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Abstract: In this work, a heterogeneous catalytic system consisting of [HO2CMMIm]Cl and ZrOCl2
in isopropanol is demonstrated to be effective for 5-hydroxymethylfurfural (HMF) synthesis with
glucose as the feedstock. Various reaction conditions for HMF synthesis by glucose dehydration
were investigated systematically. Under optimized reaction conditions, as high as 43 mol% HMF
yield could be achieved. Increasing the water content to a level below 3.17% led to the production
of HMF with a higher yield, while a lower HMF yield was observed when the water content was
increased above 3.17%. In addition, the data also showed that ZrOCl2 could not only effectively
convert glucose into intermediate species (which were not fructose, in contrast to the literature) but
also catalyze the intermediate species’ in situ dehydration into HMF. [HO2CMMIm]Cl was used
to catalyze the intermediate species’ in situ conversion to HMF. The kinetics data showed that a
temperature increase accelerated the intermediate species’ dehydration reaction rate. The reaction of
glucose dehydration was a strong endothermal reaction.
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1. Introduction

Carbohydrates, as a renewable and abundant biomass feedstock, represent a promising carbon
source. Therefore, an efficient and economical process that can convert carbohydrates into useful
chemicals is highly desirable. Production of 5-hydroxymethylfurfural (HMF) with carbohydrates as
the feedstock is one of the hot points in the process of material resources’ comprehensive utilization.
HMF has been proposed by the US Department of Energy to be one of the top 12 platform chemicals,
having the potential to be a building block in the synthesis of furanic-based polyamides, polyesters,
and polyurethanes analogous to petroleum-based terephthalic acid [1–6].

HMF can be produced from glucose and fructose through acid catalysts [7]. In the past decade,
HMF synthesis from fructose has been studied widely, and as high as 90% HMF yields have been
readily achieved [8–22]. Glucose is the most abundant and cheap C6 sugar, so the syntheses of
HMF from glucose is more attractive. A variety of solvents have been investigated for converting
glucose into HMF, such as water [23,24], organic solvents (e.g., DMSO) [2], organic/aqueous binary
mixtures [25–29], and ionic liquids [17,30–34]. Many more catalyst systems have also been developed
for glucose dehydration, such as Lewis acid catalysts [35], tantalum compounds [36], boric acid [37],
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ionic liquids (ILs) [38], ion exchange resins [39], zeolites [40,41], chromium(0) nanoparticles [42],
Sn–Mont catalyst [4], bifunctional SO4

2−/ZrO2 catalysts [43], mesoporous tantalum phosphate [44],
and so on.

Recently, HMF synthesis by sugar dehydration with ionic liquids (ILs) as solvents or using acidic
ionic liquids [45–47] as catalysts has grown rapidly because of its unique and tunable properties. In fact,
a 70% HMF yield with 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) as the reaction solvent can
be obtained over a chromium (II) chloride catalyst [17]; a 83.4% HMF yield can be obtained over a
chromium (II) chloride catalyst in 1,8-diazabicyclo [5.4.0]undec-7-ene-based ionic liquids [32]; a 48.4%
HMF yield was observed over a germanium (IV) chloride catalyst in 1-butyl-3-methylimidazolium
chloride ([BMIM]Cl) with glucose as the feedstock [34]; a 58.3% HMF yield can be obtained over
a tin phosphate catalyst with the ionic liquid EMIMBr as the solvent [48]; a 67.3% HMF yield
was reported over a 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate ionic liquid catalyst
in DMSO [38]. Only a 50.6% HMF yield with glucose as the feedstock was achieved in DMSO over
the 1-carboxypropyl-3-methyl imidazoliumchloride ([CMIm]Cl) and ZrOCl2 catalyst system by Hu
et al., although a 95.7% HMF yield can be obtained with fructose as the feedstock over a [CMIm]Cl
catalyst [16].

It is well known that the isomerization of glucose into fructose is a key step in the synthesis of
HMF from glucose (Scheme 1). Recently, it was reported that the isomerization of glucopyranose
to fructofuranose could be effectively catalyzed by ZrOCl2 [49]. Hu et al. also reported that the
isomerization of glucose into fructose could be obtained with ZrOCl2 as the catalyst [16].

Recovery of ionic liquid is usually done by extraction with diethyl ether (Et2O) [50]. However,
diethyl ether is easily volatized, so developing a new method of recovery of the ionic liquid without
an organic solvent is highly desirable. In our previous work, [HO2CMMIm]Cl could be recovered by
centrifugation. A 91.2% HMF yield for fructose dehydration could be obtained with [HO2CMMIm]Cl as
the catalyst in isopropanol [51], but only a 6.7% HMF yield could be obtained for glucose dehydration.
Thus, a catalytic system with ZrOCl2 and [HO2CMMIm]Cl was developed in this study to catalyze
glucose conversion to HMF.
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Scheme 1. Dehydration of glucose into 5-hydroxymethylfurfural (HMF).

In this work, a [HO2CMMIm]Cl–ZrOCl2–isopropanol system was reported to catalyze glucose
conversion into HMF, as shown in Scheme 2. Interestingly, no fructose was found in the reactions,
and more than 90% glucose conversion with less than 3% HMF yield was observed in a few minutes.
ZrOCl2 was used not only for glucose conversion but also for production of HMF; [HO2CMMIm]Cl
was used for production of HMF. These data suggest that glucose was first converted into intermediate
species, but the intermediate species were not fructose; therefore, the possible reaction route was not in
agreement with the route reported in the literature [16,52]. Increasing the water content (below 3.17%)
led to a higher HMF yield, but only a 4.9% HMF yield was obtained with 60% water content.
Furthermore, the catalyst system could be recovered by centrifugation without an organic solvent.
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2. Results & Discussion

2.1. Effect of IL [HO2CMMIm]Cl Loading on the Catalytic Performance

In our previously works, a 91.2% HMF yield for fructose dehydration could be obtained with
[HO2CMMIm]Cl as the catalyst in isopropanol [51]. Therefore, a reaction of glucose dehydration
was carried out, but only a 6.7% HMF yield with 92% glucose conversion was observed. Based
on the literature [16], ZrOCl2 was introduced into the catalytic system. A 25% HMF yield with
95.8% glucose conversion was achieved in a 3 h reaction at 150 ◦C, with 0.15 g ZrOCl2 and 0.1 g
[HO2CMMIm]Cl as the catalyst. Therefore, we studied the effect of IL [HO2CMMIm]Cl loading on the
catalytic performance, and the results are listed in Figure 1. It can be seen that the selectivity of HMF
increased gradually with the increase of the amounts of [HO2CMMIm]Cl; HMF yield first increased
with [HO2CMMIm]Cl loading increase, reached a maximum of 29.3% at 50 mg [HO2CMMIm]Cl, then
decreased with further increases of [HO2CMMIm]Cl loading. This suggested that [HO2CMMIm]Cl
could increase HMF selectivity, and that ZrOCl2 not only was favorable to the conversion of glucose,
but also could increase the yield of HMF.
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Figure 1. Effect of IL [HO2CMMIm]Cl loading on glucose dehydration.Experimental conditions: 0.15 g
ZrOCl2, 0.1 g glucose, 3.0 g isopropanol, 3 h reaction time, 150 ◦C reaction temperature.

2.2. Effect of ZrOCl2 Loading on the Catalytic Performance

In the above section, ZrOCl2 was not only favoring the conversion of glucose, but also increasing
HMF yield. So, the effects of ZrOCl2 loading on the catalytic performance were examined with 50 mg
[HO2CMMIm]Cl as the catalyst, and the results are summarized in Figure 2. it can be seen that the
yield of HMF increased dramatically with ZrOCl2 loading at the beginning, with up to 30% HMF
yield achieved at 200 mg ZrOCl2 loading when the reaction was conducted at 150 ◦C. While the yield
of HMF decreased as ZrOCl2 loading increased to 250 mg, the selectivity of HMF first increased,
then decreased.
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Figure 2. Influence of ZrOCl2 loading on glucose conversion.Reaction conditions: 0.05 g [HO2CMMIm]Cl,
0.1 g glucose, 3.0 g isopropanol, 3 h reaction time, 150 ◦C reaction temperature.

2.3. Influence of the Reaction Time on the Catalytic Performance

The influence of the reaction time on glucose conversion, HMF yield, and selectivity was also
investigated, and the data are summarized in Figure 3. It can be seen that the conversion of glucose
increased sharply to 93% in the first 5 min, then increased gradually from 93% to 98% in the following
3 h, while the yield of HMF was only 1% in the first 5 min and then gradually increased to 29.3% in the
following 3 h; HMF selectivity gradually decreased from 90% to 66% in 3 h. These data suggested that
glucose could be converted into intermediate species within a short time. The intermediate species
were not fructose according to the results from HPLC, and a longer reaction time was necessary for
HMF production from the intermediate species by the [HO2CMMIm]Cl–ZrOCl2–isopropanol system.
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[HO2CMMIm]Cl, 0.1 g glucose, 3.0 g isopropanol, 150 ◦C reaction temperature.
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2.4. Effect of the Reaction Temperature on the Catalytic Performance

The effect of the reaction temperature on glucose dehydration in isopropanol over the
[HO2CMMIm]Cl–ZrOCl2 catalyst system (reaction time of 3 h) was also examined, and the data
are listed in Figure 4. The conversion of glucose gradually increased from 80% to 95.8% when
increasing the temperature from 120 ◦C to 160 ◦C, while the yield of HMF increased to 29.3% from
6.7% with a reaction temperature increase from 120 ◦C to 150 ◦C and remained unchanged as the
reaction temperature further increased to 160 ◦C. The change in the selectivity of HMF was very
limited, ranging from 68% to 66% under the studied reaction temperature.
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conditions: 0.15 g ZrOCl2, 0.05 g [HO2CMMIm]Cl, 0.1 g glucose, 3.0 g isopropanol, 3 h reaction time.

2.5. Effect of Substrate Loading on HMF synthesis

The effect of the glucose loading on glucose dehydration was also examined under the conditions
of 0.05 g [HO2CMMIm]Cl, 0.15 g ZrOCl2, 150 ◦C reaction temperature, and 3 h reaction time, and
the data are listed in Figure 5. HMF yield decreased from 43% to 27% with the increase of glucose
loading from 30 mg to 120 mg. This could arise from increased glucose concentration in isopropanol,
which likely favored side reactions such as polymerization and rehydration, producing humins as
the main by-product. The selectivity of HMF showed a similar trend. The conversion of glucose
decreased gradually.

2.6. Effect of Water Content on the Catalytic Performance

Figure 6 shows the influence of water on glucose dehydration in isopropanol at 150 ◦C.
In isopropanol, glucose was firstly converted into the intermediate species, and the intermediate
species were subsequently converted to HMF. A 29.3% HMF yield was achieved after a 3 h reaction.
The conversion of the intermediate species to HMF was dramatically enhanced by the addition of
3.17 wt % water. The yield of HMF increased to 35.2% with the addition of 3.17 wt % water to the
isopropanol. The intermediate species convertion to HMF was inhibited in the presence of more than
10 wt % water. Only a 4.9% HMF yield was observed in the presence of 60 wt % water. These data
suggested that the catalytic reaction could be accelerated, and the concentration of the catalytic active
species could be decreased by increasing the water content to a certain range.
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2.7. Kinetics Studies

We considered that, in our work, glucose dehydration consisted of two processes, the first of
which was glucose convertion into the intermediate species, and the second was the intermediate
species convertion into HMF, which could be assumed to be the rate-determining step. As shown
elsewhere, in this case, the overall rate can be written in terms of a product of equilibrium constants for
the steps that are not rate-determining, multiplied by the equilibrium constant for the formation of the
transition state for the rate-determining step [53,54]. Accordingly, the overall rate can be expressed in
terms of a single equilibrium constant (k, which is a product of the individual equilibrium constants, for
example, for HMF) for the formation of the rate-determining transition state from the reactant R [55].

Therefore, in our work, the kinetics of glucose dehydration was analyzed according to the HMF
yield. The first few intermediate species (IS) [IS]t data points were used to construct liner ln([IS]t/[IS]0)
versus t plots (Equation (1)), and the first-order rate constants, k, were obtained from the slope
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(the glucose dehydration reaction was established to occur as follows: glucose was first converted into
fructose, then fructose was converted into HMF; the rate constant of fructose conversion to HMF was
described as first-order in the literature; therefore, a first-order rate constant was assumed for glucose
dehydration in this work):

ln〈 [IS]t
[IS]0
〉 = −kt (1)

where [IS]t = IS concentration at time t, [IS]0 = initial IS concentration, k = observed rate constant, and
t = time in minutes.

As summarized in Table 1, the value of k increased with the reaction temperature increase,
indicating that the dehydration reaction of the intermediate species would be accelerated by a higher
reaction temperature:

lnk = − E
RT

+ lnA (2)

where k is the observed rate constant, E is the activation energy, T is the temperature in kelvin, R is the
ideal gas constant, A is the pre-exponential factor.

Table 1. Reaction rate constants (k) of glucose dehydration at various reaction temperatures a.

Entry Temperature ◦C k × 103 (min−1) Correlation Coefficient

1 140 89.1 0.986
2 150 118.7 0.989
3 160 152.4 0.977

a Experimental conditions: 3 h reaction time, 0.05 g [HO2CMMIm]Cl, 0.15 g ZrOCl2, 0.1 g glucose, and 3 g isopropanol.

An Arrhenius plot was obtained, as shown in Figure 7. Based on these data, the kinetic parameters
for [HO2CMMIm]Cl–ZrOCl2-catalyzed glucose dehydration could be calculated. An apparent
activation energy of 48.01 KJ/mol was calculated.
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Jack M. Carraher [56] reported that ∆H = Ea − RT. On the basis of this equation, ∆H at different
temperatures could be obtained, and the results are listed in Table 2. Obviously, all values of ∆H
were higher than 47 kJ mol−1, suggesting that the reaction of glucose dehydration was a strong
endothermal reaction, and thus a high reaction temperature was favorable to obtaining the intermediate
species conversion.
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Table 2. The values of ∆H at different reaction temperatures.

Entry Reaction Temperature ∆H/kJ mol−1

1 140 47.976
2 150 47.975
3 160 47.974

2.8. Recycling of the Catalysts

Tests were carried out for the recycling of the catalyst, and the results are summarized in Table 3.
It can be seen that there was only a slight decrease of the catalytic performance of the catalyst,
suggesting that the catalyst could be recycled and reused. A possible reason for the decreased yield of
HMF may be that a certain amount of catalyst was not recycled by centrifugation.

Table 3. Recycling of the catalyst.

Run Glucose Conversion % HMF Yield %

1 99 43
2 99 41
3 99 40
4 99 39
5 99 38

Reaction conditions: 0.15 g ZrOCl2, 0.05 g [HO2CMMIm]Cl, glucose 0.03 g, 3.0 g isopropanol, 3 h reaction time,
150 ◦C reaction temperature.

3. Experimental Section

3.1. Materials

The IL [HO2CMMIm]Cl) was supplied by Lanzhou Institute of Chemical Physics, Chinese
Academy of Sciences. All the other materials, such as glucose, fructose, ZrOCl2, isopropanol, were
analytic-grade, purchased from Alfa Aesar and used as received without further purification.

3.2. Reaction Testing

Glucose dehydration was carried out in a 10 mL thick-walled glass reactor made by Alltech.
An oil bath with an Isotemp digital stirring hot plate was used to heat the reactor rapidly to the desired
reaction temperature. In addition, a triangular stir bar was placed in the bottle of the reactor before
adding the reactants, so as to give an adequate agitation. A typical experiment was as followed: 0.1 g
glucose, 0.05 g [HO2CMMIm]Cl, 0.15 g ZrOCl2, and 3.0 g isopropanol were introduced into the reactor.
Then the reactor was sealed and immersed in the oil bath at 150 ◦C and stirred at 400 rpm. After
120 min, the reactor was removed from the oil bath and then cooled rapidly to room temperature with
water. Other reactions were carried out by changing the reaction temperature, reaction time, glucose
loading, [HO2CMMIm]Cl and ZrOCl2 amounts. For all the reactions, some amounts of brownish
humins formed. Humin formation precluded a closed carbon balance analysis, and thus the only
product analyzed was HMF. Each reaction was repeated at least three times, and the average yield
was reported.

3.3. Sample Analysis

All the liquid samples were precipitated by centrifugation. The upper liquid was analyzed with
a Shimadzu LC-20A liquid chromatography. HMF was measured with a SPD-20A UV detector at
280 nm and an InterSustain C18 column at 313 K, with a methanol/5 mM H2SO4 (8:2 v/v) binary
solvent as the mobile phase at a flow rate of 0.6 mL/min. The amount of glucose was analyzed by
introducing 2 mL of water into the upper liquid and then measured with a refractive index (RI-20A)
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detector, under the conditions of 333 K, with 5 mM H2SO4 at a flow rate of 0.6 mL min−1 as the mobile
phase, with an Aminex HPX-87H Column.

In this manuscript, conversion and selectivity are defined as follows: conversion of glucose is
defined as the amount of reacted glucose divided by the moles of initial glucose added; selectivity of
HMF is defined as the moles of HMF produced divided by the amount of reacted glucose. The yield of
HMF is defined as converted glucose multiplied by HMF selectivity.

4. Conclusions

In summary, a combination of the [HO2CMMIm]ClZrOCl2 catalyst system and isopropanol for
HMF synthesis with glucose as the feedstock was developed. A series of experiments was examined
over a broad range of conditions (reaction temperature, reaction time, water content, and catalyst and
substrate loadings) to explore the rate and selectivity of glucose dehydration. Up to 43% HMF yield
could be obtained with 0.03 g glucose, 0.05 g [HO2CMMIm]Cl, 0.15 g ZrOCl2 in 3 mL isopropanol,
at 150 ◦C reaction temperature and in 3 h reaction time.

It was demonstrated that [HO2CMMIm]Cl could increase HMF selectivity and that ZrOCl2 not
only was favorable to glucose conversion but also increased HMF yield under the examined reaction
conditions. ZrOCl2 affected the reaction in two opposite ways, and these opposite factors resulted
in the highest yield corresponding to twice the mass loading of ZrOCl2. Glucose could be converted
to intermediate species within a short time (about 5 min), and the intermediate species were not
fructose according to the HPLC results; a longer reaction time (3 h or longer) were needed for HMF
production from the intermediate species over the [HO2CMMIm]Cl-ZrOCl2 catalyst. The conversion
of the intermediate species to HMF was dramatically increased by the addition of 3.17 wt % water.
The performance of the catalytically active species could be enhanced by increasing the water content,
and the concentration of the catalytically active species could be decreased by increasing the water
content to a certain range. The kinetics data showed that a higher temperature accelerated the
intermediate species dehydration reaction rate [51]. The glucose dehydration reaction was a strong
endothermal reaction, thus a high reaction temperature was favorable to glucose and intermediate
species conversion.
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