Electrocatalysis in Fuel Cells
1. Introduction
2. This Special Issue
References
- Electrocatalysis in Fuel Cells: A Non- and Low- Platinum Approach; Shao, M. (Ed.) Springer: London, UK, 2013.
- Nie, Y.; Li, L.; Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X.T.; Wang, H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467. [Google Scholar] [CrossRef] [PubMed]
- Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J.-P.; Wu, G.; Chung, H.T.; Johnston, C.M.; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 2011, 4, 114–130. [Google Scholar] [CrossRef]
- Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y.S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 2007, 107, 3904–3951. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Alonso-Vante, N. The effect of support on advanced Pt-based cathodes towards the oxygen reduction reaction. State of the art. Electrochim. Acta 2015, 179, 108–118. [Google Scholar] [CrossRef]
- Wei, Q.; Tong, X.; Zhang, G.; Qiao, J.; Gong, Q.; Sun, S. Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 2015, 5, 1574–1602. [Google Scholar] [CrossRef]
- Liu, J.; Li, E.; Ruan, M.; Song, P.; Xu, W. Recent progress on Fe/N/C electrocatalysts for the oxygen reduction reaction in fuel cells. Catalysts 2015, 5, 1167–1192. [Google Scholar] [CrossRef]
- Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J.-P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416. [Google Scholar] [CrossRef] [PubMed]
- Barkholtz, H.; Chong, L.; Kaiser, Z.; Xu, T.; Liu, D.-J. Highly active non-PGM catalysts prepared from metal organic frameworks. Catalysts 2015, 5, 955–965. [Google Scholar] [CrossRef]
- Armel, V.; Hannauer, J.; Jaouen, F. Effect of zif-8 crystal size on the O2 electro-reduction performance of pyrolyzed Fe–N–C catalysts. Catalysts 2015, 5, 1333–1351. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, S. Surfactant-template preparation of polyaniline semi-tubes for oxygen reduction. Catalysts 2015, 5, 1202–1210. [Google Scholar] [CrossRef]
- Wan, K.; Yu, Z.-P.; Liang, Z.-X. Polyaniline-derived ordered mesoporous carbon as an efficient electrocatalyst for oxygen reduction reaction. Catalysts 2015, 5, 1034–1045. [Google Scholar] [CrossRef]
- Qiao, X.; Liao, S.; You, C.; Chen, R. Phosphorus and nitrogen dual doped and simultaneously reduced graphene oxide with high surface area as efficient metal-free electrocatalyst for oxygen reduction. Catalysts 2015, 5, 981–991. [Google Scholar] [CrossRef]
- Ishihara, A.; Tamura, Y.; Chisaka, M.; Ohgi, Y.; Kohno, Y.; Matsuzawa, K.; Mitsushima, S.; Ota, K.-i. Titanium-niobium oxides as non-noble metal cathodes for polymer electrolyte fuel cells. Catalysts 2015, 5, 1289–1303. [Google Scholar] [CrossRef]
- Zhong, H.; Xi, J.; Tang, P.; Li, D.; Feng, Y. Positive effect of heat treatment on carbon-supported CoS nanocatalysts for oxygen reduction reaction. Catalysts 2015, 5, 1211–1220. [Google Scholar] [CrossRef]
- Zheng, Q.; Cheng, X.; Li, H. Microwave synthesis of high activity FeSe2/C catalyst toward oxygen reduction reaction. Catalysts 2015, 5, 1079–1091. [Google Scholar] [CrossRef]
- Adzic, R.R.; Zhang, J.; Sasaki, K.; Vukmirovic, M.B.; Shao, M.; Wang, J.X.; Nilekar, A.U.; Mavrikakis, M.; Valerio, J.A.; Uribe, F. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 2007, 46, 249–262. [Google Scholar] [CrossRef]
- Hu, J.; Kuttiyiel, K.; Sasaki, K.; Su, D.; Yang, T.-H.; Park, G.-G.; Zhang, C.; Chen, G.; Adzic, R. Pt monolayer shell on nitrided alloy core—a path to highly stable oxygen reduction catalyst. Catalysts 2015, 5, 1321–1332. [Google Scholar] [CrossRef]
- Inoue, H.; Sakai, R.; Kuwahara, T.; Chiku, M.; Higuchi, E. Simple preparation of Pd core nanoparticles for Pd core/Pt shell catalyst and evaluation of activity and durability for oxygen reduction reaction. Catalysts 2015, 5, 1375–1387. [Google Scholar] [CrossRef]
- Caballero-Manrique, G.; Brillas, E.; Centellas, F.; Garrido, J.; Rodríguez, R.; Cabot, P.-L. Electrochemical oxidation of the carbon support to synthesize Pt(Cu) and Pt-Ru(Cu) core-shell electrocatalysts for low-temperature fuel cells. Catalysts 2015, 5, 815–837. [Google Scholar] [CrossRef]
- Peles, A.; Shao, M.; Protsailo, L. Pt monolayer electrocatalyst for oxygen reduction reaction on Pd-Cu alloy: First-principles investigation. Catalysts 2015, 5, 1193–1201. [Google Scholar] [CrossRef]
- Shan, S.; Wu, J.; Kang, N.; Cronk, H.; Zhao, Y.; Zhao, W.; Skeete, Z.; Joseph, P.; Trimm, B.; Luo, J.; et al. Nanoscale alloying in electrocatalysts. Catalysts 2015, 5, 1465–1478. [Google Scholar]
- Gummalla, M.; Ball, S.; Condit, D.; Rasouli, S.; Yu, K.; Ferreira, P.; Myers, D.; Yang, Z. Effect of particle size and operating conditions on Pt3Co PEMFC cathode catalyst durability. Catalysts 2015, 5, 926–948. [Google Scholar] [CrossRef]
- Chiwata, M.; Kakinuma, K.; Wakisaka, M.; Uchida, M.; Deki, S.; Watanabe, M.; Uchida, H. Oxygen reduction reaction activity and durability of Pt catalysts supported on titanium carbide. Catalysts 2015, 5, 966–980. [Google Scholar] [CrossRef]
- Lori, O.; Elbaz, L. Advances in ceramic supports for polymer electrolyte fuel cells. Catalysts 2015, 5, 1445–1464. [Google Scholar] [CrossRef]
- Banham, D.; Feng, F.; Fürstenhaupt, T.; Pei, K.; Ye, S.; Birss, V. Novel mesoporous carbon supports for PEMFC catalysts. Catalysts 2015, 5, 1046–1067. [Google Scholar] [CrossRef]
- Negro, E.; Stassi, A.; Baglio, V.; Aricò, A.; Koper, G. Electrocatalytic activity and durability of Pt-decorated non-covalently functionalized graphitic structures. Catalysts 2015, 5, 1622–1635. [Google Scholar] [CrossRef]
- Holade, Y.; Sahin, N.; Servat, K.; Napporn, T.; Kokoh, K. Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells. Catalysts 2015, 5, 310–348. [Google Scholar] [CrossRef]
- Job, N.; Lambert, S.; Zubiaur, A.; Cao, C.; Pirard, J.-P. Design of Pt/carbon xerogel catalysts for PEM fuel cells. Catalysts 2015, 5, 40–57. [Google Scholar] [CrossRef]
- Myles, T.D.; Kim, S.; Maric, R.; Mustain, W.E. Application of a coated film catalyst layer model to a high temperature polymer electrolyte membrane fuel cell with low catalyst loading produced by reactive spray deposition technology. Catalysts 2015, 5, 1673–1691. [Google Scholar] [CrossRef]
- Videla, A.; Osmieri, L.; Esfahani, R.; Zeng, J.; Francia, C.; Specchia, S. The use of C-MnO2 as hybrid precursor support for a Pt/C-MnxO1+x catalyst with enhanced activity for the methanol oxidation reaction (mor). Catalysts 2015, 5, 1399–1416. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; He, X.; Ma, A.; Le, L.; Lin, S. Facile electrodeposition of flower-like PMo12-Pt/RGO composite with enhanced electrocatalytic activity towards methanol oxidation. Catalysts 2015, 5, 1275–1288. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Kuo, C.-W.; Chen, Y.-L.; Chang, J.-K. Copolymers based on indole-6-carboxylic acid and 3,4-ethylenedioxythiophene as platinum catalyst support for methanol oxidation. Catalysts 2015, 5, 1657–1672. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Wang, Y.; Bai, Q.; Gao, Y.; Zhang, Z. Synthesis and electrocatalytic performance of multi-component nanoporous PtRuCuW alloy for direct methanol fuel cells. Catalysts 2015, 5, 1003–1015. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, S.; Cai, W.-B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5, 1507–1534. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, M.; Li, Q.; Xu, Q. Preparation and electrocatalytic characteristics of PdW/C catalyst for ethanol oxidation. Catalysts 2015, 5, 1068–1078. [Google Scholar] [CrossRef]
- Bai, Z.; Huang, R.; Niu, L.; Zhang, Q.; Yang, L.; Zhang, J. A facile synthesis of hollow palladium/copper alloy nanocubes supported on N-doped graphene for ethanol electrooxidation catalyst. Catalysts 2015, 5, 747–758. [Google Scholar] [CrossRef]
- Ghavidel, M.; Easton, E. Improving the ethanol oxidation activity of Pt-Mn alloys through the use of additives during deposition. Catalysts 2015, 5, 1016–1033. [Google Scholar] [CrossRef]
- Meng, H.; Zeng, D.; Xie, F. Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts 2015, 5, 1221–1274. [Google Scholar] [CrossRef]
- Wang, L.-L.; Cao, X.-L.; Wang, Y.-J.; Li, Q.-X. Sb surface modification of Pd by mimetic underpotential deposition for formic acid oxidation. Catalysts 2015, 5, 1388–1398. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, H.; Dai, Y.; Zhang, F.; Wu, P.; Wu, P.; Tang, Y. Sacrificial template-based synthesis of unified hollow porous palladium nanospheres for formic acid electro-oxidation. Catalysts 2015, 5, 992–1002. [Google Scholar] [CrossRef]
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, M. Electrocatalysis in Fuel Cells. Catalysts 2015, 5, 2115-2121. https://doi.org/10.3390/catal5042115
Shao M. Electrocatalysis in Fuel Cells. Catalysts. 2015; 5(4):2115-2121. https://doi.org/10.3390/catal5042115
Chicago/Turabian StyleShao, Minhua. 2015. "Electrocatalysis in Fuel Cells" Catalysts 5, no. 4: 2115-2121. https://doi.org/10.3390/catal5042115
APA StyleShao, M. (2015). Electrocatalysis in Fuel Cells. Catalysts, 5(4), 2115-2121. https://doi.org/10.3390/catal5042115