A Green Route to Copper Loaded Silica Nanoparticles Using Hyperbranched Poly(Ethylene Imine) as a Biomimetic Template: Application in Heterogeneous Catalysis
Abstract
:1. Introduction
2. Results
2.1. Synthesis in Phosphate Buffer (PB)
2.2. Synthesis in Tris Buffer
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Silica/PEI Nanopowders
3.3. Copper Loading
3.4. Characterization Techniques
3.5. Catalytic Activity Measurements
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gao, C.; Yan, D. Hyperbranched polymers: From synthesis to applications. Prog. Polym. Sci. 2004, 29, 183–275. [Google Scholar] [CrossRef]
- Tomalia, D.A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 2005, 30, 294–324. [Google Scholar] [CrossRef]
- Arkas, M.; Tsiourvas, D.; Paleos, C.M. Functional Dendritic Polymers for the Development of Hybrid Materials for Water Purification. Macromol. Mater. Eng. 2010, 295, 883–898. [Google Scholar] [CrossRef]
- Arkas, M.; Tsiourvas, D. Organic/inorganic hybrid nanospheres based on hyperbranched poly(ethylene imine) encapsulated into silica for the sorption of toxic metal ions and polycyclic aromatic hydrocarbons from water. J. Hazard. Mater. 2009, 170, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Arkas, M.; Eleades, L.; Paleos, C.M.; Tsiourvas, D. Alkylated Hyperbranched Polymers as Molecular Nanosponges for the Purification of Water from Polycyclic Aromatic Hydrocarbons. J. Appl. Polym. Sci. 2005, 97, 2299–2305. [Google Scholar] [CrossRef]
- Bhaway, S.M.; Qiang, Z.; Xia, Y.; Xia, X.; Lee, B.; Yager, K.G.; Zhang, L.; Kisslinger, K.; Chen, Y.-M.; Liu, K.; et al. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes. ACS Nano 2017, 11, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tangvijitsaku, P.; Qiang, Z.; Bhaway, S.M.; Lin, K.; Cavicchi, K.A.; Soucek, M.D.; Vogt, B.D. Role of Amphiphilic Block Copolymer Composition on Pore Characteristics of Micelle-Templated Mesoporous Cobalt Oxide Films. Langmuir 2016, 32, 4077–4085. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Z.; Guo, Y.; Liu, H.; Cheng, S.Z.D.; Cakmak, M.; Cavicchi, K.A.; Vogt, B.D. Large-Scale Roll-to-Roll Fabrication of Ordered Mesoporous Materials using Resol-Assisted Cooperative Assembly. ACS Appl. Mater. Interfaces 2015, 7, 4306–4310. [Google Scholar] [CrossRef] [PubMed]
- Deze, E.G.; Papavasiliou, A.; Papageorgiou, S.K.; Katsaros, F.K.; Kouvelos, E.P.; Romanos, G.E.; Boukos, N.; Xin, Q.; Nyalosaso, J.L.; Cool, P. Metal loaded nanoporous silicas with tailor-made properties through hyperbranched polymer assisted templating approaches. Microporous Mesoporous Mater. 2016, 235, 107–119. [Google Scholar] [CrossRef]
- Papavasiliou, A.; Tsiourvas, D.; Deze, E.G.; Papageorgiou, S.K.; Katsaros, F.K.; Poulakis, E.; Philippopoulos, C.J.; Boukos, N.; Xin, Q.; Cool, P. Hyperbranched polyethyleneimine towards the development of homogeneous and highly porous CuO–CeO2–SiO2 catalytic materials. Chem. Eng. J. 2016, 300, 343–357. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, J.; Xu, L.; Liu, X.; Liu, J.; Li, G. Red to brown to green colorimetric detection of Ag+ based on the formation of Au-Ag core-shell NPs stabilized by a multi-sulfhydryl functionalized hyperbranched polymer. Sens. Actuators B 2016, 237, 216–223. [Google Scholar] [CrossRef]
- Knecht, M.R.; Garcia-Martinez, J.C.; Crooks, R.M. Synthesis, Characterization, and Magnetic Properties of Dendrimer-Encapsulated Nickel Nanoparticles Containing <150 Atoms. Chem. Mater. 2006, 18, 5039–5044. [Google Scholar] [CrossRef]
- Albiter, M.A.; Morales, R.; Zaera, F. Dendrimer-based synthesis of Pt catalysts for hydrocarbon conversion. Appl. Catal. A Gen. 2011, 391, 386–393. [Google Scholar] [CrossRef]
- Myers, V.S.; Weir, M.G.; Carino, E.V.; Yancey, D.F.; Pande, S.; Crooks, R.M. Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications. Chem. Sci. 2011, 2, 1632–1646. [Google Scholar] [CrossRef]
- Tsoufis, T.; Katsaros, F.; Sideratou, Z.; Kooi, B.J.; Karakassides, M.A.; Siozios, A. Intercalation Study of Low-Molecular-Weight Hyperbranched Polyethyleneimine into Graphite Oxide. Chem. A Eur. J. 2014, 20, 8129–8137. [Google Scholar] [CrossRef] [PubMed]
- Kriesel, J.W.; Tilley, T.D. Synthesis and Chemical Functionalization of High Surface Area Dendrimer-Based Xerogels and Their Use as New Catalyst Supports. Chem. Mater. 2000, 12, 1171–1179. [Google Scholar] [CrossRef]
- Rogers, M.C.; Adisa, B.; Bruce, D.A. Synthesis and characterization of dendrimer-templated mesoporous oxidation catalysts. Catal. Lett. 2004, 98, 29–36. [Google Scholar] [CrossRef]
- Volden, S.; Glomm, W.R.; Magnusson, H.; Øye, G.; Sjoblom, J. Dendrimers and Hyperbranched Polyesters as Structure-Directing Agents in the Formation of Nanoporous Silica. J. Dispers. Sci. Technol. 2006, 27, 893–897. [Google Scholar] [CrossRef]
- Larsen, G.; Noriega, S. Dendrimer-mediated formation of Cu–CuOx nanoparticles on silica and their physical and catalytic characterization. Appl. Catal. A Gen. 2004, 278, 73–81. [Google Scholar] [CrossRef]
- Velarde-Ortiz, R.; Larsen, G. A Poly(propylene imine) (DAB-Am-64) Dendrimer as Cu2+ Chelator for the Synthesis of Copper Oxide Clusters Embedded in Sol-Gel Derived Matrixes. Chem. Mater. 2002, 14, 858–866. [Google Scholar] [CrossRef]
- Scott, R.W.J.; Wilson, O.M.; Crooks, R.M. Titania-Supported Au and Pd Composites Synthesized from Dendrimer-Encapsulated Metal Nanoparticle Precursors. Chem. Mater. 2004, 16, 5682–5688. [Google Scholar] [CrossRef]
- Niu, Y.; Crooks, R.M. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C. R. Chim. 2003, 6, 1049–1059. [Google Scholar] [CrossRef]
- Lomnicki, S.M.; Wu, H.; Osborne, S.N.; Pruett, J.M.; McCarley, R.L.; Poliakoff, E.; Dellinger, B. Size-selective synthesis of immobilized copper oxide nanoclusters on silica. Mater. Sci. Eng. B 2010, 175, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Knecht, M.R.; Wright, D.W. Amine-Terminated Dendrimers as Biomimetic Templates for Silica Nanosphere Formation. Langmuir 2004, 20, 4728–4732. [Google Scholar] [CrossRef] [PubMed]
- Knecht, M.R.; Sewell, S.L.; Wright, D.W. Size Control of Dendrimer-Templated Silica. Langmuir 2005, 21, 2058–2061. [Google Scholar] [CrossRef] [PubMed]
- Kroger, N.; Deutzman, R.; Sumper, M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 1999, 286, 1129–1132. [Google Scholar] [PubMed]
- Kroger, N.; Deutzman, R.; Bergsdorf, C.; Sumper, M. Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. USA 2000, 97, 14133–14138. [Google Scholar] [CrossRef] [PubMed]
- Sumper, M.; Brunner, E. Learning from diatoms: Nature’s tools for the production of nanostructured silica. Adv. Funct. Mater. 2006, 16, 17–26. [Google Scholar] [CrossRef]
- Knecht, M.R.; Wright, D.W. Functional analysis of the biomimetic silica precipitating activity of the R5 peptide from Cylindrotheca fusiformis. Chem. Commun. 2003, 24, 3038–3039. [Google Scholar] [CrossRef]
- Senior, L.; Crump, M.P.; Williams, C.; Booth, P.J.; Mann, S.; Perriman, A.W.; Curnow, P. Curnow Structure and function of the silicifying peptide R5. J. Mater. Chem. B 2015, 3, 2607–2614. [Google Scholar] [CrossRef] [Green Version]
- Coradin, T.; Durupthy, O.; Livage, J. Interactions of amino-containing peptides with sodium silicate and colloidal silica: A biomimetic approach of silicification. Langmuir 2002, 18, 2331–2336. [Google Scholar] [CrossRef]
- Williamson, J. The Kinetics of Crystal Growth in an Aluminosilicate Glass Containing Small Amounts of Transition-metal Ions. Mineral. Mag. 1970, 37, 759–770. [Google Scholar] [CrossRef]
- Pol, V.G.; Gedanken, A.; Calderon-Moreno, J. Deposition of Gold Nanoparticles on Silica Spheres: A Sonochemical Approach. Chem. Mater. 2003, 15, 1111–1118. [Google Scholar] [CrossRef]
- Praliaud, H.; Mikhailenko, S.; Chajar, Z.; Primet, M. Surface and bulk properties of Cu–ZSM-5 and Cu/Al2O3 solids during redox treatments. Correlation with the selective reduction of nitric oxide by hydrocarbons. Appl. Catal. B Environ. 1998, 16, 359–374. [Google Scholar] [CrossRef]
- Chmielarz, L.; Kustrowski, P.; Dziembaj, R.; Cool, P.; Vansant, E.F. SBA-15 mesoporous silica modified with metal oxides by MDD method in the role of DeNOx catalysts. Microporous Mesoporous Mater. 2010, 127, 133–141. [Google Scholar] [CrossRef]
- Patel, A.; Shukla, P.; Rufford, T.; Wang, S.; Chen, J.; Rudolph, V.; Zhu, Z. Catalytic reduction of NO by CO over copper-oxide supported mesoporous silica. Appl. Catal. A Gen. 2011, 409–410, 55–65. [Google Scholar] [CrossRef]
- Paleos, C.M.; Tsiourvas, D.; Sideratou, Z.; Tziveleka, L.A. Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin. Drug Deliv. 2010, 7, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
Samples | Initial Cu Concentration (ppm) | Cu wt % | SSA 1 (m2/g) | TPV 2 (cm3/g) |
---|---|---|---|---|
SiO2_PB | - | - | 40 | 0.14 |
Cu_5.2 wt %_SiO2_PB | 100 | 5.2 | - | - |
Cu_7.7 wt %_SiO2_PB | 1000 | 7.7 | 38 | 0.09 |
SiO2_Tris | - | - | 557 | 1.15 |
Cu_2.4 wt %_SiO2_Tris | 1000 | 2.4 | 290 | 1.02 |
O2 % | NO ppm | CO % | CH4 ppm | C3H6 ppm | C3H8 ppm | CO2 % | H2 % | H2O % | |
---|---|---|---|---|---|---|---|---|---|
Λ = 1 | 0.777 | 1000 | 0.7 | 225 | 450 | 225 | 15 | 0.233 | 10 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiourvas, D.; Papavasiliou, A.; Deze, E.G.; Papageorgiou, S.K.; Katsaros, F.K.; Romanos, G.E.; Poulakis, E.; Philippopoulos, C.J.; Xin, Q.; Cool, P. A Green Route to Copper Loaded Silica Nanoparticles Using Hyperbranched Poly(Ethylene Imine) as a Biomimetic Template: Application in Heterogeneous Catalysis. Catalysts 2017, 7, 390. https://doi.org/10.3390/catal7120390
Tsiourvas D, Papavasiliou A, Deze EG, Papageorgiou SK, Katsaros FK, Romanos GE, Poulakis E, Philippopoulos CJ, Xin Q, Cool P. A Green Route to Copper Loaded Silica Nanoparticles Using Hyperbranched Poly(Ethylene Imine) as a Biomimetic Template: Application in Heterogeneous Catalysis. Catalysts. 2017; 7(12):390. https://doi.org/10.3390/catal7120390
Chicago/Turabian StyleTsiourvas, Dimitris, Aggeliki Papavasiliou, Evangelia G. Deze, Sergios K. Papageorgiou, Fotios K. Katsaros, George E. Romanos, Evangelos Poulakis, Constantine J. Philippopoulos, Qi Xin, and Pegie Cool. 2017. "A Green Route to Copper Loaded Silica Nanoparticles Using Hyperbranched Poly(Ethylene Imine) as a Biomimetic Template: Application in Heterogeneous Catalysis" Catalysts 7, no. 12: 390. https://doi.org/10.3390/catal7120390
APA StyleTsiourvas, D., Papavasiliou, A., Deze, E. G., Papageorgiou, S. K., Katsaros, F. K., Romanos, G. E., Poulakis, E., Philippopoulos, C. J., Xin, Q., & Cool, P. (2017). A Green Route to Copper Loaded Silica Nanoparticles Using Hyperbranched Poly(Ethylene Imine) as a Biomimetic Template: Application in Heterogeneous Catalysis. Catalysts, 7(12), 390. https://doi.org/10.3390/catal7120390