Preparation of Ag4Bi2O5/MnO2 Corn/Cob Like Nano Material as a Superior Catalyst for Oxygen Reduction Reaction in Alkaline Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Illustration of the Synthesis Process
2.2. Structural and Morphological Characterizations
2.3. Electrocatalytic Performance
3. Experimental
3.1. Reagents
3.2. Synthesis and Physical Characterizations
3.3. Physicochemical Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Steele, B.C.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Mori, T.; Masuda, T.; Ueda, S.; Richards, G.J.; Hill, J.P.; Ariga, K.; Isaka, N.; Auchterlonie, G.; Drennan, J. Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeOx Nanowire. ACS Appl. Mater. Interfaces 2016, 8, 9059–9070. [Google Scholar] [CrossRef] [PubMed]
- Escuderoescribano, M.; Malacrida, P.; Hansen, M.H.; Vejhansen, U.G.; Velazquezpalenzuela, A.; Tripkovic, V.; Schiotz, J.; Rossmeisl, J.; Stephens, I.E.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, L.; Heggen, M.; Cui, C.; Strasser, P. Thermal Facet Healing of Concave Octahedral Pt-Ni Nanoparticles Imaged in Situ at the Atomic Scale: Implications for the Rational Synthesis of Durable High-Performance ORR Electrocatalysts. ACS Catal. 2016, 6, 692–695. [Google Scholar] [CrossRef]
- Gautam, R.K.; Bhattacharjee, H.; Venkata Mohan, S.; Verma, A. Nitrogen doped graphene supported α-MnO2 nanorods for efficient ORR in a microbial fuel cell. RSC Adv. 2016, 6, 110091–110101. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, W. Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction. J. Power Sources 2012, 197, 107–110. [Google Scholar] [CrossRef]
- Liu, M.; Chen, W. Green synthesis of silver nanoclusters supported on carbon nanodots: Enhanced photoluminescence and high catalytic activity for oxygen reduction reaction. Nanoscale 2013, 5, 12558–12564. [Google Scholar] [CrossRef] [PubMed]
- Sekol, R.C.; Li, X.; Cohen, P.; Doubek, G.; Carmo, M.; Taylor, A.D. Silver palladium core-shell electrocatalyst supported on MWNTs for ORR in alkaline media. Appl. Catal. B Environ. 2013, 138, 285–293. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, X.; Guan, W.; Zhang, L.; Fan, X.; Shi, Z.; Zheng, W. Shape-dependent catalytic activity of oxygen reduction reaction (ORR) on silver nanodecahedra and nanocubes. J. Power Sources 2014, 269, 152–157. [Google Scholar] [CrossRef]
- Bikkarolla, S.K.; Yu, F.; Zhou, W.; Joseph, P.; Cumpson, P.; Papakonstantinou, P. A three-dimensional Mn3O4 network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media. J. Mater. Chem. A 2014, 2, 14493. [Google Scholar] [CrossRef]
- Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S.Y.; Suib, S.L. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452–11464. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Yu, L.; Cui, C.; Lin, J.; Wei, C.; Mathews, N.; Huo, F.; Sritharan, T.; Xu, Z. Ultrathin MnO2 nanoflakes as efficient catalysts for oxygen reduction reaction. Chem. Commun. 2014, 50, 7885–7888. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Chen, C.; Cheng, F.; Chen, J. Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/Evolution Reaction of CoMn2O4 Nanodots Supported on Graphene. Inorg. Chem. 2015, 54, 5467–5474. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, J.; Song, W.; Wang, F.; Song, Y. The role of electronic interaction in the use of Ag and Mn3O4 hybrid nanocrystals covalently coupled with carbon as advanced oxygen reduction electrocatalysts. J. Mater. Chem. A 2014, 2, 17477–17488. [Google Scholar] [CrossRef]
- Liu, S.; Qin, X. Preparation of a Ag-MnO2/graphene composite for the oxygen reduction reaction in alkaline solution. RSC Adv. 2015, 5, 15627–15633. [Google Scholar] [CrossRef]
- Park, S.A.; Lim, H.; Kim, Y.T. Enhanced Oxygen Reduction Reaction Activity Due to Electronic Effects between Ag and Mn3O4 in Alkaline Media. ACS Catal. 2015, 5, 3995–4002. [Google Scholar] [CrossRef]
- Ryabova, A.S.; Napolskiy, F.S.; Poux, T.; Istomin, S.Y.; Bonnefont, A.; Antipin, D.M.; Baranchikov, A.Y.; Levin, E.E.; Abakumov, A.M.; Kéranguéven, G.; et al. Rationalizing the Influence of the Mn(IV)/Mn(III) Red-Ox Transition on the Electrocatalytic Activity of Manganese Oxides in the Oxygen Reduction Reaction. Electrochim. Acta 2016, 187, 161–172. [Google Scholar] [CrossRef]
- Li, L.; Hu, Z.A.; An, N.; Yang, Y.Y.; Li, Z.M.; Wu, H.Y. Facile Synthesis of MnO2/CNTs Composite for Supercapacitor Electrodes with Long Cycle Stability. J. Phys. Chem. C 2014, 118, 22865–22872. [Google Scholar] [CrossRef]
- Tang, Q.; Jiang, L.; Qi, J.; Jiang, Q.; Wang, S.; Sun, G. One step synthesis of carbon-supported Ag/MnyOx composites for oxygen reduction reaction in alkaline media. Appl. Catal. B Environ. 2011, 104, 337–345. [Google Scholar] [CrossRef]
- Cheng, F.; Su, Y.; Liang, J.; Tao, Z.; Chen, J. MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media. Chem. Mater. 2014, 22, 898–905. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, M.; Pan, J.; Wang, P.; Li, W.; Wan, P. Manganese dioxide-supported silver bismuthate as an efficient electrocatalyst for oxygen reduction reaction in zinc-oxygen batteries. Electrochim. Acta 2016, 197, 68–76. [Google Scholar] [CrossRef]
- Guo, D.; Dou, S.; Li, X.; Xu, J.; Wang, S.; Lai, L.; Liu, H.K.; Ma, J.; Dou, S.X. Hierarchical MnO2/rGO hybrid nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. Int. J. Hydrogen Energy 2016, 41, 5260–5268. [Google Scholar] [CrossRef]
- Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S. Earth-Abundant Nanomaterials for Oxygen Reduction. Angew. Chem. Int. Ed. 2016, 55, 2650–2676. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.P.; Zhang, X.G.; Xiao, F.; Zhang, J.L. Oxygen reduction on Ag-MnO2/SWNT and Ag-MnO2/AB electrodes. Carbon 2005, 43, 2931–2936. [Google Scholar] [CrossRef]
- Sheng, Z.H.; Gao, H.L.; Bao, W.J.; Wang, F.B.; Xia, X.H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 2011, 22, 390–395. [Google Scholar] [CrossRef]
- He, J.; He, Y.; Fan, Y.; Zhang, B.; Du, Y.; Wang, J.; Xu, P. Conjugated polymer-mediated synthesis of nitrogen-doped carbon nanoribbons for oxygen reduction reaction. Carbon 2017, 124, 630–636. [Google Scholar] [CrossRef]
- Pan, J.; Wang, Q.; Sun, Y.; Wang, Z. Analysis of electrochemical mechanism of coprecipitated nano-Ag4Bi2O5 as super high charge–discharge rate cathode materials for aqueous rechargeable battery. Electrochim. Acta 2012, 59, 515–521. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, J.; Sun, Y.; Wang, Z. A high capacity cathode material-MnO2 doped with nano Ag4Bi2O5 for alkaline secondary batteries. J. Power Sources 2012, 199, 355–359. [Google Scholar] [CrossRef]
- Goh, F.W.T.; Liu, Z.; Ge, X.; Zong, Y.; Du, G.; Hor, T.S.A. Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc-air battery. Electrochim. Acta 2013, 114, 598–604. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Yu, L.; Liu, Q.; Wang, Y.; Dong, L. Efficient carbon-supported Ag-MFe2O4 (M = Co, Mn) core–shell catalysts for oxygen reduction reactions in alkaline media. Int. J. Hydrogen Energy 2017, 42, 11304–11311. [Google Scholar] [CrossRef]
- Sun, S.; Miao, H.; Xue, Y.; Wang, Q.; Li, S.; Liu, Z. Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries. Electrochim. Acta 2016, 214, 49–55. [Google Scholar] [CrossRef]
- Zuo, L.X.; Jiang, L.P.; Abdel-Halim, E.S.; Zhu, J.J. Sonochemical preparation of stable porous MnO2 and its application as an efficient electrocatalyst for oxygen reduction reaction. Ultrason. Sonochem. 2017, 35, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Han, N.; Han, J.; Hu, Y.; Fan, L.; Zhou, C.; Guo, R. Mesoporous Hybrid Shells of Carbonized Polyaniline/Mn2O3 as Non-Precious Efficient Oxygen Reduction Reaction Catalyst. ACS Appl. Mater. Interfaces 2016, 8, 6040–6050. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Ahmed, M.S.; Jeon, S. Electrochemical deposition of silver on manganese dioxide coated reduced graphene oxide for enhanced oxygen reduction reaction. J. Power Sources 2015, 288, 261–269. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Tao, H.B.; Liu, J.; Sun, Y.F.; Chen, J.; Hua, B.; Thundat, T.; Luo, J.-L. A rational design for enhanced oxygen reduction: Strongly coupled silver nanoparticles and engineered perovskite nanofibers. Nano Energy 2017, 38, 392–400. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, X.; Zhu, W.; He, K.; Su, D.; Mendoza-Garcia, A.; Ho, S.F.; Lu, G.; Sun, S. Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 2014, 136, 15026–15033. [Google Scholar] [CrossRef] [PubMed]
Parameter | vo (V vs. Hg/HgO) | v1/2 (V vs. Hg/HgO) | J (mA cm−2) |
---|---|---|---|
0% Mn | −0.09 | −0.227 | −2.06 |
10% Mn | 0.042 | −0.123 | −3.00 |
20% Mn | 0.046 | −0.099 | −3.086 |
30% Mn | 0.052 | −0.090 | −3.23 |
40% Mn | 0.052 | −0.078 | −3.52 |
50% Mn | 0.111 | −0.084 | −4.70 |
60% Mn | 0.098 | −0.047 | −5.67 |
70% Mn | 0.107 | −0.219 | −2.41 |
100% Mn | −0.014 | −0.203 | −2.19 |
Pt/C | 0.179 | −0.014 | −5.09 |
Catalyst | E0 (V vs. Hg/HgO) | E1/2(V vs. Hg/HgO) | Currents (mA cm−2) | Stability | Reference |
---|---|---|---|---|---|
Ag4Bi2O5 with 60% Mn | 0.098 | −0.047 | 5.67 | 88% (10,800 s) | This work |
Mn3O4/NrGO | −0.1 | −0.2 | 4.4 | 63% (21,600 s) | [10] |
Ag@MnFe2O4/C | −0.08 | −0.171 | 4.8 | 88.7% (15,000 s) | [31] |
50% Ag-MnO2/C | −0.036 | −0.216 | 5.5 | 91% (50,000 s) | [32] |
SC-PMO | −0.037 | −0.237 | 5.0 | 82% (16,000 s) | [33] |
CPANI/Mn2O3 | 0.108 | −0.082 | 5.61 | 91.1% (80,000 s) | [34] |
rGO/MnO2/Ag | 0.034 | −0.126 | 3.4 | 94% (10,000 s) | [35] |
Ag-PBMO5 | 0.054 | −0.056 | 5.0 | 91% (50,000 s) | [36] |
Ag/Cu37Pd63 | 0.05 | −0.04 | 2.96 | 77.6% (48,000 s) | [37] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Pan, J.; Sun, Y. Preparation of Ag4Bi2O5/MnO2 Corn/Cob Like Nano Material as a Superior Catalyst for Oxygen Reduction Reaction in Alkaline Solution. Catalysts 2017, 7, 379. https://doi.org/10.3390/catal7120379
Zeng X, Pan J, Sun Y. Preparation of Ag4Bi2O5/MnO2 Corn/Cob Like Nano Material as a Superior Catalyst for Oxygen Reduction Reaction in Alkaline Solution. Catalysts. 2017; 7(12):379. https://doi.org/10.3390/catal7120379
Chicago/Turabian StyleZeng, Xun, Junqing Pan, and Yanzhi Sun. 2017. "Preparation of Ag4Bi2O5/MnO2 Corn/Cob Like Nano Material as a Superior Catalyst for Oxygen Reduction Reaction in Alkaline Solution" Catalysts 7, no. 12: 379. https://doi.org/10.3390/catal7120379
APA StyleZeng, X., Pan, J., & Sun, Y. (2017). Preparation of Ag4Bi2O5/MnO2 Corn/Cob Like Nano Material as a Superior Catalyst for Oxygen Reduction Reaction in Alkaline Solution. Catalysts, 7(12), 379. https://doi.org/10.3390/catal7120379