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Abstract: The doping of PP (polypropylene) with cotton straw improved the bio-oil yield, 

which showed there was a synergy in the co-pyrolysis of the cotton straw and PP at the range 

of 380–480 °C. In a fixed-bed reactor, model compounds and co-pyrolysis products were 

used for reactants of hydrodeoxygenation (HDO) over Ni-Mo/Al2O3. The deoxygenation rate 

of model compounds decreased over Ni-Mo/Al2O3 in the following order:  

alcohol > aldehyde > acetic acid > ethyl acetate. The upgraded oil mainly consisted of C11 alkane. 
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1. Introduction 

The decreasing supplies of fossil fuels and chemical feedstocks have made researchers and industry 

exploit alternative renewable resources. Biomass energy is one of the candidates. 

Biomass is a clean and renewable energy [1], and can be converted into bio-oil by the pyrolysis  

method [2–5]. Bio-oil mainly consists of oxygenated organic compounds with bad properties, such as 
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corrosiveness, instability, and low calorific value [6,7], which hinder its direct application as 

transportation fuel. Thus, it is necessary to improve the quality of bio-oil. A promising way to increase  

the quality and yield of bio-oil is the co-pyrolysis of biomass/synthetic polymer mixtures [8–12].  

The co-pyrolysis of mixtures of biomass and synthetic polymers has received attention in recent years [9]. 

Plastics with approximately 14 wt. %, such as PE (polyethylene) and PP (polypropylene), provide 

hydrogen to biomass during co-pyrolysis and improve bio-oil quality [9,13–16]. Besides the co-pyrolysis 

of mixtures of biomass and synthetic polymers, other methods such as decarboxylation [17–19] and 

aqueous-phase reforming [20] can do the same. It is difficult to remove all oxygen from bio-oil with the 

aforementioned methods, even when catalysts are used. 

Hydroprocessing [21,22] is one of the promising routes to upgrade pyrolysis oils. Hydrodeoxygenation 

(HDO) [23–27] has great potential on an industrial scale. Thus, pyrolysis oil upgraded by HDO has been 

investigated from different aspects [28–30]. Many catalysts [31–33] were investigated. Priecel [34] 

studied the role of Ni species in the deoxygenation of rapeseed oil. The CoMo-, NiMo-, and  

NiW-supported catalysts were studied for their excellent activity as bi-metal catalysts [35,36]. Many 

model compounds were used as reactants to study the HDO process [37–39]. Stephen [40] reported the 

catalytic hydrodeoxygenation of two lignin model compounds (anisole and guaiacol) in the temperature 

range of 260 to 325 °C. Limin [41] investigated the deoxygenation of long-chain fatty acid esters at mild 

conditions (200 °C, 3.0 MPa), which provided an energy-economic route to upgrade bio-oils with high 

oxygen content. However, HDO of the model compounds is different from that of real crude oil over  

Ni-Mo/Al2O3, so HDO of real crude oil is required over Ni-Mo/Al2O3. 

Now, it was controversial to the synergistic interaction in the co-pyrolysis of biomass and synthetic 

polymers. For hydrodeoxygenation over Ni-Mo/Al2O3, the model compound was often used as a 

reactant, and crude oil as feedstock was seldom reported. In the study, the co-pyrolysis behavior of a 

mixture (PP and cotton straw) was investigated under an inert atmosphere by a thermogravimetric 

analyzer. Then the crude bio-oil was used as feedstock for HDO over Ni-Mo/Al2O3. The upgraded oil was 

analyzed by GC-MS. 

2. Results and Discussion 

2.1. Preparation of Crude Oil and Thermal Degradation 

The effect of PP content on crude oil yield is listed in Table 1. The crude oil yield increased with PP 

in the range of 0–80 wt. %. The crude oil yield of 43 wt. % was obtained with a mixture of 80 wt. % PP 

as feedstock, which was 2.0 and 1.3 times that of the cotton straw and PP sample, respectively. The oil 

yield of the mixture was larger than the weighted sum of PP and cotton straw, indicating there was a 

synergistic effect between cotton straw and PP, which was contrary to the result reported by Han et al. [42]. 

Table 1. Effect of PP on oil yield. 

PP wt. % 0 20 33 50 67 80 100 

1  27.1 29.4 35.8 39.1 43.6 - 
2 20.0 22.5 25.2 27.3 29.5 32.3 35.4 

Note: 1 denotes yield of mixtures of PP/cotton straw; 2 denotes the weighted sum of PP and cotton straw yield. 
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First, ΔW is defined as an interactive effect parameter and is formulated by Equation (4). Figure 1 

shows the variation of ΔW with temperature; ΔW was less than 1% below 180 °C because PP and cotton 

straw were not decomposed below 180 °C, and there was no synergistic effect. We saw that ΔW was 

positive at the range of 180–320 °C, which was attributed to the fact that PP was softened at about  

180 °C and further heated to produce a plastic state that inhibited the evolution of volatile matter in the 

cotton straw. Then, ΔW was negative at the range of 380–480 °C. In this stage, cotton straw and PP 

began to decompose simultaneously in the temperature range, and cotton straw decomposed to form a 

radical, which can promote PP to degrade, and the weight loss rate of the cotton straw/PP mixture was 

greater than the weighted average of one obtained from the separate pyrolysis of the sample. The result 

indicated there was a synergistic effect in the co-pyrolysis of the cotton straw/PP mixture. 

 

Figure 1. Graph shows the ΔW curve of straw and PP mixture. 

Based on elemental analysis (see Table 2), the calorific value of oil from the pyrolysis of straw was 

the lowest, which was attributed to the high oxygen content of the product. 

Table 2. Elemental analysis of oil. 

Materials C/% H/% O/% N/% S/% Calorific Value/MJ·kg−1 

Cotton straw 50.8 8.78 39.8 0.57 0.23 15.5 
PP/cotton straw 82.2 11.3 6.4 0.04 0.06 46.9 

PP 84.7 14.6 0.7 0.00 0.00 49.5 

Ratio of PP/cotton straw is 4:1. 

2.2. Characterization and Test of Ni-Mo/Al2O3 Catalyst 

Figure 2 shows XRD patterns of catalysts with different NiMo loadings. The catalyst with low NiMo 

loadings, such as in Equations (3) and (4), shows no noticeable diffraction peaks. XRD patterns of 

catalysts with higher NiMo loadings present the evidence of MoO3 and NiMoO4 crystalline phases. The 

bands at 2θ = 23.3° and 25.7° correspond to crystalline orthorhombic α-MoO3. XRD patterns of catalysts 

were analogous to that of γ-Al2O3, which was attributed to the good dispersion of NiO and MoO3 on  

γ-Al2O3. The dispersity of NiO on γ-Al2O3 was better than that of MoO3 on γ-Al2O3. The weak peaks at 

2θ = 26.6° and 28.8°, 39.1° correspond to the β- and α-NiMoO4 phase, respectively, and were almost not 
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detected, which indicated that β- and α-NiMoO4 dispersed uniformly on γ-Al2O3. The good dispersion 

of the active components on support improves the activity. 

 

Figure 2. The XRD pattern of the catalyst: (1) γ-Al2O3, (2) NiO-8 wt. %/γ-Al2O3,  

(3) NiO-5.4 wt. %/γ-Al2O3 (MoO3-2.6 wt. %), (4) NiO-2.6 wt. %/γ-Al2O3 (MoO3-5.4 wt. %), 

(5) MoO3-8 wt. % /γ-Al2O3. 

Acetic acid was selected as a reactant not only because it was known to be rich in the oil phase and 

aqueous phase from co-pyrolysis products but also because the derived products (ethanol, acetaldehyde, 

and ethyl acetate) were easily quantified by standard analytical techniques. Figure 3 shows acetic acid 

as a function of MoO3 content. The conversion of acetic acid increased with MoO3 content, and then 

decreased. The phenomenon was attributed to the fact that the activity of MoO3 and NiO was different, 

and the doping of MoO3 favored the dispersion of NiO (see Figure 2). The NiO-2.6 wt. %/γ-Al2O3  

(MoO3-5.4 wt. %) catalyst held the highest activity, and it was used as a catalyst in  

subsequent experiments. 

 

Figure 3. Effect of MoO3 content on the conversion of acetic acid. Reaction conditions:  

P = 3 MPa, WHSV = 1.5 h−1, H2/feedstock = 400. 
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The catalyst was tested at the range of 230~280 °C and 3 MPa of hydrogen pressure for 2 h.  

The conversion of acetic acid was neglected over the Al2O3 catalyst at 280 °C and 3 MPa for 2 h.  

The conversion of acetic acid increased with temperature over the Ni-Mo/γ-Al2O3 catalyst, and a 

conversion of 98% was obtained at 280 °C, which may be considered a complete conversion. Acetic 

acid was converted via two paths: (1) hydrogenation and (2) esterification. A main reaction profile is given 

in Scheme 1. Product distribution also is shown in Figure 4. Selectivity of ethyl acetate decreased with 

the increase of temperature, and that of ethanol and aldehyde were contrary to that of ethyl acetate. 

Methane, CO, and CO2 were detected in the outlet stream above 280 °C. The result suggests that 

decarboxylation of acetic acid occurs under this condition. 

 

Figure 4. Effect of temperature on conversion of acetic acid. Reaction conditions: P= 3 MPa, 

WHSV = 1.5 h−1, H2/feedstock = 400. 

 

Scheme 1. Paths of HDO of acetic acid on Ni-Mo/Al2O3 catalyst. 

The complex composition of crude oil results in different reactivity in HDO over Ni-MoAl2O3. 

Therefore, the main strategy to study the upgrade of pyrolysis crude oil was to investigate the model 

compounds (ethyl acetate, acetic acid, aldehyde, and ethanol) with a different functional group, and four 

simple model compounds with a different functional group were used to study HDO. Results are shown 

in Figure 5. The reactivity of the four model compounds was different in HDO, which increased in the 

following order: ethyl acetate < acetic acid < aldehyde < ethanol. The reactivity of ethyl acetate was 

lowest because its steric effect was the most outstanding among all the model compounds. The reactivity 

of the others was different for bond dissociation energy. The bond dissociation energy was greater, and 

the deoxygenation rate was slower. 
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Figure 5. Effect of functional group on conversion. Reaction conditions: T = 270 °C,  

WHSV = 2 h−1, H2/feedstock = 400, P = 4.0 MPa. 

Crude oil from the co-pyrolysis of the cotton straw/PP mixture contained diverse compounds with 

the same functional group and different chain lengths. Thus, it was important to study the effect of the 

chain length of the model compound with an identical functional group on HDO on the Ni-Mo/γ-Al2O3 

catalyst. Five model compounds with an identical functional group but different chain lengths were 

investigated in order to know the effect of chain length on HDO. Results are shown in Figure 6. It was 

well known that the chain length of the organic compound affected HDO on the Ni-Mo/γ-Al2O3 catalyst. 

The rate of HDO decreased in the following order: acetic acid > propanoic acid > butyric acid > valeric 

acid > stearic acid, which depended on the size of R of R-COOH. R of carboxylic acid molecules was 

larger; steric hindrance was more outstanding, so the rate of HDO decreased with the increase of R. 

 

Figure 6. Effect of chain length of model compounds with the same functional group on 

conversion. Reaction conditions: T = 270 °C, WHSV =2 h−1, H2/feedstock = 400, P = 4.0 MPa. 

The following section was carried out with crude oil at the same conditions (270 °C and 4 MPa). 

Figure 7 shows the GC-MS profile of crude oil and the upgraded oil. The chromatogram of the upgraded 

oil showed all compositions separating out before 20 min, and many peaks corresponding to a series of 

n-alkanes starting at about C11 regularly appeared. The chromatogram of the crude oil showed a longer 
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retention time than that of the upgraded oil. A summary of these results is listed in Table 3. GC-MS 

analysis showed that the crude oil mainly consisted of high-carbon alcohol, long-chain hydrocarbons 

(unsaturated and saturated), and fatty acids. Conversely, the upgraded oil mainly consisted of alkanes. 

Alkane (3-methyldecane) was the richest, but other alkanes from C12 to C20 also were present in the 

upgraded oil. A principal route to form C11 was the hydrodeoxygenation of carboxylic acid, alcohol, and 

aldehyde with C11, or decarbonylation and decarboxylation of the oxygenic compounds with more than 

C11. The composition of crude oil was different to that of the upgraded oil. Crude oil derived from the 

co-pyrolysis of the mixture mainly consisting of alkane, alkene, alcohol, and ester. Meanwhile, the 

upgraded oil mainly consisted of alkanes. Based on these results, the most of the oxygen can be removed 

after hydrotreating, suggesting HDO is feasible to upgrade crude oil. 

Table 3. Compositions of oil. 

No. 
Before HDO After HDO 

Time/min Area% Compositions Time/min Area% Compositions 

1 12.4 2.8 4-methyl-undecane 10.7 15.3 3-methyldecane 

2 14.3 3.7 2-butyl-1-octanol 11.0 12.7 4,5-diethyloctane 

3 15.6 3.2 Pentatonic acid, 10-undecenyl ester 11.1 2.6 4-ethyldecane 

4 16.7 4.8 2-hexyl-1-octanol 11.4 4.8 2-methylundecane 

5 17.1 7.6 Z-11-Tetradecen-1-ol propionate 11.6 9.2 dodecane 

6 18.1 4.2 2-hexyl-1-dodecanol 11.8 8.8 2,4-dimethylundecane 

7 19.2 4.0 5-octadecene 12.4 2.7 2,4-dimethyldodecane 

8 20.5 4.4 2-methyl-1-decanol 12.5 5.5 2,6,11-trimethyldodecane 

9 21.6 3.3 Z-8-dodecene-1-ol acetate 12.7 2.8 3-methyltridecane 

10 22.8 3.7 2-hexyl-1-decanol 13.2 4.3 2,4-dimethylpentadecane 

11 24.9 8.4 1,21-dococadiene 13.8 7.7 2,6,10-trimethyltetradecane

12 26.9 8.2 3,7,11,15-tetramethyl-2-hexadecane-1-ol 14.7 5.3 2-hexadecanol 

13 28.6 8.1 2-methyl hexadecane-1-ol 15.7 3.4 Hexadecane 

14 30.7 7.3 1,16-hexadecanediol 18.4 3.7 2-methyloctadecane 

15 33.7 6.4 E-3-methyl-8-tridecene-2-ol, acetate - - - 

16 38.4 5.9 1,19-eicosadiene - - - 

17 45.9 4.7 Acetic acid octadecylester - - - 

Note: hydrodeoxygenation (HDO). 

 

Figure 7. GC-MS chromatogram of crude oil. 
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3. Experimental Section 

Cotton straw was from the south of China and dried at 100 °C for 5 h, and then ground into  

ca. 0.23 mm. Polypropylene (PP) is waste plastic from Shanghai Yangli Mechanical and Electrical 

Technology LTD., Shanghai, China, and was dried, and then ground into ca. 0.23 mm. Elemental analysis 

of cotton straw and PP is listed in Table 4. 

Table 4. Elemental analysis of cotton straw and PP. 

Sample C/% H/% O/% N/% S/% 
PP 83.58 13.82 0 - 2.60 

Cotton straw 42.78 6.01 40.35 1.51 - 

Note: Polypropylene (PP); O/wt. % is calculated by difference. 

Supported Ni-Mo catalyst was prepared by wet co-impregnation of aqueous solutions of 

Ni(NO3)26H2O and (NH4)6Mo7O244H2O on the support (γ-Al2O3). The loading is 8 wt. %. The atomic 

ratio of Ni to Mo is 5:4. The catalyst was loaded in a stainless steel tubular reactor (1.5 cm i.d, and  

50 cm in length). Before reaction, the catalyst was pretreated at 400 °C for 1 h in H2. Hydrogen and  

oil were fed to the reactor at a ratio of H2/oil = 400. The liquid products were collected in a trap.  

GC-MS analysis was carried out on a Trace DSQ GC-MS system with an AB-5MS capillary column  

(30 m × 0.25 mm i.d, 0.25 μm film thickness). Helium was used as carrier gas, with a flow rate of  

1 mL·min−1. The column temperature was programmed from 60 to 300 °C at a rate of 10 °C·min−1 after 

an initial two-minute isothermal period. Then it was kept at the final temperature for 10 min. The inlet 

temperature was set to 300 °C, and the split ratio was 1:50. The mass spectrometer was set to an ionizing 

voltage of 70 eV with a mass range from 35 to 650 amu. Identifying organic compounds was 

accomplished by comparing the mass spectra of the resolved components using electronic library search 

routines. Elemental analysis was carried out on Elementar (Frankfurt, German, sensitivity to 0.1 g).  

C, H, N, and S was analyzed at He atmosphere with O as a combustion improver, and gas flow was  

50 mL/min. The atomic ratio of Ni to Mo was measured by ICP-AES (Perkin-Elmer 3300 DV, Fremont, 

CA, USA). N2 adsorption-desorption isotherms at −196 °C were recorded with a Micromeritics ASAP 

2010 automatic sorption analyzer (Micromeritics, Norcross, GA, USA). The detailed data are listed in 

Table 5. X-ray powder diffraction patterns of catalysts were recorded on a Bruker D8 Advance 

diffractometer (Bruker, Germany), using CuKa (1.5406 Å) radiation in the range of 10°–60° with a 

scanning rate of 1°/min. 

Table 5. Texture of catalysts. 

Ratio of Ni to Mo 
Texture of Catalyst 

DPore (nm) VPore (cm3/g) SBet (m2/g) 

Support - 8.1 0.43 209 
Catalyst 7:3 7.7 0.41 200 

The amount of cotton straw and PP used throughout all experiments was 10 g. Co-pyrolysis of 

mixtures was performed in the self-made fixed reactor (300 mm × 20 mm). N2 (flow rate 200 mL·min−1) 

was used as carrier gas, temperature was programmed from 40 to 600 °C at 100 °C·min−1 and kept for 
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20 min at 600 °C, then was cooled to room temperature. The above experiment was repeated at least 

three times. During the process, pyrolysis products were cooled down and collected, and gas was 

evacuated. Pyrolysis products were placed and delaminated into two layers. The top and bottom layers 

were oil phase and aqueous phase, respectively (Scheme 2). 

 

Scheme 2. Co-pyrolysis equipment: 1, carrier gas; 2, valve; 3, flowmeter; 4, temperature 

monitor; 5, temperature controller; 6, furnace; 7, fixed bed reactor; 8, round-bottomed flask; 

9, condenser. 

The pyrolysis of cotton straw/PP mixture was performed on thermogravimetric analyzer (TA 

Instrument SDT Q600, New Castle, DE, USA) with N2 as carrier gas (60 mL/min), and the temperature 

was programmed from 20 to 900 °C at 10 °C/min. 

The heating value of the products is approximated using Dulong’s equation [43]. 

Caloricity (MJ·kg−1) = 0.3383C + 1.442 × (H − O/8) (1)

where C, H, and O are the mass percent of carbon, hydrogen, and oxygen, respectively. 

The difference of weight loss Δ is defined as a function of the synergistic effect during pyrolysis.  

The conversion of reactant, crude oil yield, and synergy is calculated with Equations (2)–(4), respectively. 

 (2)

 (3)

 (4)

where η and μ are the conversions of the reactant and crude oil yield, respectively. W0, Wt, and Ws are 

the weight of the reactant, residue, and bio-oil from co-pyrolysis, respectively, and ΔW represents, to a 

certain degree, the synergistic effect during co-pyrolysis. Wb is the weight loss of mixture of cotton straw and 

PP. Wi is the weight loss of each material at the same conditions. Xi is the weight fraction of each material 

in the mixture. 

The conversions of model compounds and the product selectivity are calculated by the formulas: 
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Selectivity% ൌ
݉ଵ

݉ଶ
ൈ 100% (6)

where m1 and m2 represent the content of the aimed product and all products obtained from the HDO 

reaction, respectively. 

4. Conclusions 

The doping of PP with biomass can improve oil yield and oil quality, which is attributed to the synergy 

between cotton straw and PP at the range of 380–480 °C. The substrate structure had the determining 

effect on the HDO reaction over Ni-Mo/Al2O3. The rate of deoxygenation depended on the chain length 

and functional group of the organic compounds. The upgraded crude oil mainly consisted of C11 alkane 

from the HDO of carboxylic acid, alcohol, and aldehyde with C11, or decarbonylation and 

decarboxylation of the oxygenic compounds with more than C11. 
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