propene with ZnEt2: Practical Production of Ultrahigh to Very Low Molecular Weight Amorphous Atactic Polypropenes of Extremely Narrow Polydispersity. J. Am. Chem. Soc. 2008, 130, 442–443. [Google Scholar] [CrossRef]
- Vollmerhaus, R.; Shao, P.; Taylor, N.J.; Collins, S. Synthesis of and Ethylene Polymerization Using Iminophosphonamide Complexes of Group 4. Organometallics 1999, 18, 2731–2733. [Google Scholar] [CrossRef]
- Dove, A.P.; Kiesewetter, E.T.; Ottenwaelder, X.; Waymouth, R.M. Propylene Polymerization with Cyclopentadienyltitanium(IV) Hydroxylaminato Complexes. Organometallics 2009, 28, 405–412. [Google Scholar]
- Liu, S.F.; Sun, W.H.; Zeng, Y.N.; Wang, D.; Zhang, W.J.; Li, Y. Syntheses, Characterization, and Ethylene (Co-)Polymerization Screening of Amidate Half-Titanocene Dichlorides. Organometallics 2010, 29, 2459–2464. [Google Scholar] [CrossRef]
- Bott, R.K.J.; Hughes, D.L.; Schormann, M.; Bochmann, M.; Lancaster, S.J. Monocyclopentadienyl phenoxy-imine and phenoxy-amine complexes of titanium and zirconium and their application as catalysts for 1-alkene polymerisation. J. Organomet. Chem. 2003, 665, 135–149. [Google Scholar]
- Liu, S.R.; Li, B.X.; Liu, J.Y.; Li, Y.S. Synthesis, Structure and Ethylene (Co)Polymerization Behavior of New Nonbridged Half-metallocene-type Titanium Complexes Based on Bidentate β-Enaminoketonato Ligands. Polymer 2010, 51, 1921–1925. [Google Scholar]
- Qi, C.H.; Zhang, S.B.; Sun, J.H. Synthesis, structure and ethylene polymerization behavior of titanium phosphinoamide complexes. J. Organomet. Chem. 2005, 690, 2941–2946. [Google Scholar] [CrossRef]
- Willoughby, C.A.; Duff, R.R., Jr.; Davis, W.M.; Buchwald, S.L. Preparation of Novel Titanium Complexes Bearing o-Phosphinophenol Ligands. Organometallics 1996, 15, 472–475. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Y.J.; Jin, G.X. Synthesis, Characterization, and Ethylene Polymerization of Group IV Metal Complexes with Mono-Cp and Tridentate Aryloxide or Arylsulfide Ligands. Organometallics 2007, 26, 4042–4047. [Google Scholar] [CrossRef]
- Tang, X.Y.; Wang, Y.X.; Li, B.X.; Liu, J.Y.; Li, Y.S. Highly Efficient Ethylene/Norbornene Copolymerization by O-Di(phenyl)phosphanylphenolate-Based Half-Titanocene Complexes. J. Polym. Sci. Part A 2013, 51, 1585–1594. [Google Scholar] [CrossRef]
- Stephan, D.W.; Stewart, J.C.; Guerin, F.; Courtenay, S.; Kickham, J.; Hollink, E.; Beddie, C.; Hoskin, A.; Graham, T.; Wei, P.R.; et al. An Approach to Catalyst Design: Cyclopentadienyl-Titanium Phosphinimide Complexes in Ethylene Polymerization. Organometallics 2003, 22, 1937–1947. [Google Scholar] [CrossRef]
- Nomura, K.; Tsubota, M.; Fujiki, M. Efficient Ethylene/Norbornene Copolymerization by (Aryloxo)(indenyl)titanium(IV) Complexes-MAO Catalyst System. Macromolecules 2003, 36, 3797–3799. [Google Scholar] [CrossRef]
- Nomura, K.; Fujki, K. Effect of Cyclopentadienyl and Amide Fragment in Olefin Polymerization by Nonbridged (Amide)(cyclopentadienyl)titanium(IV) Complexes of the Type Cp’TiCl2[N(R1)R2]-Methylaluminoxane (MAO) Catalyst Systems. Macromolecules 2003, 36, 2633–2641. [Google Scholar] [CrossRef]
- Wang, W.; Tanaka, T.; Tsubota, M.; Fujiki, M.; Yamanaka, S.; Nomura, K. Effect of Cyclopentadienyl Fragment in Copolymerization of Ethylene with Cyclic Olefins Catalyzed by Non-Bridged (Aryloxo)(cyclopentadienyl)titanium(IV) Complexes. Adv. Synth. Catal. 2005, 347, 433–446. [Google Scholar] [CrossRef]
- Keaton, R.J.; Jayaratne, K.C.; Henningsen, D.A.; Koterwas, L.A.; Sita, L.R. Dramatic Enhancement of Activities for Living Ziegler-Natta Polymerizations Mediated by Exposed” Zirconium Acetamidinate Initiators: The Isospecific Living Polymerization of Vinylcyclohexane. J. Am. Chem. Soc. 2001, 123, 6197–6198. [Google Scholar]
- Jayaratne, K.C.; Keaton, R.J.; Henningsen, D.A.; Sita, L.R. Living Ziegler−Natta Cyclopolymerization of Nonconjugated Dienes: New Classes of Microphase-Separated Polyolefin Block Copolymers via a Tandem Polymerization/Cyclopolymerization Strategy. J. Am. Chem. Soc. 2000, 122, 10490–10491. [Google Scholar] [CrossRef]
- Jayaratne, K.C.; Sita, L.R. Stereospecific Living Ziegler−Natta Polymerization of 1-Hexene. J. Am. Chem. Soc. 2000, 122, 958–959. [Google Scholar] [CrossRef]
- Zhang, W.; Sita, L.R. Investigation of Dynamic Intra- and Intermolecular Processes within a Tether-Length Dependent Series of Group 4 Bimetallic Initiators for Stereomodulated Degenerative Transfer Living Ziegler–Natta Propene Polymerization. Adv. Synth. Catal. 2008, 350, 439–447. [Google Scholar] [CrossRef]
- Doherty, S.; Errington, R.J.; Jarvis, A.P.; Collins, S.; Clegg, W.; Elsegood, M.R.J. Polymerization of Ethylene by the Electrophilic Mixed Cyclopentadienylpyridylalkoxide Complexes [CpM{NC5H4(CR2O)-2}Cl2] (M = Ti, Zr, R = Ph, Pri). Organometallics 1998, 17, 3408–3410. [Google Scholar] [CrossRef]
- Dove, A.P.; Xie, X.; Waymouth, R.M. Cyclopentadienyl titanium hydroxylaminato complexes as highly active catalysts for the polymerization of propylene. Chem. Commun. 2005, 16, 2152–2154. [Google Scholar] [CrossRef]
- Liu, J.Y.; Liu, S.R.; Li, B.X.; Li, Y.G.; Li, Y.S. Synthesis and Characterization of Novel Half-Metallocene-Type Group IV Complexes Containing Phosphine Oxide-Phenolate Chelating Ligands and Their Application to Ethylene Polymerization. Organometallics 2011, 30, 4052–4059. [Google Scholar] [CrossRef]
- Hu, P.; Lin, Y.J.; Jin, G.X. Syntheses, Characterization, and Ethylene Polymerization of Half-Sandwich Zirconium Complexes with Tridentate Imino-Quinolinol Ligands. Organometallics 2011, 30, 1008–1012. [Google Scholar] [CrossRef]
- Long, R.J.; Gibson, V.C.; White, A.J.P.; Williams, D.J. Combining Hard and Soft Donors in Early-Transition-Metal Olefin Polymerization Catalysts. Inorg. Chem. 2006, 45, 511–513. [Google Scholar] [CrossRef]
- Long, R.J.; Gibson, V.C.; White, A.J.P. Group 4 Metal Olefin Polymerization Catalysts Stabilized by Bidentate O,P Ligands. Organometallics 2008, 27, 235–245. [Google Scholar]
- He, L.P.; Liu, J.Y.; Li, Y.G.; Liu, S.R.; Li, Y.S. High-Temperature Living Copolymerization of Ethylene with Norbornene by Titanium Complexes Bearing Bidentate [O, P] Ligands. Macromolecules 2009, 42, 8566–8570. [Google Scholar] [CrossRef]
- McKnight, A.L.; Waymouth, R.M. Ethylene/Norbornene Copolymerizations with Titanium CpA Catalysts. Macromolecules 1999, 32, 2816–2825. [Google Scholar] [CrossRef]
- Yoshida, Y.; Saito, J.; Mitani, M.; Takagi, Y.; Matsui, S.; Ishii, S.; Nakano, T.; Kashiwa, N.; Fujita, T. Living ethylene/norbornene copolymerisation catalyzed by titanium complexes having two pyrrolide-imine chelate ligands. Chem. Commun. 2002, 1298–1299. [Google Scholar]
- Ruchatz, D.; Fink, G. Ethene-Norbornene Copolymerization Using Homogenous Metallocene and Half-Sandwich Catalysts: Kinetics and Relationships between Catalyst Structure and Polymer Structure. 1. Kinetics of the Ethene-Norbornene Copolymerization Using the [(Isopropylidene)(η5-inden-1-ylidene-η5-cyclopentadienyl)]zirconium Dichloride/Methylaluminoxane Catalyst. Macromolecules 1998, 31, 4669–4673. [Google Scholar] [CrossRef]
- Provasoli, A.; Ferro, D.R.; Tritto, I.; Boggioni, L. The Conformational Characteristics of Ethylene-Norbornene Copolymers and Their Influence on the 13C NMR Spectra. Macromolecules 1999, 32, 6697–6706. [Google Scholar] [CrossRef]
- Hasan, T.; Ikeda, T.; Shiono, T. Ethene-Norbornene Copolymer with High Norbornene Content Produced by ansa-Fluorenylamidodimethyltitanium Complex Using a Suitable Activator. Macromolecules 2004, 37, 8503–8509. [Google Scholar] [CrossRef]
- Li, X.F.; Dai, K.; Ye, W.P.; Pan, L.; Li, Y.S. New Titanium Complexes with Two β-Enaminoketonato Chelate Ligands: Syntheses, Structures, and Olefin Polymerization Activities. Organometallics 2004, 23, 1223–1230. [Google Scholar] [CrossRef]
- Yoshida, Y.; Mohri, J.; Ishii, S.; Mitani, M.; Saito, J.; Matsui, S.; Makio, H.; Nakano, T.; Tanaka, H.; Onda, M.; et al. Living Copolymerization of Ethylene with Norbornene Catalyzed by Bis(Pyrrolide−Imine) Titanium Complexes with MAO. J. Am. Chem. Soc. 2004, 126, 12023–12032. [Google Scholar] [CrossRef]
- Ruchatz, D.; Fink, G. Ethene-Norbornene Copolymerization Using Homogenous Metallocene and Half-Sandwich Catalysts: Kinetics and Relationships between Catalyst Structure and Polymer Structure. 2. Comparative Study of Different Metallocene- and Half-Sandwich/Methylaluminoxane Catalysts and Analysis of the Copolymers by 13C Nuclear Magnetic Resonance Spectroscopy. Macromolecules 1998, 31, 4674–4680. [Google Scholar] [CrossRef]
- Ruchatz, D.; Fink, G. Ethene-Norbornene Copolymerization with Homogeneous Metallocene and Half-Sandwich Catalysts: Kinetics and Relationships between Catalyst Structure and Polymer Structure. 3. Copolymerization Parameters and Copolymerization Diagrams. Macromolecules 1998, 31, 4681–4683. [Google Scholar] [CrossRef]
- Ruchatz, D.; Fink, G. Ethene-Norbornene Copolymerization with Homogeneous Metallocene and Half-Sandwich Catalysts: Kinetics and Relationships between Catalyst Structure and Polymer Structure. 4. Development of Molecular Weights. Macromolecules 1998, 31, 4684–4686. [Google Scholar] [CrossRef]
- Tritto, I.; Marestin, C.; Boggioni, L.; Zetta, L.; Provasoli, A.; Ferro, D.R. Ethylene-Norbornene Copolymer Microstructure. Assessment and Advances Based on Assignments of 13C NMR Spectra. Macromolecules 2000, 33, 8931–8944. [Google Scholar]
- Tritto, I.; Marestin, C.; Boggioni, L.; Sacchi, M.C.; Brintzinger, H.H.; Ferro, D.R. Stereoregular and Stereoirregular Alternating Ethylene-Norbornene Copolymers. Macromolecules 2001, 34, 5770–5777. [Google Scholar]
- Tritto, I.; Boggioni, L.; Jansen, J.C.; Thorshaug, K.; Sacchi, M.C.; Ferro, D.R. Ethylene-Norbornene Copolymers from Metallocene-Based Catalysts: Microstructure at Tetrad Level and Reactivity Ratios. Macromolecules 2002, 35, 616–623. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tang, X.-Y.; Liu, J.-Y.; Li, Y.-S. Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-)Polymerization. Catalysts 2013, 3, 261-275. https://doi.org/10.3390/catal3010261
Tang X-Y, Liu J-Y, Li Y-S. Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-)Polymerization. Catalysts. 2013; 3(1):261-275. https://doi.org/10.3390/catal3010261
Chicago/Turabian StyleTang, Xiao-Yan, Jing-Yu Liu, and Yue-Sheng Li. 2013. "Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-)Polymerization" Catalysts 3, no. 1: 261-275. https://doi.org/10.3390/catal3010261
APA StyleTang, X. -Y., Liu, J. -Y., & Li, Y. -S. (2013). Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-)Polymerization. Catalysts, 3(1), 261-275. https://doi.org/10.3390/catal3010261