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Abstract: In this work, piroxicam-based copper oxide nanostructures (Px-CuO NSs) were synthesized
via hydrothermal precipitation in the presence of ammonia. The prepared Px-CuO NSs were subjected
to scanning electron microscopy (SEM) and X-ray diffraction (XRD) to obtain morphology and
crystallinity, respectively. The SEM study reveals that these Px-CuO NSs are in the form of porous
rose-like nanopetals with dotted particles on their surface, while the XRD study confirms their
crystalline nature. The Px-CuO NS-based sensors were fabricated by drop-casting them onto the
surface of a glassy carbon electrode (GCE) and they were tested for nitrite detection using voltammetry
and amperometry. The results show these Px-CuO NSs to be highly stable on the GCE surface with
linear amperometric (current vs. time) responses to wide range of nitrite concentrations from 100 to
1800 nM, with limits of detection (LOD) and quantification (LOQ) being 12 nM and 40 nM, respectively.
Importantly, the fabricated sensor showed negligible effects for a 10-fold higher concentration of
common interfering agents and exhibited excellent selectivity. It was applied successfully for nitrite
detection in water samples such as river water, mineral water, and tap water.
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1. Introduction

Nitrite ions have great ecological importance because they are involved as intermediates in
the nitrogen cycle [1,2] and are widely utilized as preservatives in foods and soils, for lowering
hypertension, and as vasodilators [3]. Despite these useful applications, nitrites form carcinogenic
nitrosamines when combined with secondary amines in the body [3]. Due to this toxic aspect, it is
essential to monitor the level of nitrites, especially in samples that cause environmental and health
concerns [1,4].

Nitrites have been detected using several sophisticated techniques such as chemiluminescence [5],
spectrofluorimetry [2], capillary electrophoresis [6], chromatography [7], and electroanalysis [8].
Among these, the electroanalytical methods are considered more efficient due to lower cost,
portable instruments, simpler set-up, ease of sample preparation and processing, and higher
sensitivity/selectivity [9,10]. These characteristics make electroanalysis the method of choice for
many diagnostic studies.

Metal oxide nanostructures are associated with several catalytic properties and are implemented
to significantly improve electron-transfer processes with different types of solid electrodes designed
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for detection of various analytes [11–13]. Among metal oxide nanostructures, CuO-NSs have been
the focus of interest in sensor development due to their low cost, ease of preparation at relatively low
temperatures, high stability and catalytic activity, and hence, rapid electron transfer kinetics. In this
respect, CuO nanoparticles (NPs) incorporated onto various membranes have been utilized for sensing
a wide range of important chemicals such as H2S [14], dopamine [15], pesticide [16], carbamates [11],
and NO [17].

Previously, nitrite ions have been detected using electrodes modified with metal oxide NPs,
including cobalt oxide NPs [18,19], ferric oxide (Fe3O4) nanospheres [20], and ferrous oxide
(Fe2O3) NPs [21]. Although the determination of nitrite via CuO has seldom been studied, it is
worth mentioning the report by Zhang et al. [22] who casted hexamethylenetetramine-based CuO
nanoflowers on the active surface of a GCE for the sensitive detection of hydrogen peroxide (H2O2)
and nitrites.

In this contribution, we describe a facile procedure to synthesize piroxicam (Figure 1) based
copper oxide nanostructures (Px-CuO NSs) via a hydrothermal method at low temperature (95 ◦C) in
the presence of ammonia. The as-prepared Px-CuO-NSs were successfully fabricated onto GCEs and
employed as electrochemical sensors for highly selective and sensitive detection of nitrites. Importantly,
the fabricated nitrite sensor was further utilized for nitrite determination in real water samples with
an acceptable range of recovery.
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Figure 1. The structure of piroxicam (Px).

2. Results and Discussion

2.1. Characterization of As-Prepared Px-CuO NSs

2.1.1. SEM Study

Px-CuO NSs were characterized by SEM and XRD to gain information about their morphology,
crystal size, and crystalline nature. SEM images of the Px-CuO NSs are illustrated in Figure 2,
with (a) depicting a low-magnification image and (b) a high-magnification image of the CuO NS structure.

Catalysts 2018, 8, 29  3 of 11 

 

 

Figure 2. SEM images of Px-CuO NSs (a) with low magnification, (b) with high magnification. 

The images clearly show that these nanostructures are composed of many nanoflakes with 
porous rose-petal-like morphology with some dotted particles deposited over the petals, which are 
essential for the high catalytic and enhanced electron-transfer reaction associated with nitrite 
oxidation at modified GCEs. 

2.1.2. XRD Study 

Figure 3 illustrates various crystalline patterns associated with Px-CuO NSs. These patterns 
typically describe face-centered cubic (fcc) crystal lattice structures and confirm that most of the CuO 
product exhibits these facets.  
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Figure 3. XRD crystalline patterns of Px-CuO NSs (red) and standard CuO (black). 

Importantly, all the crystalline facets of the Px-CuO NSs (patterns in red) and the respective 
angles clearly match the standard CuO compound patterns (in black), thereby confirming the pure 
formation of only one crystalline polymorph of CuO structure. 

2.2. Sensing Studies 

2.2.1. Sensitivity Investigation 

Figure 4 demonstrates the sensitivity of the Px-CuO NSs modified GCE (Figure 4d) as compared 
to the bare GCE (Figure 4c) for 1 mM nitrite detection based on the change in peak current. The figure 
also depicts the response of blank solution for bare GCE (Figure 4a) and Px-CuO NS-modified GCE 
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The images clearly show that these nanostructures are composed of many nanoflakes with porous
rose-petal-like morphology with some dotted particles deposited over the petals, which are essential
for the high catalytic and enhanced electron-transfer reaction associated with nitrite oxidation at
modified GCEs.

2.1.2. XRD Study

Figure 3 illustrates various crystalline patterns associated with Px-CuO NSs. These patterns
typically describe face-centered cubic (fcc) crystal lattice structures and confirm that most of the CuO
product exhibits these facets.
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Figure 3. XRD crystalline patterns of Px-CuO NSs (red) and standard CuO (black).

Importantly, all the crystalline facets of the Px-CuO NSs (patterns in red) and the respective angles
clearly match the standard CuO compound patterns (in black), thereby confirming the pure formation
of only one crystalline polymorph of CuO structure.

2.2. Sensing Studies

2.2.1. Sensitivity Investigation

Figure 4 demonstrates the sensitivity of the Px-CuO NSs modified GCE (Figure 4d) as compared
to the bare GCE (Figure 4c) for 1 mM nitrite detection based on the change in peak current. The figure
also depicts the response of blank solution for bare GCE (Figure 4a) and Px-CuO NS-modified GCE
(Figure 4b). It is clearly observed that the bare GCE does not show any prominent peaks for 1 mM
nitrite oxidation whereas a high catalytic current peak is observed when the Px-CuO NSs-modified
GCE is used. Qualitatively, the obtained results are in good agreement with those reported earlier [22]
by Zhang et al. who also used flower-like copper oxide for hydrogen peroxide and nitrite sensing
using phosphate buffer at pH 7.0. These results clearly attest that Px-CuO NSs provide the active sites
responsible for the enhanced electrocatalytic oxidation of NO2

− as described by the following equations

2NO−2 ↔ 2NO2 + 2e− (1)

2NO2 + H2O → NO−3 + NO−2 + 2H+ (2)

NO−2 + H2O → NO−3 + 2H+ + 2e− (3)
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Figure 4. Cyclic voltammograms obtained for 1 mM nitrite solution in phosphate buffer (pH 7.0) and
scan rate of 100 mV s−1 using (d) Px-CuO NSs-modified GCE and (c) bare GCE. Curves (a) and (b) are
the CV responses of the blank solution (phosphate buffer, pH 7.0) using bare and Px-CuO NS-modified
GCE, respectively.

Virtually, our Px-CuO NS-based sensor is about four times more sensitive for nitrite detection
than the analogous CuO sensor developed by Zhang et al. [22]. These significant enhancements in
peak current and peak potential are most likely due to differences in morphology and shape-directing
agents. We also determined the geometric area of Px-CuO NS-modified electrode as per procedure
described elsewhere [23] and it was 0.067 cm2.

2.2.2. Effect of Scan Rate

Figure 5 illustrates cyclic voltammograms (CV) obtained with the Px-CuO NSs-modified GCE for
1 mM nitrite solution as a function of scan rate over the range 50–900 mV·s−1. The inset shows the linear
response of the current values with the square root of the scan rates, with an R2 value of 0.992. The linear
behavior of the plot suggests that the oxidation of nitrite into nitrate is purely diffusion-controlled.Catalysts 2018, 8, 29  5 of 11 
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Figure 5. CVs showing the effect of scan rates on peak current values of 1 mM nitrite solution in
phosphate buffer at pH 7.0 using Px-CuO NSs-modified GCE: the inset depicts the dependence of peak
current values on the square root values of the scan rates.

A similar behavior has previously been observed for nitrite oxidation at Fe3O4 nanospheres [20].
However, experimental aspects such as buffer solution, pH values, and electrode material could be the
differentiating factors between the two results.
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2.2.3. CV Calibration

The sensing trend of Px-CuO NS-modified GCE with changing nitrite concentration was first
studied using a calibration curve in the CV mode. Figure 6 shows this behavior with the inset
showing the corresponding calibration plot. The results in the inset figure clearly establish that linear
dependence is evident only at higher nitrite concentrations and slightly deviates from linearity at
lower concentration of nitrites. Similarly, the magnitude of (R2 = 0.9758) implies that the sensor does
not behave very well when used in CV mode.
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Figure 6. CVs obtained with the Px-CuO NSs-modified GCE and scan rate of 100 mV s−1 in phosphate
buffer (pH 7.0), illustrating the change in peak current as a function of nitrite concentration over the
range 0.001–1.0 mM. The inset shows the corresponding linear plot.

2.2.4. Reproducibility and Long-Term Stability

To evaluate the practical usage of the developed Px-CuO NS-modified-GCE for several runs,
the reproducibility of a single modified electrode was checked for five repetitive CVs in 0.5 mM nitrite
solution as shown in Figure 7. The calculated data provided a relative standard deviation of 0.2%
which verifies the high reproducibility and repeatability of the developed electrode. Furthermore,
the long-term stability was studied over one month twice per week for Px-CuO NS-modified GCE
and the results showed a relative standard deviation of 2.1% (data not shown) which confirms good
long-term stability for the newly developed electrode. Indeed, the reproducibility and long-term
stability play crucial roles in the economics of the modified electrode.
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Figure 7. Five repetitive CVs for Px-CuO NS-modified GCE in 0.5 mM nitrite in phosphate buffer
(pH, 7.0) using scan rate of 100 mV s−1.
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2.3. Amperometric Study

2.3.1. Amperometric Calibration

The Px-CuO NS-modified GCE was also calibrated using amperometric (peak current versus
time) responses. Figure 8 shows the obtained amperometric curve for nitrite in the range 100–1800 nM.
The corresponding inset plot shows an R2 value of 0.9951 with LOD of 12 nM and LOQ of 40 nM.
The LOD and LOQ values were determined by the methods reported previously [9,24]. Although
the electrode was checked for 100–3600 nM nitrite concentration and was giving good results but the
former range was producing the higher linearity and thus chosen for better accuracy.
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Figure 8. Amperometric (current vs. time) calibration curve recorded at applied potential of 1.0 V for
nitrite detection in the range 100–1500 nM with inset showing the respective linear plot.

On the basis of the obtained results, it is clearly established that the performance of the nitrite
sensor developed in this work has better sensitivity than that reported earlier [22] where the LOD
value of 360 nM has been described for nitrite.

2.3.2. Interference Effect

To investigate the selectivity of the developed Px-CuO based nitrite sensor, its response in a 1 µM
solution of nitrite ions was investigated at an applied potential value of 1.0 V in the presence of 10-fold
higher concentrations (10 µM each) of possibly interfering anions present in water [3,18] such as nitrate,
sulfate, carbonate, bicarbonate, chloride, ammonia (as NH4OH), and acetate as shown in Figure 9.
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The interference from all anions was non-significant, which indicates that the developed Px-CuO
NSs based sensor is highly selective for nitrite ions and thus can efficiently work in various matrices.

2.4. Figures of Merit

In order to show the positive aspects of the currently developed nitrite sensor with respect to
previously designed sensors based on various nanostructured materials, Table 1 lists useful data
related to several sensitive nitrite sensors. It is evident from these data that the most sensitive nitrite
sensor among those listed is the one reported by Haldorai et al. [25] with an LOD of 1.4 nM. However,
from a working range point of view, our Px-CuO-GCE based sensor also performs better in view
of detecting concentrations of nitrite lower than those previously reported. Moreover, most of the
listed nitrite sensors have been fabricated using complex and expensive materials thereby limiting
their utility in economical nitrite sensing. In view of these limitations, it can be concluded that the
currently developed Px-CuO NSs based nitrite sensor is comparatively better in terms of its simplicity,
higher selectivity, extreme sensitivity, and highly cost-effective nature.

Table 1. Comparative data for nitrite detection using electrodes modified with different materials.

Material on Electrode Linear Range (nM) LOD (nM) Reference

Poly(vinylferrocenium)/multi-walled carbon nanotubes 1000–400,000 100 [1]
Graphite-supported Pd nanoparticles 300–50,700 71 [3]
Reduced graphene oxide/Co3O4 nanospindle 1000–380,000 140 [18]
Fe3O4 nanospheres on MoS2 nanoflake 1000–2,630,000 500 [20]
Hexamethylenetetramine-based flower-like CuO 1000–91,500 360 [22]
Cytochrome c immobilized on TiN
nanoparticles-decorated multi-walled carbon nanotubes 1000–2,000,000 1.4 [25]

CuS supported on multiwall carbon nanotubes 1000–8,100,000 330 [26]
Px-CuO NSs 100–1800 12 This work

2.5. Application of the Developed Sensor for Nitrite Detection in Real Water Samples

Table 2 displays the data collected for detection of nitrite in three real water samples—namely,
river water, mineral water, and tap water. Each sample was spiked thrice with the indicated nitrite
concentration using a protocol similar to the one used for the standard solutions. In this case, phosphate
buffer was used for each type of water sample and amperometric runs were carried out just like for
the standard nitrite solution. The results are shown in Table 2. A recovery range of 99.7–100.7% reveals
the good performance of the Px-CuO NSs based GCE as nitrite sensor.

Table 2. Detection of nitrite in real water samples via Px-CuO NSs based sensor.

Sample Type Nitrite Added (nM) Nitrite Recovered (nM) 1 Recovery (%)

Mineral water 800 802.5 ± 3.1 100.3
Tap water 600 598.4 ± 1.9 99.7

River water 400 402.8 ± 2.4 100.7
1 The ± values are the standard deviations of the 3 replications.

3. Experimental Section

3.1. Chemical and Reagents

Ammonia (33%), copper chloride, piroxicam, sodium hydroxide, ascorbic acid, sodium borate,
and sodium sulphite were obtained from Sigma-Aldrich Chemicals, Karachi, Pakistan; sodium nitrite,
acetone, methanol, ethanol, hydrazine, monosodium phosphate, disodium phosphate, and phosphoric
acid were purchased from E. Merck. Piroxicam was dissolved in ethanol before its use. Sodium nitrite
was dissolved in deionized water and then mixed with the required quantity of phosphate buffer.
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3.2. Synthesis of Piroxicam-Based CuO Nanostructures (Px-CuO NSs) via a Hydrothermal Method

Px-CuO NSs were prepared via a hydrothermal protocol as follows: 5 mL 0.1 M copper chloride
was mixed with 1.0 g piroxicam (dissolved in 5 mL ethanol) and the volume was made up to 90 mL
with deionized water. The resulting mixture was stirred for 15 min to obtain complete homogenization.
Then, 5 mL of 33% ammonia solution was added and the final volume was made up to 100 mL with
deionized water in a 250-mL beaker. Finally, the beaker was tightly wrapped with aluminum foil and
placed in a preheated oven at 95 ◦C for 4 h. After this period, the final product was cooled to room
temperature, filtered through Whatman 41, quantitative filter paper (having 125 mm diameter), washed
several times with deionized water to remove the unreacted species, and dried at room temperature.
The prepared CuO NSs were then characterized using scanning electron microscopy (SEM) and X-ray
diffraction (XRD).

3.3. Construction of the Px-CuO NSs Sensor and Its Application for Nitrite Detection

The GCE was thoroughly washed and cleaned according to a previously described protocol [12].
The GCE was polished simultaneously with 0.3 and 0.05-micron alumina paste, sonicated for 5 min in
pure acetone and deionized water, and dried under pure nitrogen gas. The prepared GCE was used
as such and a similar one was modified with Px-CuO NSs and employed for all the electrochemical
investigations. The Px-CuO NS-modified GCE was prepared by putting a 5-µL drop of a Px-CuO NSs
solution (prepared by dissolving 2 mg of NSs in 1 mL methanol) and dried. This GCE was used as
the nitrite sensor. Phosphate buffer (pH 7.0) was used as the supporting electrolyte in a cell having
calomel as reference electrode, platinum wire as a counter electrode, and bare GCE or Px-CuO NSs
modified GCE as a working electrode. During CV, a potential range of 0.0–1.2 V was applied while for
amperometry, the applied potential was kept constant at 1.1 V.

3.4. Application of the Sensor to Real Samples

The Px-CuO NSs based GCE was employed as a nitrite sensor for detection of nitrites in real
water samples—such as mineral water, tap water, and river water—following the same protocol as the
one adopted for the standard solution using a standard addition method.

3.5. Instruments

Morphological information of Px-CuO NSs was obtained with the help of a SEM instrument
model JSM 6380 from Jeol, Tokyo, Japan. Crystalline patterns were investigated using XRD Instrument
model D-8 obtained from Bruker Company, Billerica, MA, USA. All electrochemical investigations
were carried out using the electrochemical workstation potentiostat model 760 D from CH Instruments,
Austin, TX, USA.

4. Conclusions

Px-CuO NSs have been synthesized via a one-pot procedure based on hydrothermal precipitation
with ammoniacal solution. The resulting NSs have a porous rose-petal-like morphology together
with dotted particles, giving rise to the high catalytic nature of the synthesized material. The study
reveals that the fabricated Px-CuO NS-based GCE is highly sensitive and selective, showing extremely
enhanced peak current signals for nitrites even in the presence of several anions commonly found in
real water samples. The fabricated nitrite sensor was applied for detection of nitrite ions in various
water samples and a good recovery range was obtained.
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