

Upgrading V₂O₅-WO₃/TiO₂ deNO*x* Catalyst with TiO₂-SiO₂ Support Prepared from Ti-Bearing Blast Furnace Slag

Tuyetsuong Tran ^{1,2}, Jian Yu ^{1,*}, Lina Gan ^{1,2}, Feng Guo ¹, Dinhtuan Phan ¹ and Guangwen Xu ^{1,*}

- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; ttsuong87@gmail.com (T.T.); lngan@ipe.ac.cn (L.G.); guofeng@ipe.ac.cn (F.G.); phantuan23bhht@gmail.com (D.P.)
- ² University of Chinese Academy of Sciences, Beijing 100049, China
- * Correspondence: yujian@ipe.ac.cn (J.Y.); gwxu@ipe.ac.cn (G.X.); Tel.: +86-10-82544886 (J.Y.); +86-10-82629912 (G.X.)

Academic Editor: Keith Hohn

Received: 26 January 2016; Accepted: 29 March 2016; Published: 12 April 2016

Abstract: The study is devoted to developing a rather high-efficiency NH₃-SCR (selective catalytic reduction) catalyst for NO_x removal using TiO₂-SiO₂ support made from blast furnace slag. Through adjusting hydrolytic pH value of TiOSO₄ solution obtained from acidolysis of slag with 70 wt. % H₂SO₄, a series of TiO₂-SiO₂ mixed oxides was prepared to have different mass ratios of TiO₂ to SiO₂. The supports are further impregnated with V₂O₅ and WO₃ to make the SCR catalysts for NO_x removal. Characterizing the catalysts show that silica and unavoidable impurities in support prepared from slag were responsible for maintaining their mesoporous structure and the enhancements in the acidity and reducible form of active species on the catalyst surface, which thus rendered the catalysts to have higher NO_x reduction capability than catalyst using commercial TiO₂. Furthermore, the low-cost catalyst prepared from slag-based TiO₂ support possesses good stability, and strong resistance to SO₂ and H₂O poisoning, which are beneficial to practical deNO_x applications.

Keywords: blast furnace slag; V₂O₅-WO₃/TiO₂-SiO₂; NH₃-SCR catalyst; deNO_x; flue gas

1. Introduction

Nitrogen oxides (NO_x) are the key pollutant for overall improvement of ambient air quality and multi-objective environmental management. In Asian countries such as China, the NO_x emission is predicted to increase further as a result from its economic development that causes fast growth of coal consumption [1–4]. Various technologies have been developed to control emissions of NO_x (deNO_x), mainly including the Selective Non-Catalytic Reduction by NH₃ (NH₃-SNCR), Selective Catalytic Reduction by NH₃ (NH₃-SCR) and oxidation absorption with liquid. Among them, NH₃-SCR is the most common technology for deep removal of NO_x from various kinds of flue gas. In this process, the NO_x in flue gas selectively reacts with gaseous ammonia over the catalyst to produce nitrogen and water without generating any secondary pollutants [5–7]. Currently, the global demand for SCR systems is increasing rapidly and China has the biggest market. The NH₃-SCR catalyst costs 40% of the entire investment and most widespread commercial SCR catalyst is based on V_2O_5/TiO_2 formulations, such as V₂O₅-WO₃/TiO₂ and V₂O₅-MoO₃/TiO₂ [7,8]. Technical development continues to seek "better" deNO_x catalysts that possess high SCR performance, good resistance to SO₂ poisoning and low preparation cost [9-12]. A major way is to upgrade the porous TiO₂ support by incorporating with other metal oxides. Commercial titania fail to provide high surface area; however, to be used as a support for deNOx catalyst, titania should be characterized by high surface area and high onset temperature to rutilation. Thus, numerous metal oxides doped with TiO_2 have been studied

as mechanical promoters including Al₂O₃, SiO₂, Fe₂O₃, and CeO₂ for the improvement of deNO_x catalytic activity [12–15]. Among various mixed oxides, TiO₂-SiO₂ has drawn special attention owing to its highly active in the SCR reaction and simultaneously, less active in the SO₂ oxidation reaction. A commercial V₂O₅-WO₃/TiO₂ usually has 0–10 wt. % silica introduced in catalyst molding [10,12]. Many reports in the literature [5,16–18] have reported that TiO₂-SiO₂ support can improve catalytic activity and SO₂ durability. Such superior low-temperature SCR activity was mainly attributed to the presence of polymeric vanadate species and high redox properties besides high surface area. The SO₂ oxidation activity was found to be significantly suppressed with increasing SiO₂ content in the support, which leads to a remarkable improvement of the sulfur tolerance of the catalyst and thus is favorable for industrial applications of SCR process. Raising the SiO₂ content beyond 10 wt. % decreased the realized NO conversion, due to the active-component transfer and NH₃ adsorption on strong acid sites [17–19].

Southwestern China is rich in magnetite bearing vanadium and titanium; its blast furnace slag (BFS) from iron-steel making process contain 20–22 wt. % TiO₂ [20]. This titanium-bearing BFS is quite different from ilmenite, which contains 40–50 wt. % TiO₂. The latter are currently used to produce TiO₂ support for SCR deNO_x catalyst through sulfate method [21], where the ilmenite ore is dissolved in concentrated sulfuric acid solution to prepare a titanium sulfate solution (TiOSO₄). This solution is further purified and hydrolyzed to produce pure TiO₂ [21,22]. In China, only 25% of Ti-bearing BFS is used to make dam concrete or road-paving material. The accumulated Ti-slag has exceeded 70 million tons, and it still increases by a rate of three million tons per year in China [20,23]. This not only wastes its containing Ti resource but also causes serious environmental pollution [23]. The slag contains both TiO₂ and SiO₂, and it can potentially be converted into the TiO₂-SiO₂ support for deNO_x catalyst. The use of TiO₂ made from slag as a support for NH₃-SCR catalyst is important in terms of lowering the catalyst cost and exploiting a new way to fully utilize the Ti-BFS.

The feasibility of making NH₃-SCR catalyst using Ti-bearing BFS based on sulfate method has been reported in our previous work [11]. The obtained catalyst showed even higher deNO_x activity than that based on commercial TiO₂. This work continues to upgrade such a V₂O₅-WO₃/TiO₂ catalyst by using TiO₂-SiO₂ supports made from Ti-bearing BFS under varied hydrolytic conditions. The TiO₂-SiO₂ supports with different TiO₂/SiO₂ ratios are prepared to clarify how the deNO_x activity of catalyst varies with the composition, structure and acidity of the prepared support. However, besides containing certain SiO₂, all samples made with slag had some unavoidable impurities such as Al₂O₃ and Fe₂O₃. The purifications of these impurities have been performed according to [24–26], but the process was too complicated and increased the preparation cost. As mentioned above, the incorporation of Al₂O₃ and Fe₂O₃ into TiO₂ as mechanical promoters helped to improve the SCR activity. An earlier study [13] also reported that the co-introduction of SiO₂ and Al₂O₃ into TiO₂ increased the resistance to SO₂ and H₂O poisoning in SCR of NO by NH₃. Thus, aim at minimizing the preparation cost, the obtained support from different hydrolytic conditions will be used directly without any other purification steps.

2. Results and Discussion

2.1. Composition Varying with Hydrolytic pH Value

The control of pH value is very important for hydrolysis of the TiOSO₄ solution obtained from acidolysis of BFS because the precipitation of SiO₂ is incomplete at pH values below 2.8 [27,28]. To achieve and maintain the pH value during hydrolysis, aqueous ammonia (NH₃.*x*H₂O 25%) was slowly added into the formed TiOSO₄ solution. Four parallel of syntheses were formed and named as BFS-TiO₂ N with N (pH = 1, 2, 3), denoting the pH value, and further NA for the case without pH adjustment. During leaching, TiO₂, SiO₂, Al₂O₃, and MgO become soluble, whereas CaO remains as CaSO₄ residue [29]. The composition of precipitated products, as shown in Table 1, obviously varied with hydrolytic pH value, indicating the dependence on isoelectric points (IEPs) of different components in the solution.

Sample	Composition of Calcined Sample							Yield		
	TiO ₂	SiO ₂	MgO	CaO	Al ₂ O ₃	Fe ₂ O ₃	SO ₄ ²⁻	Others	TiO ₂ Recovery	Total Product
Typical slag	20-23	22–25	7–8	27–28	14–15	-	-	-	-	-
Spent slag	20.9	23.2	10.3	27.0	13.8	1.4	1.7	1.7	-	-
NA (not adjusted)	92.2	6.8	-	-	0.1	0.1	0.5	0.3	73.6	78.1
pH =1	87.7	9.2	-	-	0.6	1.4	0.4	0.7	75.0	82.7
pH =2	79.9	14.5	-	-	2.5	2.5	0.3	1.3	76.8	88.9
pH =3	81.6	11.1	-	-	2.9	3.0	0.3	1.1	78.6	92.7
Residue	1.2	20.9	0.2	24.1	0.3		52.9	0.4	-	-

Table 1. Yield and main chemical composition of BFS-TiO₂ supports obtained under different hydrolytic pH values (mass %).

For SiO₂, its electrical mobility is zero at pH between 2 and 3, and the rate of aggregation for silica sol particles gets its minimum in this range of pH. Thus, the content of SiO₂ in precipitate increased to 14.5 wt. % when pH value was raised to 2 and then slightly decreased with higher pH values. Meanwhile, iron oxides and alumina sol started to precipitate from the solution and their amounts slowly increased with raising pH of the TiOSO₄ solution for hydrolysis. This trend is consistent with the result in Seggiani *et al.* [27] who reported that with the rise in pH value the positive charge of anions decreased until a certain point was reached to cause negative adsorption of anions, at pH values of 6–7 for Al₂O₃ and 8.4–8.6 for Fe₂O₃ [27,28,30]. Besides, the positively-charged species cannot effectively be adsorbed onto the positively-charged anatase TiO₂ surface (IEP = 3.5). Therefore, only little iron oxides and alumina gel were deposited on TiO₂. Furthermore, the recovery ratio of TiO₂ also varied with pH value for the four prepared samples. At pH of 3, the realized highest yield of total precipitate and TiO₂ recovery ratio were 92.7% and 78.6%, respectively. The total product yield was found to increase with raising pH value of hydrolysis solution since more impurities were co-precipitated at higher pH values.

2.2. Structure of Prepared Supports

Figure 1a compares the shapes of adsorption isotherms for a commercial TiO_2 sample and several synthetic BFS-TiO₂ samples. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, the isotherms of all BFS-TiO₂ are almost type IV to show obvious mesoporous structure in the samples [31]. Meanwhile, the TiO_2 support belongs to the type H1, implying a uniform cylindrical pore geometry in the material. In all the synthetic BFS-TiO₂ samples, the shape and location of their hysteresis loops vary with the hydrolytic conditions, and the physical properties of the produced TiO₂ are strongly subject to the incorporated Si. The isotherm for the BFS-TiO₂ NA sample is actually a mixture of the types H2 and H3 hysteresis loops, but that for the BFS-TiO₂ samples at pH = 1-3 belongs to the type H2. Thus, the mesopores in all BFS-TiO₂ supports are irregular in size and shape [31]. From Figure 1b we can see that the pore size distribution (PSDs) moves towards smaller sizes when increasing the SiO₂ content to cause collapse of inter-aggregated pores, as represented by the hysteresis loop at high P/P_0 [32]. The contribution of SiO₂ to the formation of pores in BFS-TiO₂ was also proven by the increased surface area and decreased mean pore sizes with the rise of SiO_2 content. Interestingly, the PSDs change from a bimodal structure for the commercial TiO_2 and BFS- TiO_2 NA to a unimodal mesopore structure for the BFS-TiO₂ samples made at pH = 1-3 which contain silica and oxide dopants like Al₂O₃ and Fe₂O₃ in high amounts. This indicates that both silica and impurities in the supports help to maintain their high mesopore fraction, resulting the greater surface area shown in Table 2 [33]. Generally, a large pore volume is due to a high fraction of mesopores with high and non-uniform surface area (H2 and H3 hysteresis loops), which improves the catalytic activity by obtaining better dispersion of vanadium species on support and facilitating the spread of reactant molecules (NO) to active sites existing in the meso-structure framework [7,34]. All of this suggests that

both silica and impurities in the slag-based deNO_x catalyst facilitate the catalytic NH₃-SCR reactions, especially for the support made at pH 1 that has the largest mesopore volume.

Figure 1. Characterization of BFS-TiO₂ and TiO₂ supports: (a) isotherms of N_2 adsorption and desorption; and (b) pore size distribution.

Sample		9	Catalyst			
	BET (m ² ⋅g ⁻¹)	Pore Size (nm)	Pore Volume (cm ³ ·g ⁻¹)	Crystalline Size (nm) ^a	V ₂ O ₅ Load (%)	WO ₃ Load (%)
TiO ₂	119.32	15.99	0.477	21.22	1.9	4.8
NA	172.24	3.13	0.135	14.89	2.2	4.9
pH = 1	282.28	8.62	0.609	11.90	2.0	5.1
pH = 2	427.61	4.41	0.471	7.43	2.0	4.9
pH = 3	298.02	5.62	0.419	8.47	1.9	5.1

Table 2. Structural parameters of supports and loading amount of active components for their catalysts.

^a TiO₂ crystalline size was calculated from X-ray diffraction (XRD) data.

The microstructures of synthetic BFS-TiO₂ samples have been studied using SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) analysis, presented in Figure 2. It could be observed from SEM images Figure 2(a,d) that the BFS-TiO₂ supports possess a rough porous surface accompanied with many mesopores (TEM images Figure 2b,e) to imply high surface area and high adsorptive capacity [35]. The micrographs also revealed that the secondary particles, as observed in Figure 2(a,d), comprise agglomerated irregular primary particles, of which the size was dependent on hydrolytic pH value, as observed in Figure 2(b,e) [35]. Meanwhile, SEM image showed that the BFS-TiO₂ NA support had a broad size distribution and two types of aggregates, namely elongated shape and mainly spherical shape with loosely agglomerated. The micrographs of BFS-TiO₂ samples with pH adjustment were very similar and represented by sample prepared at pH 1; their SEM showed the asymmetric plate-like morphology with larger, more consolidated agglomerates, thus exposing new textural properties (see Figure 1) in comparison to sample without pH adjustment in hydrolysis. The severe agglomeration observed in samples having pH adjustment is probably because the strong acidity of the initial hydrolysis solution caused slow hydrolyzation; the enhancement in the hydrolytic pH value might have helped to increase in reaction rate that led to increase the number of particles and, consequently, the number of collisions leading to agglomeration [21,36,37].

Further identification of the configuration of morphology was achieved by TEM and HRTEM images. TEM analysis revealed that the synthetic BFS-TiO₂ supports had obviously spherical primary particles without any coating on the surface [21]. A high resolution transmission electron microscopic (HRTEM) study was performed to clarify the distribution of crystalline titania within the BFS-TiO₂ samples. All the observed lattice fringes of BFS-TiO₂ nanoparticles show a d-spacing of 0.360 nm, which can be well assigned to the (101) lattice fringes of anatase TiO₂ (d = 0.352 nm, JCPDS No. 21-1272), confirming the presence of anatase TiO₂ in all the BFS-TiO₂ supports [38].

Figure 2. SEM, TEM and HRTEM micrographs of BFS-TiO₂ samples made at different pH values of hydrolysis: (**a**–**c**) NA; and (**d**–**f**) pH 1.

In order to further understand the structure of BFS-TiO₂ from hydrolysis under different pH values, FT-IR (Fourier Transform Infrared Spectroscopy) spectra were taken for all tested supports (Figure 3). For this characterization, each sample was dried at 200 °C for 2 h to remove free water. Usually, the IR broad band at 400–850 cm⁻¹ is accepted to be the stretching vibration of Ti–O bonds in Ti–O–Ti [39]. Meanwhile, the broad band at 3200–3600 cm⁻¹ is attributed to the stretching vibration of –OH of adsorbed water as well as surface hydroxyl, and that at 1635 cm⁻¹ is assigned to the bending vibration of –OH. For all synthetic BFS-TiO₂ samples, the new absorption bands at 1100 cm⁻¹ and 960 cm⁻¹ are induced by the stretching vibration of Si–O–Si and Ti–O–Si bonds, respectively. The IR results suggest that BFS-TiO₂ is a composite of TiO₂ and SiO₂, and that Ti–O–Si bond is formed between TiO₂ and SiO₂ particles [40].

Figure 3. FT-IR spectra of different synthetic BFS-TiO₂ samples and commercial TiO₂.

The crystallographic phase shown in Figure 4 can be identified as anatase TiO_2 , which is in accordance with TEM results. For all BFS- TiO_2 samples, no pronounced change was observed in the XRD pattern, except for a lower intensity than that for pure TiO_2 . The lattice aberrances turn bigger for all BFS- TiO_2 containing higher silica content, which is consistent with the literatures [39,40].

According to the Scherrer's formula, the sizes of the anatase crystallites was between 14.9–7.4 nm, as listed in Table 2. The suppression in crystalline size together with the formation of Ti–O–Si bond proved by FT-IR spectra indicated that SiO₂ is uniformly incorporated into titania lattice and no peaks corresponding to SiO₂ were observed, suggesting the formation of amorphous SiO₂ [40]. Furthermore, the presence of SiO₂ in BFS-TiO₂ does not allow structural changes except for a slight shift towards higher 2 θ values due to shrinkage of the pores, thereby stabilizing the meso-structures [41]. Neither impurities, Al₂O₃ nor Fe₂O₃, are detected, probably because of their weakness compared to the strong scattering from anatase, suggesting that impurities well dispersed over the surface of titania or existed as an amorphous phase [13,14]. The difference in crystallinity is not proportional to reflect the enabled NO_x conversion because the support also has different acidities and acid sites. The acidity of support is associated with NH₃ adsorption on catalyst, which should increase with raising acidity [12,17].

Figure 4. XRD patterns of different synthetic BFS-TiO₂ samples and commercial TiO₂.

The temperature programmed desorption (TPD) of NH₃ is a well-known method for determination of acidic properties of solid heterogeneous catalysts. In the NH₃–TPD curves, peaks are generally distributed into two regions: below and above 400 °C, referred to as low-temperature (LT) and high-temperature (HT) regions, respectively. The peaks in the HT region can be attributed to the desorption of NH₃ from strong acid sites, and the peak in the LT region is assigned as the desorption of NH₃ from some relatively weak acid sites [42]. NH₃-TPD profiles of synthetic BFS-TiO₂ and TiO₂ supports, presented in Figure 5, showed broadly distributed acid sites in the LT region. In general, their TPD curves are similar in shape but clearly different in magnitude. The signal of all BFS-TiO₂ samples greatly increased as compared to pure TiO₂, which meant the density of acid sites was enhanced with the incorporation of SiO₂. The formation of Ti–O–Si band was believed to develop more acid sites [42,43]. This result implies that the presence of SiO₂ in BFS-TiO₂ samples brought more active NH₃ adsorbed species, which is reported to be significantly beneficial to SCR reaction [9,13,17]. The amount of NH₃ desorbed on the samples has increased with the increase of SiO₂ content [9], indicating that more acidic sites occurred in the catalyst having higher SiO₂ content and the weak acid sites are predominant [39].

H₂-Temperature programmed reduction (H₂-TPR) measurements were conducted to characterize the reduction performances and the interactions of dispersed active species with support [12]. As shown in Figure 6, H₂-TPR profiles of different catalysts from supports with varied TiO₂/SiO₂ ratios are characterized by two broad peaks with their T_{max} around 431–483 °C and 742–848 °C, indicating the reductions of V₂O₅ and WO₃, respectively. The different reduction properties of V₂O₅ and WO₃ on BFS-TiO₂ supports was observed, illustrating their different interactions with support [44]. It can be seen in Figure 6 that the catalysts from BFS-TiO₂ showed larger peak areas than that from commercial TiO₂. As we all know, a catalyst possessing a larger reduction peak means the more reducible form of active species on the catalyst surface, which has a positive effect on NO catalytic reduction with NH_3 [45]. These results demonstrated that the incorporation of SiO₂ to BFS-TiO₂ support is beneficial to disperse VO_x and WO_x species on the surface than pure TiO₂ support did [12]. Additionally, T_{max} of reduction peak for mainly active VO_x species also reflects the difficulty of its valence change during deNO_x reaction, which is directly related to the deNO_x activity of a catalyst. The reduction peaks of VO_x species shift to lower temperature region, thus the reduction reaction takes place more easily [12,44]. One can see that the VO_x reduction peaks firstly shifted to low temperature with raising the amount of SiO_2 in support, suggesting that the reducibility of some surface vanadium oxide species increases with increasing silica [17,46]. Surprisingly, the T_{max} value of VO_x species in the catalyst having the highest SiO₂ content (BFS-TiO₂ pH 2) is significantly higher than that of both other BFS-TiO₂ samples and commercial TiO₂, suggesting that the modification of titania by high content of SiO₂ seems to decrease the reducibility of surface vanadium oxide species and that a strong interaction exists between the surface vanadium oxide and surface silica species, resulting in the difficult reduction. Such observation has also been reported by Gao et al. [46], which verifies the TiO_2/SiO_2 ratio in 1 wt.% V_2O_5/TiO_2 -SiO₂ to study reducibility properties of catalyst and type of the surface VO_x species on the support. T_{max} of VO_x reduction was found to be the lowest for the catalyst with the support at pH = 1, suggesting stronger redox properties for this sample.

Figure 5. NH₃-TPD patterns of BFS-TiO₂ samples made at different pH values of hydrolysis and commercial TiO₂.

Figure 6. H₂-TPR profiles of catalysts on commercial TiO₂ and BFS-TiO₂ made at different pH values of hydrolysis (2 wt. % V₂O₅, 5 wt. % WO₃).

2.3. Catalytic Performance of Catalysts

The activity test in the reduction of NO by NH_3 was carried out over catalysts prepared by impregnating 2 wt. % V₂O₅ and 5 wt. % WO₃ on the prepared BFS-TiO₂ and commercial TiO₂ as

support. Evaluation of catalysts was conducted at 150–500 °C in simulated flue gas and the results are compared in Figure 7. The catalytic activity increased with raising temperature from 150 °C to 400 °C and then sharply decreased at rather higher temperatures, which was caused by the parallel oxidation of NH₃ by O₂, resulting a decrease in the amount of NH₃ participating in the SCR of NO [44]. In 200–400 °C, the best deNO_x efficiency was shown for V₂O₅-WO₃/BFS-TiO₂ (pH = 1) with 9.2 wt. % SiO₂ in its support, whereas the lowest activity was for the catalyst on BFS-TiO₂ (pH = 2) with the highest SiO₂ content of 14.5 wt. %. The catalyst made with the commercial TiO₂ without any SiO₂ exhibited higher catalytic activity than that with BFS-TiO₂ (pH = 2) did. Meanwhile, the catalysts on the supports made with pH = 3 and NA (no pH adjustment) had a similar catalytic activity at all temperatures tested. These obvious differences in catalytic activity among the catalysts should be subject to different compositions, pore structures and acidic properties of used supports.

Figure 7. NO conversion *versus* temperature for catalysts with 2 wt. % V₂O₅ and 5 wt. % WO₃ on BFS-TiO₂ and commercial TiO₂ supports.

The high surface area, surface acidity coupled with the more reducible form of VO_x and WO_x species on the surface of catalysts prepared from BFS-TiO₂ supports allowed an enhancement of the catalytic efficiency in the SCR of NO by NH₃ as compare to catalyst prepared from pure TiO₂ [12,45]. The deNO_x activity of slag-based catalysts increased with the increase of SiO₂ content up to 9.2 wt. %(BFS-TiO₂ pH 1) and then decreased. It was obvious that the total acidic strength of BFS-TiO₂ pH 2 having the highest SiO₂ content was greater than that of the other catalysts, but the NO conversion over this catalyst was the lowest. An earlier study of V_2O_5/TiO_2 -SiO₂ by Kobayashi *et al.* [17] reported that this behavior was attributed to the difference in the NH_3 adsorption capacity. It is considered that NH_3 is not utilized effectively for the transformation of NO to N_2 since NH_3 is too strongly adsorbed on the large number of acidic sites in a large concentration of SiO_2 , which is reversely disadvantageous for SCR reaction. Moreover, a strong interaction exists between the surface vanadium oxide and surface silica species caused the difficult reducibility of VO_x species, resulting its low catalytic activity [46]. Table 3 listed the distribution of VO_x reduction peak from H₂-TPR results and the reaction rate constant (k_{mass}) for comparison of catalytic activity irrespective of the small loading deviations occurred during impregnation process. The results revealed that the reaction rate constant of the prepared catalyst complies with their H₂-TPR profile. The best redox performance and the highest reaction rate constant shown for the support made at pH = 1 had the highest mesopore volume. Pinnavaia *et al.* [34] reported that sample having high mesopore volume can facilitate the diffusion of reactant molecules (NO) or reaction intermediates to active sites on the mesoporous support. These results verify that the amount of SiO₂ content catalyst support does have great effect on the redox properties of surface VO_x species, surface acidity and textural properties, and, consequently, affects the NO catalytic reduction with NH₃ [12,17,46].

Table 3. Position of VO_x peak maxima (T_{max}) obtained from H₂-TPR analysis and the mass rate constant (k_{mass}) at 300 °C of NO-NH₃ reaction.

Sample	TiO ₂	NA	pH = 1	pH = 2	pH = 3
T_{max} of VOx (°C)	476	455	431	483	441
$k_{\rm mass}~({\rm cm}^3/{\rm g.s})$	116.8	131.6	150.0	93.1	140.0

In practical use, the SCR reaction atmosphere usually contains some fraction of H_2O and SO_2 . Therefore, the effect of 10 vol. % H₂O and 600 ppm of SO₂ on the SCR reaction over the catalyst on BFS-TiO₂ at pH = 1 and commercial TiO₂ supports was investigated. The experiments were performed at 300 $^{\circ}$ C with an NH₃/NO ratio of 0.8 and GSHV of 24,000 h⁻¹. Figure 8 revealed that the presence of steam and SO₂ in the feed inhibited significantly the NH₃-SCR reaction over these catalysts, especially V₂O₅-WO₃/TiO₂ catalyst. For catalyst prepared from BFS-TiO₂ support, the presence of steam lowered NO conversion by about 5%, but still retained a stable NO conversion to N₂ in an 8-h test, and stopping the feed of H_2O soon restored its catalytic activity. However, with the presence of both SO_2 and steam, the NO conversion was stabilized at a value about 10% lower than that for the gas without SO_2 and steam; furthermore stopping SO_2 and steam (~24 h), the NO conversion again restored quickly to a high value. The same trends were also observed over catalyst made with commercial TiO₂, a significant reduction from 66% to 45% in NO conversion was observed when gas feed contained both SO₂ and steam. Nonetheless, its catalytic activity recovered gradually and did not recover to the original level after stopping the feed of SO_2 and steam. Literature studies found that the most significant reason for maintaining a high activity of catalyst on TiO₂-SiO₂ support in the presence of SO₂ and steam is due to the special network structure of the Ti-Si that can suppress the sulfate formation the surface of the Ti-Si binary oxide support [12,13,17,19]. These results suggest that the catalyst made with the slag-based TiO_2 support (by pH = 1) can enhance the catalytic activity and possesses good stability, strong resistance to SO₂ and H₂O poisoning, which are beneficial to practical deNO_x applications as compared to catalyst prepared from commercial TiO₂ support.

Figure 8. Resistance to poisoning of SO₂ and steam for the catalyst prepared with commercial TiO₂ support and BFS-TiO₂ support made at pH = 1 of hydrolysis (2 wt. % V₂O₅, 5 wt. % WO₃).

3. Experimental Section

3.1. Slag Treatment and Catalyst Preparation

The raw Ti-bearing blast furnace slag (BFS) was provided by Panzihua Iron & Steel Group Co., Ltd. in China. Prior to use, the slag was dried and crushed into particle sizes below 0.2 mm. Then, the XRF analysis was applied to determine slag composition, as shown in Table 1. Figure 9 shows the XRD pattern of the slag. A broad diffraction peak around 30° was identified to be CaO-SiO₂-Al₂O₃-TiO₂ glass structure [47], and there was no anatase TiO₂ diffraction peak. Thus, the BFS needs to be treated for getting anatase TiO₂ used as the support of SCR catalyst [17,19].

Figure 9. XRD patterns of treated blast furnace slag (BFS) and leaching residue.

Studies on ilmenite leaching with sulfuric acid clarified that the maximal dissolution rate of ilmenite occurs at 70–76 wt. % H_2SO_4 at 88–100 °C [21,22]. The leaching was thus conducted using 70 wt. % sulfuric acid at 90 °C and lasted for 3 h. The mass ratio of H_2SO_4 over BFS was maintained at 1.5. Figure 9 also shows that the *residue of leaching* mainly consists of anhydrite (CaSO₄·2H₂O, JCPDS 01-072-0503) and 1.2 wt. % TiO₂ (XRF analysis). This confirms that nearly all TiO₂ was dissolved by sulfuric acid [29]. The black TiOSO₄ solution formed by this acidolysis was further hydrolyzed to make precipitates through adjusting the hydrolytic pH to a value of 1, 2 or 3 using 25% aqueous ammonia. For hydrolysis, the TiOSO₄ solution was first hydrolyzed at 80 °C for 5 h and then reacted at 110 °C for 5 h to form a H_2TiO_3 slurry. By filtration and washing further, the obtained filter cake was finally dried at 110 °C and calcined at 600 °C for 4 h to transform H_2TiO_3 into anatase TiO₂. The total product yield and recovery percent of TiO₂ are calculated (Equations (1) and (2)):

Total product yield (%) =
$$\frac{\text{The calcined gel}}{\text{TiO}_2 \text{ in the slag}} \times 100,$$
 (1)

$$TiO_2 recovery \ (\%) = \frac{TiO_2 \text{ in calcined gel}}{TiO_2 \text{ in the slag}} \times 100$$
(2)

In order to carry out catalytic activity comparison between slag-based catalysts and the most widespread commercial V₂O₅-WO₃/TiO₂-based SCR catalyst at the same amount of active species, the anatase TiO₂ employed as a deNO_x catalyst support was prepared by calcination of metatitanic acid (H₂TiO₃ 99%, Chengdu XiYa Chemical Technology Co., Chengdu, China) at 600 °C for 4 h.

In turn, the deNO_x catalyst V₂O₅-WO₃/BFS-TiO₂ and V₂O₅-WO₃/TiO₂ was prepared according to the successive impregnation method using ammonium paratungstate ([NH₄]₆W₇O₂₄·6H₂O), Sinopharm, Shanghai, China) and ammonium metavanadate (NH₄VO₃, Sinopharm, Shanghai, China) as precursors for W and V, respectively. Firstly, the supports were added into the [NH₄]₆W₇O₂₄·6H₂O solution and the slurry was dryness under continuous stirring at 60 °C until the solution became a paste, then drying at 110 °C for 10 h took place. After that, NH₄VO₃ was dissolved in oxalic acid (10 wt. %) to form the blue complex vanadyl oxalate VO(C₂O₄)₂. The above obtained powder was introduced into this solution and the slurry was brought to dryness under continuous stirring at 60 °C until the solution became a paste. Finally, the paste was dried at 110 °C for 10 h and calcined at 600 °C for 4 h. All the catalysts were made to have the same composition of metal oxides, 2 wt. % V₂O₅, 5 wt. % WO₃ and balanced TiO₂. Besides, all the used materials and solvents for catalyst preparation and experiments were commercially bought.

3.2. Characterization and Evaluation

XRD measurement was carried out in 2 θ angles of 10–90° on a D/Max-RB diffractometer (Rigaku Corp., Tokyo, Japan) with Cu Kα radiation. Nitrogen adsorption/desorption isotherms were recorded on an ASAP 2020 (Micromeritics Instrument Corp., Norcross, GA, USA) at 77 K. All the products were degassed in vacuum at 150 °C for 6 h prior to BET measurements. The Brunauer–Emmett–Teller (BET) equation was used to calculate the specific surface area (S_{BET}). Pore size distributions were calculated from the adsorption branch using the Barret-Joyner-Halenda (BJH) model, while the nitrogen adsorption volume at the relative pressure (P/P_0) of 0.994 was used to determine the pore volume and average pore size. XRF analysis in the Axios X-ray fluorescence (XRF) spectrometer (PANalytical X'pert, Almelo, The Netherlands) was performed to determine the sample composition. Scanning electron microscopy (SEM) images were recorded at 10 kV on JSM-7001F electron microscopy (JEOL Ltd., Tokyo, Japan), samples were coated with Au prior to analysis and imaged directly. Transmission electron microscopy (TEM) observation was carried out on a JEM-2100 of JEOL transmission electron microscope (JEOL, Tokyo, Japan) at an accelerating voltage of 200 kV, TEM samples were mounted on a copper-supported carbon polymer grid by placing a few droplets of a suspension of the ground sample in ethanol on the grid, followed by drying at ambient conditions. Transmission FT-IR spectra were recorded from Bruker Tensor 27 instrument (Bruker, Rheinstetten, Germany) in the 400–4000 cm⁻¹ resolution, 1 mg dry powder was dispersed into 100 mg an IR transmissive material (KBr) and pressed to obtain transparent disks.

NH₃-TPD and H₂-TPR measurements were carried out on the ChemBET Pulsar TPR/TPD equipment from Quantachrome Instruments (FL, USA). Firstly, 0.1 g of sample was loaded into a quartz U-tube and heated from room temperature to 300 °C at 10 °C.min⁻¹ and then maintained there for 150 min in a Helium atmosphere. In turn, the sample was cooled to 90 °C and was further followed by heating to 700 °C at 5 °C· min⁻¹ for NH₃-TPD or to 1000 °C at 5 °C· min⁻¹ for H₂-TPR in a gas flow of 30 mL· min⁻¹. The consumed NH₃ or H₂ in the process of temperature rise was continuously monitored on-line using a mass spectrometry (Proline Mass Spectrometer, Ametek, PA, USA).

Catalytic activity measurement for SCR of NO by NH_3 was conducted in a quartz fixed bed reactor of 15 mm in internal diameter under atmospheric pressure. The tested catalyst was powder with particle sizes below 0.2 mm, and the simulated flue gas consisted of 0.06 vol. % NO, 0.048 vol. % NH_3 , 3 vol. % O_2 , 10 vol. % H_2O , 0.06 vol. % SO_2 and balanced N_2 . The total flow rate through the reactor was 400 mL· min⁻¹ (STP) to give a Gas Hourly Space Velocity (GHSV) of 24,000 h⁻¹ for activity test in two case studies, absence and presence of SO_2 and steam in the reaction stream. Taking this high space velocity was for evidently comparing the activities of different catalysts. The molar concentrations of gases entering and exiting the reactor were continually monitored using a using a PG-300 portable gas analyzer from Horiba Ltd. (Kyoto, Japan). The reaction usually reached a steady state after about 1 h at a given temperature, and the realized NO conversion [7] was calculated according to the measured inlet and outlet NO concentrations (Equation (3)):

$$X_{\rm NO} (\%) = \frac{\rm NO_{in} - \rm NO_{out}}{\rm NO_{in}} \times 100 \tag{3}$$

The reaction rate constant (k_{mass}) for the maximal deNO_x efficiency was calculated by assuming a pseudo-first order SCR reaction with respect to NO and zero order to NH₃ [7] (Equation (4)):

$$k = -\frac{\mathbf{V}^*}{\mathbf{W}} \times \ln(1 - \mathbf{X}_{\mathrm{NO}}),\tag{4}$$

where V^{*} is the total flow rate under reaction conditions, W the loaded amount of active component and X_{NO} the NO conversion.

4. Conclusions

 NO_x removal catalysts with low cost and good SCR performance were prepared using BFS-TiO₂ support made from blast furnace slag (BFS). In hydrolysis of TiOSO₄ solution obtained from acidolysis of slag, the hydrolytic pH value was varied to control the precipitation of metal components and thus the properties of the obtained BFS-TiO₂ support such as composition, structure and acidic properties. All synthetic BFS-TiO₂, which contained certain SiO₂ and unavoidable impurities Al_2O_3 and Fe_2O_3 , had mesoporous structure with high BET surface area of about 172–427 m²/g. The incorporated SiO_2 in BFS-TiO₂ samples was responsible for the enhancement in the amount of NH₃ adsorbed and the reducible species formed on the catalyst surface, which enabled them to have good activity for catalyzing NO-NH₃ reaction in comparison to the commercial TiO₂ support. However, deNO_x efficiency over V_2O_5 -WO₃ supported on BFS-TiO₂ pH 2 (having the highest SiO₂ content) is significantly lower than that of both other BFS-TiO₂ samples and commercial TiO₂. This suggested that the modification of titania by high content of SiO₂ caused difficulty in reducibility of VO_x in its catalyst due to the strong interaction between the surface VO_x and surface SiO₂ species; and strongly NH₃ adsorbed on its catalyst surface is subjected to the suppression of NH₃ participating in the SCR of NO to N₂. The best deNO_x efficiency, nearly 80% NO conversion at an NH₃/NO ratio of 0.8 in 200–400 °C for the catalyst prepared from BFS-TiO₂ pH 1, which also showed fairly good ability of resistance to the SO₂ and steam poisoning. All of these show in fact that V_2O_5 and WO_3 loaded on BFS-TiO₂ pH 1 having 9.2 wt. % of SiO₂ is suitable as SCR catalyst for practical deNO_x application due to high activity in SCR, good stability, strong resistance to SO₂ and steam poisoning, and, especially, low preparation catalyst cost.

Acknowledgments: The authors are grateful to the financial supports of International Science and Technology Cooperation Program of China (2013DFA51530), Strategic Priority Research Program of Chinese Academy of Sciences (XDA07030300), and Japan Society for the Promotion of Science (JSPS) for the postdoctoral fellowship grant (P15758).

Author Contributions: The experimental work was conceived and designed by T.T., J.Y. and G.X. T.T. performed the experiments; T.T, J.Y. and G.X. analyzed the data; L.G. and F.G. contributed reagents/materials/analysis tools; and T.T, J.Y., D.P. and G.X. drafted the paper. The manuscript was amended through the comments of all authors. All authors have given approval for the final version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Wang, S.X.; Zhao, B.; Cai, S.Y.; Klimont, Z.; Nielsen, C.P.; Morikawa, T.; Woo, J.H.; Kim, Y.; Fu, X.; Xu, J.Y.; *et al.* Emission trends and mitigation options for air pollutants in East Asia. *Atmos. Chem. Phys.* 2014, 14, 6571–6603. [CrossRef]
- Felix, J.D.; Elliott, E.M.; Shaw, S.L. Nitrogen isotopic composition of coal-fired power plant NO_x: Influence of emission controls and implications for global emission inventories. *Environ. Sci. Technol.* 2012, 46, 3528–3535.
 [CrossRef] [PubMed]
- Tian, H.; Liu, K.; Hao, J.; Wang, Y.; Gao, J.; Qiu, P.; Zhu, C. Nitrogen oxides emissions from thermal power plants in China: Current status and future predictions. *Environ. Sci. Technol.* 2013, 47, 11350–11357. [CrossRef] [PubMed]
- Zhao, B.; Wang, S.X.; Liu, H.; Xu, J.Y.; Fu, K.; Klimont, Z.; Hao, J.M.; He, K.B.; Cofala, J.; Amann, M. Nox emissions in China: Historical trends and future perspectives. *Atmos. Chem. Phys.* 2013, 13, 9869–9897. [CrossRef]
- 5. Shan, W.; Song, H. Catalysts for the selective catalytic reduction of NO_x with NH₃ at low temperature. *Catal. Sci. Technol.* **2015**, *5*, 4280–4288. [CrossRef]
- 6. Wang, Y.; Zhang, H.; Wang, J. NO_x sensor reading correction in diesel engine selective catalytic reduction system applications. *IEEE/ASME Trans. Mech.* **2016**, *21*, 460–471. [CrossRef]

- Marberger, A.; Elsener, M.; Ferri, D.; Kröcher, O. VO_x surface coverage optimization of V₂O₅/WO₃-TiO₂ SCR catalysts by variation of the V loading and by aging. *Catalysts* 2015, *5*, 1704–1720. [CrossRef]
- 8. China SCR Denitration Catalyst Industry Report, 2013–2016. PRNewswire, 8 January 2014.
- 9. Peng, Y.; Liu, C.; Zhang, X.; Li, J. The effect of SiO₂ on a novel CeO₂–WO₃/TiO₂ catalyst for the selective catalytic reduction of NO with NH₃. *Appl. Catal. B* **2013**, 140–141, 276–282. [CrossRef]
- Casanova, M.; Schermanz, K.; Llorca, J.; Trovarelli, A. Improved high temperature stability of NH₃-SCR catalysts based on rare earth vanadates supported on TiO₂-WO₃-SiO₂. *Catal. Today* 2012, *184*, 227–236. [CrossRef]
- 11. Yang, J.; Lei, S.; Yu, J.; Xu, G.W. Low-cost V–W–Ti SCR catalyst from Titanium-bearing blast furnace slag. *J. Environ. Chem. Eng.* **2014**, *2*, 1007–1010. [CrossRef]
- 12. Pan, Y.; Zhao, W.; Zhong, Q.; Cai, W.; Li, H. Promotional effect of Si-doped V₂O₅/TiO₂ for selective catalytic reduction of NO_x by NH₃. *J. Environ. Sci.* **2013**, *25*, 1703–1711. [CrossRef]
- Zhao, W.; Tang, Y.; Wan, Y.; Li, L.; Yao, S.; Li, X.; Gu, J.; Li, Y.; Shi, J. Promotion effects of SiO₂ or/and Al₂O₃ doped CeO₂/TiO₂ catalysts for selective catalytic reduction of NO by NH₃. *J. Hazard. Mater.* 2014, 278, 350–359. [CrossRef] [PubMed]
- Yang, S.; Wang, C.; Ma, L.; Peng, Y.; Qu, Z.; Yan, N.; Chen, J.; Chang, H.; Li, J. Substitution of WO₃ in V₂O₅/WO₃-TiO₂ by Fe₂O₃ for selective catalytic reduction of NO with NH₃. *Catal. Sci. Technol.* 2013, *3*, 161–168. [CrossRef]
- 15. Matralis, H.K.; Ciardelli, M.; Ruwet, M.; Grange, P. Vanadia catalysts supported on mixed TiO₂-Al₂O₃ supports: Effect of composition on the structure and acidity. *J. Catal.* **1995**, *157*, 368–379. [CrossRef]
- 16. Granger, P.; Parvulescu, V.I. Catalytic NO_x abatement systems for mobile sources: From three-way to lean burn after-treatment technologies. *Chem. Rev.* **2011**, *111*, 3155–3207. [CrossRef] [PubMed]
- Kobayashi, M.; Kuma, R.; Masaki, S.; Sugishima, N. TiO₂-SiO₂ and V₂O₅/TiO₂-SiO₂ catalyst: Physicochemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH₃. *Appl. Catal. B: Environ.* 2005, 60, 173–179. [CrossRef]
- Kobayashi, M.; Hagi, M. V₂O₅-WO₃/TiO₂-SiO₂-SO₄²⁻ catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH₃ and in the oxidation of SO₂. *Appl. Catal. B: Environ.* 2006, *63*, 104–113. [CrossRef]
- Liu, C.; Chen, L.; Li, J.; Ma, L.; Arandiyan, H.; Du, Y.; Xu, J.; Hao, J. Enhancement of activity and sulfur resistance of CeO₂ supported on TiO₂–SiO₂ for the selective catalytic reduction of NO by NH₃. *Environ. Sci. Technol.* 2012, 46, 6182–6189. [CrossRef] [PubMed]
- Zhang, L.; Zhang, L.N.; Wang, M.Y.; Li, G.Q.; Sui, Z.T. Recovery of titanium compounds from molten ti-bearing blast furnace slag under the dynamic oxidation condition. *Miner. Eng.* 2007, 20, 684–693. [CrossRef]
- 21. Li, Z.; Wang, Z.; Li, G. Preparation of Nano-Titanium Dioxide from ilmenite using sulfuric aciddecomposition by liquid phase method. *Powder Technol.* 2016, 287, 256–263. [CrossRef]
- 22. Liang, B.; Li, C.; Zhang, C.; Zhang, Y. Leaching kinetics of panzhihua ilmenite in sulfuric acid. *Hydrometallurgy* **2005**, *76*, 173–179. [CrossRef]
- 23. Chen, D.-S.; Zhao, L.-S.; Qi, T.; Hu, G.-P.; Zhao, H.-X.; Li, J.; Wang, L.-n. Desilication from titanium–vanadium slag by alkaline leaching. *Trans. Nonferrous Met. Soc. China* **2013**, *23*, 3076–3082. [CrossRef]
- Xiong, X.; Wang, Z.; Wu, F.; Li, X.; Guo, H. Preparation of TiO₂ from ilmenite using sulfuric acid decomposition of the titania residue combined with separation of Fe³⁺ with edta during hydrolysis. *Adv. Powder Technol.* 2013, 24, 60–67. [CrossRef]
- 25. Liu, S.-S.; Guo, Y.-F.; Qiu, G.-Z.; Jiang, T.; Chen, F. Preparation of Ti-rich material from titanium slag by activation roasting followed by acid leaching. *Trans. Nonferrous Met. Soc. China* **2013**, *23*, 1174–1178. [CrossRef]
- 26. Lasheen, T.A. Sulfate digestion process for high purity TiO₂ from titania slag. *Front. Chem. Eng. China* **2009**, *3*, 155–160. [CrossRef]
- 27. Seggiani, M.; Vitolo, S. Recovery of silica gel from blast furnace slag. *Resour. Conserv. Recycl.* **2003**, 40, 71–80. [CrossRef]
- 28. Rouseková, I.; Bajza, A.; Živica, V. Silica fume-basic blast furnace slag systems activated by an alkali silica fume activator. *Cem. Concr. Res.* **1997**, 27, 1825–1828. [CrossRef]

- 29. Valighazvini, F.; Rashchi, F.; Nekouei, R.K. Recovery of titanium from blast furnace slag. *Ind. Eng. Chem. Res.* **2013**, *52*, 1723–1730. [CrossRef]
- 30. Sverjensky, D.A. Zero-point-of-charge prediction from crystal chemistry and solvation theory. *Geochim. Cosmochim. Acta* **1994**, *58*, 3123–3129. [CrossRef]
- 31. Sing, K.; Everett, D.; Haul, R.; Moscou, L.; Pierotti, R.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. *Pure Appl. Chem.* **1985**, *57*, 603–619. [CrossRef]
- Yu, J.; Yu, J.C.; Leung, M.K.P.; Ho, W.; Cheng, B.; Zhao, X.; Zhao, J. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. *J. Catal.* 2003, 217, 69–78. [CrossRef]
- 33. Kim, J.; Song, K.C.; Foncillas, S.; Pratsinis, S.E. Dopants for synthesis of stable bimodally porous titania. *J. Eur. Ceram. Soc.* **2001**, *21*, 2863–2872. [CrossRef]
- Pinnavaia, T.J.; Pauly, T.R.; Kim, S.S. Mesoporous molecular sieve catalysis: Relationships between reactivity and long range structural order/disorder. In *Supported Catalysts and Their Applications*; Sherrington, D.C., Kybett, A.P., Eds.; The Royal Society of Chemistry: London, UK, 2001; pp. 19–26.
- Ngamta, S.; Boonprakob, N.; Wetchakun, N.; Ounnunkad, K.; Phanichphant, S.; Inceesungvorn, B. A facile synthesis of nanocrystalline anatase TiO₂ from TiOSO₄ aqueous solution. *Mater. Lett.* 2013, 105, 76–79. [CrossRef]
- Park, H.K.; Park, K.Y.; Jung, K.Y. Alumina-precursor nanoparticles prepared by partial hydrolysis of AlCl₃ vapor in tubular flow reactor: Effect of hydrolysis conditions on particle size distribution. *Ind. Eng. Chem. Res.* 2014, 53, 10372–10379. [CrossRef]
- French, R.A.; Jacobson, A.R.; Kim, B.; Isley, S.L.; Penn, R.L.; Baveye, P.C. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. *Environ. Sci. Technol.* 2009, 43, 1354–1359. [CrossRef] [PubMed]
- Park, I.-S.; Jang, S.-R.; Hong, J.S.; Vittal, R.; Kim, K.-J. Preparation of composite anatase TiO₂ nanostructure by precipitation from hydrolyzed TiCl₄ solution using anodic alumina membrane. *Chem. Mater.* 2003, 15, 4633–4636. [CrossRef]
- 39. Ren, C.; Qiu, W.; Chen, Y. Physicochemical properties and photocatalytic activity of the TiO₂/SiO₂ prepared by precipitation method. *Sep. Purif. Technol.* **2013**, *107*, 264–272. [CrossRef]
- 40. Dong, R.-L.; Na, C.; Zhang, H.-P.; Chen, Z.-D.; Jin, C.-C. TiO₂/SiO₂ mesoporous microspheres with intelligently controlled texture. *Mater. Des.* **2016**, *89*, 830–838. [CrossRef]
- 41. Saha, J.; Mitra, A.; Dandapat, A.; De, G. TiO₂ nanoparticles doped SiO₂ films with ordered mesopore channels: A catalytic nanoreactor. *Dalton Trans.* **2014**, *43*, 5221–5229. [CrossRef] [PubMed]
- 42. Yan, X.-M.; Mei, P.; Xiong, L.; Gao, L.; Yang, Q.; Gong, L. Mesoporous titania-silica-polyoxometalate nanocomposite materials for catalytic oxidation desulfurization of fuel oil. *Catal. Sci. Technol.* **2013**, *3*, 1985–1992. [CrossRef]
- 43. Jin, R.; Wu, Z.; Liu, Y.; Jiang, B.; Wang, H. Photocatalytic reduction of NO with NH₃ using Si-doped TiO₂ prepared by hydrothermal method. *J. Hazard. Mater.* **2009**, *161*, 42–48. [CrossRef] [PubMed]
- 44. Wang, C.; Yang, S.; Chang, H.; Peng, Y.; Li, J. Dispersion of tungsten oxide on SCR performance of V₂O₅-WO₃/TiO₂: Acidity, surface species and catalytic activity. *Chem. Eng. J.* **2013**, 225, 520–527. [CrossRef]
- 45. Youn, S.; Song, I.; Kim, D.H. Promotional effect on selective catalytic reduction of NO_x with NH₃ over overloaded W and Ce on V₂O₅/TiO₂ catalysts. *J. Nanomater.* **2015**, 1–7. [CrossRef]
- Gao, X.; Bare, S.R.; Fierro, J.L.G.; Wachs, I.E. Structural characteristics and reactivity/reducibility properties of dispersed and bilayered V₂O₅/TiO₂/SiO₂ catalysts. *J. Phys. Chem. B* 1999, 103, 618–629. [CrossRef]
- 47. Ren, S.; Zhao, Q.; Yao, L.; Liu, Q. Precipitation behavior of perovskite and anosovite crystals from high ti-bearing blast furnace slag with small amount of B₂O₃. *Cryst. Eng. Comm.* **2016**, *18*, 1393–1402. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).