Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice
Abstract
:1. Introduction
2. Past Achievements
2.1. Concept and Theory of Active Sites
2.2. Experimental Approach for Studying Active Sites
2.3. Computational Approach for Studying Active Sites
3. Current Status and Challenges
3.1. Current Status
3.2. Present Challenges
4. Outlook of Future Research Direction
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed. 2015, 54, 3465–3520. [Google Scholar] [CrossRef] [PubMed]
- George, S.M. Introduction: Heterogeneous catalysis. Chem. Rev. 1995, 95, 475–476. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636. [Google Scholar] [CrossRef]
- Schlögl, R. Catalytic Synthesis of Ammonia—A “Never-Ending Story”? Angew. Chem. Int. Ed. 2003, 42, 2004–2008. [Google Scholar] [CrossRef] [PubMed]
- Spencer, N.; Schoonmaker, R.; Somorjai, G. Iron single crystals as ammonia synthesis catalysts: Effect of surface structure on catalyst activity. J. Catal. 1982, 74, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, Q.; Flytzani-Stephanopoulos, M. Low-temperature water-gas shift reaction over Cu-and Ni-loaded cerium oxide catalysts. Appl. Catal. B Environ. 2000, 27, 179–191. [Google Scholar] [CrossRef]
- Hecht, E.S.; Gupta, G.K.; Zhu, H.; Dean, A.M.; Kee, R.J.; Maier, L.; Deutschmann, O. Methane reforming kinetics within a Ni-YSZ SOFC anode support. Appl. Catal. A Gen. 2005, 295, 40–51. [Google Scholar] [CrossRef]
- Dong, W.-S.; Roh, H.-S.; Jun, K.-W.; Park, S.-E.; Oh, Y.-S. Methane reforming over Ni/Ce-ZrO2 catalysts: Effect of nickel content. Appl. Catal. A Gen. 2002, 226, 63–72. [Google Scholar] [CrossRef]
- Laosiripojana, N.; Sutthisripok, W.; Assabumrungrat, S. Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3: Influence of the doping ceria on the resistance toward carbon formation. Chem. Eng. J. 2005, 112, 13–22. [Google Scholar] [CrossRef]
- Leitner, W. Carbon dioxide as a raw material: The synthesis of formic acid and its derivatives from CO2. Angew. Chem. Int. Ed. Engl. 1995, 34, 2207–2221. [Google Scholar] [CrossRef]
- Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. Angew. Chem. Int. Ed. 2011, 50, 12551–12554. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Sibener, S.; Schatz, G.C.; Ceyer, S.T.; Mavrikakis, M. CO2 hydrogenation to formic acid on Ni(111). J. Phys. Chem. C 2012, 116, 3001–3006. [Google Scholar] [CrossRef]
- Wang, W.-H.; Himeda, Y.; Muckerman, J.T.; Manbeck, G.F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo-and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, C.H.; Farrauto, R.J. Fundamentals of Industrial Catalytic Processes; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Valden, M.; Lai, X.; Goodman, D.W. Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Bell, A.T.; Iglesia, E. The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions. J. Catal. 2002, 209, 35–42. [Google Scholar] [CrossRef]
- Singha, R.K.; Shukla, A.; Yadav, A.; Konathala, L.S.; Bal, R. Effect of metal-support interaction on activity and stability of Ni-CeO2 catalyst for partial oxidation of methane. Appl. Catal. B Environ. 2017, 202, 473–488. [Google Scholar] [CrossRef]
- Taylor, H.S. A theory of the catalytic surface. Proc. R. Soc. Lond. A 1925, 108, 105–111. [Google Scholar] [CrossRef]
- Crampton, A.S.; Rötzer, M.D.; Ridge, C.J.; Yoon, B.; Schweinberger, F.F.; Landman, U.; Heiz, U. Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials. Surf. Sci. 2016, 652, 7–19. [Google Scholar] [CrossRef]
- Balandin, A. The theory of heterogeneous catalytic reactions. The Multiplet hypothesis. Model for dehydrogenation catalysis. Z. Phys. Chem. Abt. B 1929, 2, 289–316. [Google Scholar]
- Balandin, A. Modern State of the Multiplet Theory of Heterogeneous Catalysis. Adv. Catal. 1969, 19, 1. [Google Scholar]
- Boudart, M. Catalysis by supported metals. In Advances in Catalysis; Elsevier: Amsterdam, The Netherlands, 1969; Volume 20, pp. 153–166. [Google Scholar]
- Cremer, P.S.; Somorjai, G.A. Surface science and catalysis of ethylene hydrogenation. J. Chem. Soc. Faraday Trans. 1995, 91, 3671–3677. [Google Scholar] [CrossRef]
- Cremer, P.S.; Su, X.; Shen, Y.R.; Somorjai, G.A. Ethylene hydrogenation on Pt (111) monitored in situ at high pressures using sum frequency generation. J. Am. Chem. Soc. 1996, 118, 2942–2949. [Google Scholar] [CrossRef]
- Somorjai, G.; Zaera, F. Heterogeneous catalysis on the molecular scale. J. Phys. Chem. 1982, 86, 3070–3078. [Google Scholar] [CrossRef]
- Gillespie, W.; Herz, R.; Petersen, E.; Somorjai, G. The structure sensitivity of n-heptane dehydrocyclization and hydrogenolysis catalyzed by platinum single crystals at atmospheric pressure. J. Catal. 1981, 70, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Zaera, F. Probing catalytic reactions at surfaces. Prog. Surf. Sci. 2001, 69, 1–98. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Hvolbæk, B.; Abild-Pedersen, F.; Chorkendorff, I.; Christensen, C.H. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 2008, 37, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Blakely, D.; Somorjai, G. The dehydrogenation and hydrogenolysis of cyclohexane and cyclohexene on stepped (high miller index) platinum surfaces. J. Catal. 1976, 42, 181–196. [Google Scholar] [CrossRef]
- Yates, J.T., Jr. Surface chemistry at metallic step defect sites. J. Vac. Sci. Technol. A Vac. Surf. Films 1995, 13, 1359–1367. [Google Scholar] [CrossRef]
- Idriss, H.; Barteau, M.A. Active sites on oxides: From single crystals to catalysts. In Advances in Catalysis; Elsevier: Amsterdam, The Netherlands, 2000; Volume 45, pp. 261–331. [Google Scholar]
- Somorjai, G. Active sites in heterogeneous catalysis. In Advances in Catalysis; Elsevier: Amsterdam, The Netherlands, 1977; Volume 26, pp. 1–68. [Google Scholar]
- Deutschmann, O.; Knözinger, H.; Kochloefl, K.; Turek, T. Heterogeneous catalysis and solid catalysts. Ullmann’s Encycl. Ind. Chem. 2009. [Google Scholar] [CrossRef]
- Mars, P.; Van Krevelen, D.W. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 1954, 3, 41–59. [Google Scholar] [CrossRef]
- Schubert, M.; Kahlich, M.; Gasteiger, H.; Behm, R. Correlation between CO surface coverage and selectivity/kinetics for the preferential CO oxidation over Pt/γ-Al2O3 and Au/α-Fe2O3: An in-situ DRIFTS study. J. Power Sources 1999, 84, 175–182. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, A.; Li, L.; Lin, Q.; Wei, H.; Liu, J.; Zhang, T. Ferric oxide-supported Pt subnano clusters for preferential oxidation of CO in H2-rich gas at room temperature. ACS Catal. 2014, 4, 2113–2117. [Google Scholar] [CrossRef]
- Takanabe, K.; Nagaoka, K.; Nariai, K.; Aika, K.-I. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. J. Catal. 2005, 232, 268–275. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Dalai, A.K. Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J. Catal. 2007, 249, 300–310. [Google Scholar] [CrossRef]
- San-José-Alonso, D.; Juan-Juan, J.; Illán-Gómez, M.; Román-Martínez, M. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Appl. Catal. A Gen. 2009, 371, 54–59. [Google Scholar] [CrossRef]
- Steinhauer, B.; Kasireddy, M.R.; Radnik, J.; Martin, A. Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming. Appl. Catal. A Gen. 2009, 366, 333–341. [Google Scholar] [CrossRef]
- Tsyganok, A.I.; Inaba, M.; Tsunoda, T.; Uchida, K.; Suzuki, K.; Takehira, K.; Hayakawa, T. Rational design of Mg-Al mixed oxide-supported bimetallic catalysts for dry reforming of methane. Appl. Catal. A Gen. 2005, 292, 328–343. [Google Scholar] [CrossRef]
- Navarro, R.; Pawelec, B.; Trejo, J.; Mariscal, R.; Fierro, J. Hydrogenation of aromatics on sulfur-resistant PtPd bimetallic catalysts. J. Catal. 2000, 189, 184–194. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Zhang, C.; Yurchekfrodl, E.; Peng, Z. Property of Pt-Ag Alloy Nanoparticle Catalysts in Carbon Monoxide Oxidation. J. Phys. Chem. C 2014, 118, 28739–28745. [Google Scholar] [CrossRef]
- Pan, Y.; Hwang, S.Y.; Shen, X.; Yang, J.; Zeng, J.; Wu, M.; Peng, Z. Computation-Guided Development of Platinum Alloy Catalyst for Carbon Monoxide Preferential Oxidation. ACS Catal. 2018, 8, 5777–5786. [Google Scholar] [CrossRef]
- Ko, E.Y.; Park, E.D.; Lee, H.C.; Lee, D.; Kim, S. Supported Pt-Co Catalysts for Selective CO Oxidation in a Hydrogen-Rich Stream. Angew. Chem. Int. Ed. 2007, 46, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Lobera, M.; Téllez, C.; Herguido, J.; Menéndez, M. Catalytic purification of H2-rich streams by CO-PROX over Pt-Co-Ce/γ-Al2O3 in fluidized bed reactors. Catal. Today 2010, 157, 404–409. [Google Scholar] [CrossRef]
- Chorkendorff, I.; Niemantsverdriet, J.W. Concepts of Modern Catalysis and Kinetics; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Hwang, S.Y.; Yurchekfrodl, E.; Zhang, C.; Peng, Z. Low-Temperature Preferential Oxidation of Carbon Monoxide on Pt3Ni Alloy Nanoparticle Catalyst with Engineered Surface. ChemCatChem 2016, 8, 97–101. [Google Scholar] [CrossRef]
- Ko, E.-Y.; Park, E.D.; Seo, K.W.; Lee, H.C.; Lee, D.; Kim, S. A comparative study of catalysts for the preferential CO oxidation in excess hydrogen. Catal. Today 2006, 116, 377–383. [Google Scholar] [CrossRef]
- Gupta, P.; Paul, S. Solid acids: Green alternatives for acid catalysis. Catal. Today 2014, 236, 153–170. [Google Scholar] [CrossRef]
- Phung, T.K.; Busca, G. Diethyl ether cracking and ethanol dehydration: Acid catalysis and reaction paths. Chem. Eng. J. 2015, 272, 92–101. [Google Scholar] [CrossRef]
- Li, H.; Fang, Z.; Luo, J.; Yang, S. Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Appl. Catal. B Environ. 2017, 200, 182–191. [Google Scholar] [CrossRef]
- Saravanan, K.; Tyagi, B.; Shukla, R.S.; Bajaj, H. Esterification of palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid acid catalyst. Appl. Catal. B Environ. 2015, 172, 108–115. [Google Scholar] [CrossRef]
- Sani, Y.M.; Daud, W.M.A.W.; Aziz, A.A. Activity of solid acid catalysts for biodiesel production: A critical review. Appl. Catal. A Gen. 2014, 470, 140–161. [Google Scholar] [CrossRef]
- Takahara, I.; Saito, M.; Inaba, M.; Murata, K. Dehydration of ethanol into ethylene over solid acid catalysts. Catal. Lett. 2005, 105, 249–252. [Google Scholar] [CrossRef]
- Corma, A.; Planelles, J.; Sanchez-Marin, J.; Tomas, F. The role of different types of acid site in the cracking of alkanes on zeolite catalysts. J. Catal. 1985, 93, 30–37. [Google Scholar] [CrossRef]
- Tang, B.; Dai, W.; Wu, G.; Guan, N.; Li, L.; Hunger, M. Improved postsynthesis strategy to Sn-Beta zeolites as Lewis acid catalysts for the ring-opening hydration of epoxides. ACS Catal. 2014, 4, 2801–2810. [Google Scholar] [CrossRef]
- Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P.A.; De Vos, D.E. Probing the Lewis Acidity and Catalytic Activity of the Metal-Organic Framework [Cu3(btc)2] (BTC = Benzene-1, 3, 5-tricarboxylate). Chem. Eur. J. 2006, 12, 7353–7363. [Google Scholar] [CrossRef] [PubMed]
- Che, M.; Védrine, J.C. Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface area and pore texture of catalysts. Catal. Today 1998, 41, 207–219. [Google Scholar] [CrossRef]
- Jona, F.; Strozier, J., Jr.; Yang, W. Low-energy electron diffraction for surface structure analysis. Rep. Prog. Phys. 1982, 45, 527. [Google Scholar] [CrossRef]
- Yin, C.; Negreiros, F.R.; Barcaro, G.; Beniya, A.; Sementa, L.; Tyo, E.C.; Bartling, S.; Meiwes-Broer, K.-H.; Seifert, S.; Hirata, H. Alumina-supported sub-nanometer Pt 10 clusters: Amorphization and role of the support material in a highly active CO oxidation catalyst. J. Mater. Chem. A 2017, 5, 4923–4931. [Google Scholar] [CrossRef]
- Hollander, J.M.; Jolly, W.L. X-ray photoelectron spectroscopy. Acc. Chem. Res. 1970, 3, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Oliaee, S.N.; Hwang, S.Y.; Kong, X.; Peng, Z. A Generic Wet Impregnation Method for Preparing Substrate-Supported Platinum Group Metal and Alloy Nanoparticles with Controlled Particle Morphology. Nano Lett. 2015, 16, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C. Auger electron spectroscopy. Surf. Sci. 1971, 25, 53–79. [Google Scholar] [CrossRef]
- Yan, T.; Redman, D.W.; Yu, W.-Y.; Flaherty, D.W.; Rodriguez, J.A.; Mullins, C.B. CO oxidation on inverse Fe2O3/Au (1 1 1) model catalysts. J. Catal. 2012, 294, 216–222. [Google Scholar] [CrossRef]
- Binnig, G.; Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 1983, 126, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Yang, F.; Chen, Z.; Liu, Q.; Ji, Y.; Zhang, Y.; Niu, Z.; Mao, J.; Bao, X.; Hu, P. Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nat. Commun. 2017, 8, 14039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Henda, R.; Aluha, J.; Abatzoglou, N. Co-doped ZnO thin films grown by pulsed electron beam ablation as model nano-catalysts in fischer-tropsch synthesis. AIChE J. 2018. [Google Scholar] [CrossRef]
- Niehus, H.; Heiland, W.; Taglauer, E. Low-energy ion scattering at surfaces. Surf. Sci. Rep. 1993, 17, 213–303. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, W.; Zheng, J.; Yang, Z.; Zhang, N.; Zhong, C.-J.; Chen, B.H. Efficient low-temperature hydrogenation of acetone on bimetallic Pt-Ru/C catalyst. J. Catal. 2018, 363, 52–62. [Google Scholar] [CrossRef]
- Colthup, N. Introduction to Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Stuart, B. Infrared spectroscopy. Kirk-Othmer Encycl. Chem. Technol. 2005. [Google Scholar] [CrossRef]
- Otake, K.-I.; Cui, Y.; Buru, C.T.; Li, Z.; Hupp, J.T.; Farha, O.K. Single-Atom-Based Vanadium Oxide Catalysts Supported on Metal-Organic Frameworks: Selective Alcohol Oxidation and Structure-Activity Relationship. J. Am. Chem. Soc. 2018, 140, 8652–8656. [Google Scholar] [CrossRef] [PubMed]
- Perkampus, H.-H. UV-VIS Spectroscopy and its Applications; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Swinehart, D. The beer-lambert law. J. Chem. Educ. 1962, 39, 333. [Google Scholar] [CrossRef]
- Goetze, J.; Meirer, F.; Yarulina, I.; Gascon, J.; Kapteijn, F.; Ruiz-Martínez, J.; Weckhuysen, B.M. Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV-vis spectroscopy. ACS Catal. 2017, 7, 4033–4046. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.; Yachandra, V.K. X-ray absorption spectroscopy. Photosynth. Res. 2009, 102, 241. [Google Scholar] [CrossRef] [PubMed]
- Magadzu, T.; Yang, J.; Henao, J.; Kung, M.; Kung, H.; Scurrell, M. Low-temperature water-gas shift reaction over Au supported on anatase in the presence of copper: EXAFS/XANES analysis of gold-copper ion mixtures on TiO2. J. Phys. Chem. C 2017, 121, 8812–8823. [Google Scholar] [CrossRef]
- Warren, B.E. X-Ray Diffraction; Courier Corporation: Chelmsford, MA, USA, 1990. [Google Scholar]
- Mebrahtu, C.; Abate, S.; Perathoner, S.; Chen, S.; Centi, G. CO2 methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships. Catal. Today 2018, 304, 181–189. [Google Scholar] [CrossRef]
- Williams, D.B.; Carter, C.B. The transmission electron microscope. In Transmission Electron Microscopy; Springer: Cham, Switzerland, 1996; pp. 3–17. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Xu, K.; Chen, P.; Li, X.; Tong, Y.; Ding, H.; Wu, X.; Chu, W.; Peng, Z.; Wu, C.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119–4125. [Google Scholar] [CrossRef] [PubMed]
- Nørskov, J.K.; Bligaard, T.; Rossmeisl, J.; Christensen, C.H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37. [Google Scholar] [CrossRef] [PubMed]
- Woodward, R.B.; Hoffmann, R. The conservation of orbital symmetry. Angew. Chem. Int. Ed. Engl. 1969, 8, 781–853. [Google Scholar] [CrossRef]
- Hoffmann, R. Interaction of orbitals through space and through bonds. Acc. Chem. Res. 1971, 4, 1–9. [Google Scholar] [CrossRef]
- Ammeter, J.; Bürgi, H.; Thibeault, J.; Hoffmann, R. Counterintuitive orbital mixing in semiempirical and ab initio molecular orbital calculations. J. Am. Chem. Soc. 1978, 100, 3686–3692. [Google Scholar] [CrossRef]
- Hoffmann, R. An extended Hückel theory. I. hydrocarbons. J. Chem. Phys. 1963, 39, 1397–1412. [Google Scholar] [CrossRef]
- Gomez-Jeria, J.S. The limits of the Extended Hückel Theory to Calculate the Total Density of States of Medium-Sized Molecules. J. Chil. Chem. Soc. 2006, 51, 1061–1064. [Google Scholar] [CrossRef]
- Anderson, A.B.; Hoffmann, R. Description of diatomic molecules using one electron configuration energies with two-body interactions. J. Chem. Phys. 1974, 60, 4271–4273. [Google Scholar] [CrossRef]
- Anderson, A.B. Derivation of the extended Hückel method with corrections: One electron molecular orbital theory for energy level and structure determinations. J. Chem. Phys. 1975, 62, 1187–1188. [Google Scholar] [CrossRef]
- Anderson, A.B.; Grimes, R.W.; Hong, S.Y. Toward a better understanding of the atom superposition and electron delocalization molecular orbital theory and a systematic test: Diatomic oxides of the first transition-metal series, bonding and trends. J. Phys. Chem. 1987, 91, 4245–4250. [Google Scholar] [CrossRef]
- De Koster, A.; Van Santen, R. Molecular orbital studies of the adsorption of CH3, CH2, and CH on Rh(111) and Ni(111) surfaces. J. Catal. 1991, 127, 141–166. [Google Scholar] [CrossRef]
- VAN SANTEN, R.A.; NEUROCK, M. Concepts in theoretical heterogeneous catalytic reactivity. Catal. Rev. 1995, 37, 557–698. [Google Scholar] [CrossRef]
- Vedrine, J.C. Revisiting active sites in heterogeneous catalysis: Their structure and their dynamic behaviour. Appl. Catal. A Gen. 2014, 474, 40–50. [Google Scholar] [CrossRef]
- Slater, J.C. A simplification of the Hartree-Fock method. Phys. Rev. 1951, 81, 385. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Oyama, S.T.; Ohminami, Y.; Asakura, K. Structure of MnO x/Al2O3 Catalyst: A Study Using EXAFS, In Situ Laser Raman Spectroscopy and ab Initio Calculations. J. Phys. Chem. B 2001, 105, 9067–9070. [Google Scholar] [CrossRef]
- Thomas, L.H. The Calculation of Atomic Fields. Math. Proc. Camb. Philos. Soc. 1927, 23, 542–548. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 1219831. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.W.; Lee, G.-D.; He, K.; Fan, Y.; Allen, C.S.; Lee, S.; Kim, H.; Yoon, E.; Zheng, H.; Kirkland, A.I. Partial dislocations in graphene and their atomic level migration dynamics. Nano Lett. 2015, 15, 5950–5955. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Zhong, L.; Wang, C.M.; Sullivan, J.P.; Xu, W.; Zhang, L.Q.; Mao, S.X.; Hudak, N.S.; Liu, X.H.; Subramanian, A. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-G.; Zherebetskyy, D.; Xin, H.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L.-W.; Zheng, H. Facet development during platinum nanocube growth. Science 2014, 345, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Vendelbo, S.; Elkjær, C.; Falsig, H.; Puspitasari, I.; Dona, P.; Mele, L.; Morana, B.; Nelissen, B.; Van Rijn, R.; Creemer, J. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 2014, 13, 884. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.-Y.; Liu, M.; Persson, K.A.; Han, Y.; Zheng, H. Strain-Mediated Interfacial Dynamics during Au–PbS Core–Shell Nanostructure Formation. ACS Nano 2016, 10, 6235–6240. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Dai, S.; Zhang, C.; Zhang, S.; Sharkey, S.M.; Graham, G.W.; Pan, X.; Peng, Z. In situ atomic-scale observation of the two-dimensional Co (OH) 2 transition at atmospheric pressure. Chem. Mater. 2017, 29, 4572–4579. [Google Scholar] [CrossRef]
- Hammer, B.; Nørskov, J. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220. [Google Scholar] [CrossRef]
- Hammer, B.; Nørskov, J.K. Theoretical surface science and catalysis—Calculations and concepts. In Advances in Catalysis; Elsevier: Cham, Switzerland, 2000; Volume 45, pp. 71–129. [Google Scholar]
- Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R.Z.; Christensen, C.H.; Nørskov, J.K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322. [Google Scholar] [CrossRef] [PubMed]
- Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T.; Moses, P.G.; Skulason, E.; Bligaard, T.; Nørskov, J.K. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 2007, 99, 016105. [Google Scholar] [CrossRef] [PubMed]
- Vojvodic, A.; Hellman, A.; Ruberto, C.; Lundqvist, B.I. From electronic structure to catalytic activity: A single descriptor for adsorption and reactivity on transition-metal carbides. Phys. Rev. Lett. 2009, 103, 146103. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.M.; Moses, P.G.; Toftelund, A.; Hansen, H.A.; Martínez, J.I.; Abild-Pedersen, F.; Kleis, J.; Hinnemann, B.; Rossmeisl, J.; Bligaard, T. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew. Chem. Int. Ed. 2008, 47, 4683–4686. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Cao, X.; Luo, Y. Identification of the scaling relations for binary noble-metal nanoparticles. J. Phys. Chem. C 2013, 117, 2849–2854. [Google Scholar] [CrossRef]
- Su, D.S.; Zhang, B.; Schlögl, R. Electron Microscopy of Solid Catalysts Transforming from a Challenge to a Toolbox. Chem. Rev. 2015, 115, 2818–2882. [Google Scholar] [CrossRef] [PubMed]
- Amakawa, K.; Wrabetz, S.; Kröhnert, J.; Tzolova-Müller, G.; Schlögl, R.; Trunschke, A. In situ generation of active sites in olefin metathesis. J. Am. Chem. Soc. 2012, 134, 11462–11473. [Google Scholar] [CrossRef] [PubMed]
- Pantazidis, A.; Burrows, A.; Kiely, C.; Mirodatos, C. Direct evidence of active surface reconstruction during oxidative dehydrogenation of propane over VMgO catalyst. J. Catal. 1998, 177, 325–334. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, D.; Zhang, W.; Su, D.S.; Schlögl, R. Structural Dynamics of Low-Symmetry Au Nanoparticles Stimulated by Electron Irradiation. Chem. Eur. J. 2011, 17, 12877–12881. [Google Scholar] [CrossRef] [PubMed]
- Wieske, M.; Su, D.S.; Beckmann, F.; Schlögl, R. Electron-Beam-Induced Structural Variations of Divanadium Pentoxide (V2O5) at Liquid Helium Temperature. Catal. Lett. 2002, 81, 43–47. [Google Scholar] [CrossRef]
- Su, D.S.; Wieske, M.; Beckmann, E.; Blume, A.; Mestl, G.; Schlögl, R. Electron beam induced reduction of V2O5 studied by analytical electron microscopy. Catal. Lett. 2001, 75, 81–86. [Google Scholar] [CrossRef]
- Ulissi, Z.W.; Medford, A.J.; Bligaard, T.; Nørskov, J.K. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 2017, 8, 14621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinuma, Y.; Hayashi, H.; Kumagai, Y.; Tanaka, I.; Oba, F. Comparison of approximations in density functional theory calculations: Energetics and structure of binary oxides. Phys. Rev. B 2017, 96, 094102. [Google Scholar] [CrossRef]
- Kohan, A.; Ceder, G.; Morgan, D.; Van de Walle, C.G. First-principles study of native point defects in ZnO. Phys. Rev. B 2000, 61, 15019. [Google Scholar] [CrossRef]
- Solans-Monfort, X.; Branchadell, V.; Sodupe, M.; Sierka, M.; Sauer, J. Electron hole formation in acidic zeolite catalysts. J. Chem. Phys. 2004, 121, 6034–6041. [Google Scholar] [CrossRef] [PubMed]
- Chrétien, S.; Metiu, H. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: The importance of spin conservation. J. Chem. Phys. 2008, 129, 074705. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Shin, Y.; Persson, K.A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 2016, 1, 15004. [Google Scholar] [CrossRef] [Green Version]
- Senn, H.M.; Thiel, W. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. 2009, 48, 1198–1229. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Truhlar, D.G. QM/MM: What have we learned, where are we, and where do we go from here? Theor. Chem. Acc. 2007, 117, 185. [Google Scholar] [CrossRef]
- Lai, R.; Tang, W.-J.; Li, H. Catalytic Mechanism of Amyloid-β Peptide Degradation by Insulin Degrading Enzyme: Insights from Quantum Mechanics and Molecular Mechanics Style Møller–Plesset Second Order Perturbation Theory Calculation. J. Chem. Inf. Model. 2018, 58, 1926–1934. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, U.; Biskupek, J.; Meyer, J.; Leschner, J.; Lechner, L.; Rose, H.; Stöger-Pollach, M.; Khlobystov, A.; Hartel, P.; Müller, H. Transmission electron microscopy at 20 kV for imaging and spectroscopy. Ultramicroscopy 2011, 111, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.C.; Russo, C.J.; Kolmykov, D.V. 40 keV atomic resolution TEM. Ultramicroscopy 2012, 114, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Konsolakis, M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: Catalytic performance, mechanistic considerations, and surface chemistry aspects. ACS Catal. 2015, 5, 6397–6421. [Google Scholar] [CrossRef]
- Li, G.; Tang, Z. Noble metal nanoparticle@ metal oxide core/yolk-shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Pan, Y.; Liu, B.; Yang, J.; Zeng, J.; Peng, Z. More accurate depiction of adsorption energy on transition metals using work function as one additional descriptor. Phys. Chem. Chem. Phys. 2017, 19, 12628–12632. [Google Scholar] [CrossRef] [PubMed]
- Faber, F.A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S.S.; Dahl, G.E.; Vinyals, O.; Kearnes, S.; Riley, P.F.; von Lilienfeld, O.A. Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 2017, 13, 5255–5264. [Google Scholar] [CrossRef] [PubMed]
- Deringer, V.L.; Caro, M.A.; Jana, R.; Aarva, A.; Elliott, S.R.; Laurila, T.; Csányi, G.; Pastewka, L. Computational Surface Chemistry of Tetrahedral Amorphous Carbon by Combining Machine Learning and DFT. Chem. Mater. 2018. [Google Scholar] [CrossRef]
- Dragoni, D.; Daff, T.D.; Csányi, G.; Marzari, N. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron. Phys. Rev. Mater. 2018, 2, 013808. [Google Scholar] [CrossRef] [Green Version]
- Chmiela, S.; Tkatchenko, A.; Sauceda, H.E.; Poltavsky, I.; Schütt, K.T.; Müller, K.-R. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 2017, 3, e1603015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulissi, Z.W.; Tang, M.T.; Xiao, J.; Liu, X.; Torelli, D.A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N.S.; Jaramillo, T.F. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 2017, 7, 6600–6608. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Shen, X.; Yao, L.; Bentalib, A.; Peng, Z. Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice. Catalysts 2018, 8, 478. https://doi.org/10.3390/catal8100478
Pan Y, Shen X, Yao L, Bentalib A, Peng Z. Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice. Catalysts. 2018; 8(10):478. https://doi.org/10.3390/catal8100478
Chicago/Turabian StylePan, Yanbo, Xiaochen Shen, Libo Yao, Abdulaziz Bentalib, and Zhenmeng Peng. 2018. "Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice" Catalysts 8, no. 10: 478. https://doi.org/10.3390/catal8100478
APA StylePan, Y., Shen, X., Yao, L., Bentalib, A., & Peng, Z. (2018). Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice. Catalysts, 8(10), 478. https://doi.org/10.3390/catal8100478