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Abstract: The mass transfer performance of a string film reactor (SFR)—a bioreactor design for the
aerobic bioconversion of methane—was investigated. The results showed that the SFR could achieve
high mass transfer performance of gases, and the highest values of the mass transfer coefficients for
oxygen and methane were 877.1 h−1 and 408.0 h−1, respectively. There were similar mass transfer
coefficients for oxygen and methane in absorption experiments using air, methane, and air–methane
mixed gas under the same liquid flow rate conditions, implying that each gas is delivered into
the liquid without mutual interaction. The mass transfer performance of the SFR was significantly
influenced by the liquid flow rate and the hydrophilicity of the string material, whereas the magnitude
of the gas flow rate effect on the mass transfer performance depended on both the tested liquid flow
rate and the gas flow rate. Furthermore, the mass transfer performance of the SFR was compared
with those of other types of bioreactors.
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1. Introduction

Natural gas conversion into liquid chemicals has become attractive [1] due to the rapid rise
in natural gas production [2,3], the tremendous demand for liquid transportation fuel [2], and its
compatibility with current vehicle engines and infrastructure [1,4]. However, the current conversion
approach, which employs the Fischer–Tropsch process, still faces several obstacles preventing
its commercialization owing to its high capital requirements and energy-intensive nature [1,4].
The aerobic bioconversion of methane—the main component of natural gas—by using methanotrophic
microorganisms as biocatalysts has shown good potential as an alternative to the Fischer–Tropsch
process due to its high selectivity, ambient operating temperature, one-step direct process, and
reduced technological complexity [1,4–7]. Therefore, it can be applied to monetize small sources
of natural gas, such as stranded and flared natural gas. Recently, microorganisms, as host strains
for bio-based production, have been extensively engineered to make them efficient microbial cell
factories that are compatible with currently available production and product purification processes
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by using alternative feedstocks to petroleum [8]. For example, based on these metabolic engineering
strategies, Methylomicrobium alcaliphilum 20Z was successfully engineered to produce 2,3-butanediol
from methane [9]. Even though host strains can be successfully developed to produce target products
by performing metabolic engineering strategies, appropriate fermentation processes of these host
strains should also be developed to realize the efficient production of target products by considering
several factors to increase the efficiency of product formation. Thus, insufficient supply of methane
and oxygen to the microbial catalysts because of low mass transfer rate and the solubility of the gas
in the aqueous phase should be addressed in order to realize the commercialization of the aerobic
bioconversion of methane, which has been limited by the low titer of the product, low productivity,
and low production yields. These have resulted from slow process kinetics and low metabolic energy
efficiency, among other factors [1].

A reactor design and process development deliberately reflecting microbial characteristics can
help overcome the current limit on microbial catalyst performance, especially in fermentation using C1
gas as a carbon substrate. The hydrogen productivity of Thermococcus onnurineus NA1, an archaeal
strain which has good potential to endure high pressure, was dramatically enhanced by developing a
pressurizing bioreactor [10]. Thus, a well-developed reactor design is very significant for maximizing
the activity potential of engineered microbial catalysts. To deal with poor characteristics of gas transfer,
either the volumetric liquid-side mass transfer coefficient kLa or the concentration driving force [10],
which are the two main factors affecting the mass transfer rate as in the following equation, should
be improved.

dC
dt

= kLa(C∗ − C)− QCx (1)

The common approaches that are employed to improve the volumetric liquid-side mass transfer
coefficient kLa involve the optimization of operating parameters and the modification of the bioreactor
configuration. A number of approaches have been employed in various types of bioreactors,
for example, by increasing the mechanical agitation rate [11,12], investigating several types of impeller
configuration [12], and applying a spinning disk microbubble generator [13] in a stirred tank reactor;
by testing various types of membrane material [11,14] and adding an external diffuser [15] to a hollow
fiber membrane reactor; by modifying the geometry of the reactor [16], testing various gas distributor
designs [16], and by applying vibration excitement [17] in a bubble column reactor [18]; by modifying
the reactor configuration with the addition of a semipermeable membrane [19] and by optimizing the
geometry of the reactor [20] in an air-lift reactor.

The improvement in the value of kLa was confirmed for various bioreactor types, but the
bioreactors that were utilized have major drawbacks that can reduce their feasibility for aerobic
methane bioconversion application in terms of their operability. These include their high mechanical
burden and membrane fouling problems [21–23]. Most strategies have focused on the transfer of
oxygen in aerobic cultures, where the main objective of gas transfer is to maintain the dissolved oxygen
concentration at a desired level. Unlike aerobic fermentation with sugar, the goal of performing the
bioconversion of methane is to produce bulk chemicals from low-priced raw materials efficiently and
economically, and it is therefore important to achieve a low energy consumption and high conversion
of feed gas. In this respect, the direct application of conventional cases requires careful consideration.

To develop a mass transfer system for methane bioconversion while addressing the obstacles of
existing systems, a string film reactor (SFR) was designed and implemented in this study. An SFR is
a column reactor in which the contact between liquid and gas takes place on the strings (Figure 1).
The SFR was designed to tackle the drawbacks of existing bioreactors through the use of hydrophilic
strings that are able to direct and to guide the flow of liquid in a desired manner, thereby preventing
nonuniform liquid flow; the formation of a thin film on the surface of the strings, which can decrease
the mass transfer resistance; and the use of cell immobilization on the strings as a biofilm to enable
high-cell-density culture inside the reactor without causing fouling problems. Furthermore, the SFR
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can be easily scaled up or scaled down to the desired production volume by specifying the column
size and the number of strings.
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Figure 1. The concept of the string film reactor (SFR).

To assess the mass transfer performance of the SFR, this study explored the effects of the liquid flow
rate, gas flow rate, and string materials on the kLa value of oxygen. In addition, because both methane
and oxygen participate in the aerobic bioconversion of methane as limiting substrates, the mass
transfer characteristics of each gas must be considered independently. In this study, considering the
real environment of the system, we investigated the mass transfer behavior of the gases when methane,
air, or a mixed gas composed of both methane and air were applied as feed.

2. Results

2.1. Effect of Liquid Flow Guidance by Strings on Mass Transfer Performance

To investigate the effect of varying the liquid flow direction on the mass transfer efficiency,
the mass transfer coefficients for oxygen were measured at various liquid flow rates with and without
the string in the system. As shown in Figure 2, the mass transfer performance of the SFR was
considerably influenced by the liquid flow rate. It was observed that kLa values increased by 3.39 times
and 2.83 times with and without the string, respectively, when the liquid flow rate increased from
100 mL/min to 500 mL/min.
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The presence of strings also influenced the mass transfer performance, and the mass transfer
coefficients with strings increased significantly compared to the corresponding values without the
string. At a gas flow rate of 350 mL/min, the DO (dissolved oxygen) value in the steady state without
the string was only 60.5%, while it was 72.5% with strings, exhibiting enhanced oxygen transfer. As a
result, the kLa value was 455.72 h−1, which is 1.26 times larger than that obtained without the string.

2.2. Investigation of Mass Transfer Characteristics in SFR Using Methane–Air Mixed Gas

The mass transfer coefficients obtained for methane were measured at various liquid flow rates.
As in the experiments with air, the mass transfer coefficients increased with the liquid flow rates
(Figure 3a), but the extent of this increase was reduced with the liquid flow rates, while the variances
of the kLa values under the same conditions increased. The mass transfer coefficient of methane at
the liquid flow rate of 100 mL/min was 79.0 h−1 and increased to 408.0 h−1 at a liquid flow rate of
500 mL/min.
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70% air.

To evaluate the feasibility of the SFR system for methane conversion and to investigate the mass
transfer characteristics of the system using the gas containing air and methane, the mass transfer
coefficients for each gas were determined at various liquid flow rates. A mixed gas composed of 30%
methane and 70% air, which is commonly used for the bioconversion of methane [5], was supplied to
the system as feed gas. Although there were some fluctuations—possibly caused by a disturbance in
the measurement of dissolved methane by the gas chromatography, owing to the presence of impurities
including air in the sample tube (see Section 4.2 for the detailed method of measurement)—the kLa
values were similar to those obtained in the cases using single-component gas (Figure 3b). When the
liquid flow rate was 350 mL/min, the mass transfer coefficients of methane and oxygen were 289.7 h−1

and 503.2 h−1, respectively.

2.3. Improvement of Mass Transfer Performance by Using Hydrophilic Porous Strings

Absorption experiments for oxygen were conducted to investigate the effect of the hydrophilicity
of the string on the mass transfer performance. Two types of string material were tested. One was of
the fabric that was used in the previous sections and the other was of felt. Because hydrophilic behavior
is correlated with the critical surface tension of the material [24], the felt material, which consists purely
of cotton, should be more hydrophilic than the fabric material, which consists of a mixture of nylon
and cotton, owing to the higher critical surface tension value of cotton (60–70 mN/m) [25] relative to
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that of nylon (30–44 mN/m) [26]. Also, the felt material used in this study was porous and was able to
absorb larger amounts of water than the fabric material.

The hydrophilic property of the string material is in accordance with the hydrophilic behavior of
the material that was observed in this experiment. The felt material was able to be perfectly wetted by
the water and could maintain sufficient contact with water without forming droplets on its surfaces.
However, for the case involving fabric strings, the liquid flow was not stable and the droplets were
splashed on the wall surface of the system; this tendency became more severe with the increase of
the liquid flow rate. The mass transfer performance of the SFR was affected by the hydrophilicity of
the string material, as shown in Figure 4a. The felt material, which is more hydrophilic, achieved kLa
values that were about 1.3 times higher than those of the fabric material.
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The effects of the gas flow rates on kLa values were observed in the SFR using the felt string
material. The experiments were conducted by gradually decreasing the gas flow rate while the liquid
flow rate was kept constant. As shown in Figure 4b, the mass transfer performance of the SFR was
not affected by the gas flow rate above 0.4 L/min for each tested liquid flow rate. However, at a
gas flow rate below 0.4 L/min, the magnitude of the effects of the gas flow rate on the mass transfer
performance depends on both of the liquid flow rate and the gas flow rate. It was also observed that
the kLa value was independent of the gas flow rate after it reached a particular gas flow rate, which is
defined as the critical gas flow rate. Therefore, it should be noted that it is important to operate the
SFR at the critical gas flow rate in order to obtain the optimum value of kLa for low gas throughputs.
For each tested liquid flow rate, the critical gas flow rates obtained in this study are presented in
Table 1.

Table 1. Critical gas flow rate at each tested liquid flow rate.

Liquid Flow Rate (mL/min) Critical Gas Flow Rate (L/min)

100 0.05
150 0.10
250 0.20
350 0.30
500 0.40
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3. Discussion

In this study, the SFR system aimed to increase the mass transfer rate by efficiently manipulating
the contact between the gas and liquid. The experiment results obtained indicate that the liquid flow
rate and the hydrophilicity of the string material are parameters that need to be considered for the
design and operation of the SFR.

The positive effects of the liquid flow rates on kLa could be well explained by the physical concept
behind Higbie’s model. According to Higbie’s model, there is a continual attachment wherein the
liquid element is in contact with the gas for particular exposure time θ and absorbs the gas by molecular
diffusion which increases rapidly initially and decreases with time [27]. At a high liquid flow rate,
the periodic replacement of the liquid element at the gas–liquid interface is more frequent, and the rate
of gas absorption therefore becomes higher.

The flow pattern of liquid on the surface of the strings is also very important with regards to
realizing an improved mass transfer performance, as can be observed clearly from the comparison
of kLa values for the cases with and without string, as well as for the cases with the strings having
different hydrophilicities. When the direction of flow of the liquid was varied by the strings present in
the SFR, the contact of gas and liquid at the interface was stabilized, thus allowing improved mass
transfer performance. These effects were further enhanced when the hydrophilic porous string was
used. This may be responsible for the increase in the interfacial area of the contact, as was also reported
by Onda et al. [28] and Han et al. [29]. According to their results, a positive correlation between
the hydrophilicity of the packing material and the contact area was observed in their mass transfer
equation for a packed bed reactor.

The biological conversion of methane was carried out primarily in the aerobic condition, and
both methane and oxygen should therefore be sufficiently supplied to the system. Most studies on
the gas transfer systems that have been reported in the literature have been evaluated by studying
the performance with oxygen, and very little empirical work has been done to investigate methane or
methane–oxygen transfer.

According to the results presented in this study, the kLa values for oxygen and methane in the
system obtained from 100% air and 100% methane were similar to those of the mixed gas containing
30% methane (Figure 5a), implying that the kLa values obtained for oxygen and methane in the system
are independent of the composition of the gas. However, the mass transfer coefficient values obtained
for methane were lower than those for oxygen under the same conditions. A strategy to complement
the low efficiency of methane transfer should be established. It is generally known that the kLa value
of a gas is closely related to its diffusivity [30]. Based on the diffusivity of methane and oxygen [31],
the kLa value for methane was estimated and compared with the measured values (Figure 5b). The mass
transfer coefficients for methane at the liquid flow rates of 250 mL/min and 350 mL/min were about
70% of the corresponding values for oxygen, but values that were lower than 70% of the kLa value for
oxygen were obtained at lower liquid flow rates, while higher values were obtained at higher flow
rates. Further study is required to better understand the differences in the mass transfer coefficients
for different gases.

To assess the mass transfer capability of the SFR, the highest kLa value obtained in this study
for oxygen was compared with those obtained from other studies for various types of bioreactors.
To enable an equivalent comparison among reactors, operating conditions, including the gas flow,
liquid flow, and liquid volume, are presented. As can be seen in Table 2, the kLa value of the SFR was
higher than that of the stirred tank reactor reported by Orgill et al. [11] and Karimi et al. [12], whereas
the stirred tank reactor was operated at a high agitation speed of 900–1000 rpm. This confirmed
that the SFR was able to efficiently transfer the gas to the liquid with lower energy consumption
than the stirred tank reactor, owing to its capability. This could minimize mass transfer resistance by
the formation of liquid film without relying on a high agitation speed as in the stirred tank reactor.
In addition, the kLa value of the SFR was higher than that of the bubble column reactor reported by
Lau et al. [15], Khrisna and Ellenberger [17], Bekassy et al. [20], and Budzynski et al. [32], despite the
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lower superficial gas velocity of the SFR. The packed bed–trickle flow reactor should be compared with
the SFR at a comparable value of gas flow rate in order to have an equivalent comparison because the
mass transfer of the packed bed–trickle flow reactor is significantly affected by the gas flow rate [11,27].
For a gas flow rate of around 0.1 L/min, the SFR outperformed the packed bed–trickle flow reactor,
with kLa values of 752.0 h−1 (not shown in Table 2) and 421 h−1, respectively. The SFR exhibited lower
performance compared with the hollow fiber membrane reactor. However, there is an advantage in
terms of simplicity and operability.
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Table 2. Mass transfer coefficients for oxygen for the SFR and other reactor types.

Reactor Type

Operating Condition
Highest kLa

(h−1) Obtained
for Oxygen

ReferenceGas Flow
Rate

(mL/min)

Liquid
Flow Rate

(L/min)

Superficial
Gas Velocity

(cm/s)

Reactor
Volume

(L)

Liquid
Volume

(L)

String film (SFR) 500 0.4 0.36 0.486 0.06 874.67 L This study

Stirred tank (900 rpm) 400 - - 3.5 2.5 114 R [11]

Stirred tank (1000 rpm) 5000 - - 2.44 1.77 216 R [12]

Bubble column - - 1.2 8.64 6.90 180 R [17]

Bubble column - - 10.8 22 4.0 360 R [16]

Bubble column 10,000 - 0.93 32 11 126 R [32]

Air-lift - - 1.77–7.07 1.75 0.85 360 R [20]

Packed bed–trickle flow 131 0.05 - 1.2 0.0081 421 L [11]

Hollow fiber membrane 1000 0.4 - - 0.018 1062 L [11]
R Reactor volume based; L Liquid volume based.

To evaluate the SFR, it should be considered that the effective volume of liquids for gas absorption
in the entire system is small. The reactor-volume-based kLa is reduced when the system volume is
used as the basis of the calculation, while the liquid-volume-based kLa is very high. It is expected that
many of the drawbacks resulting from a low effective volume can be addressed easily by increasing
the number of strings in the system. Nevertheless, by comparing the performance of the SFR with a
stirred tank, bubble column, or air-lift reactor that injects gas directly into the system, the required
costs for system installation and energy consumption, as well as the mass transfer performance, should
be assessed thoroughly.
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4. Materials and Methods

4.1. Schematic of the String Film Reactor (SFR)

A schematic of the SFR is shown in Figure 6. The SFR was made of acrylic plastic with an inner
diameter of 5.08 cm and a total height of 44 cm. It was equipped with a water jacket to maintain
the temperature.
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Figure 6. Schematic diagram of the string film reactor.

The SFR had two main parts, i.e., a column part and a liquid reservoir part. The column part,
where the contact between liquid and gas took place, had a total volume of 486 mL with a void fraction
of 0.92, and consisted of 20 strings with a diameter of 0.3175 cm and an effective length of 24 cm.
The strings were held using a metal plate that was placed on the top and lower parts of the column
part; the plate consisted of 20 holes with a diameter of 0.4 cm, as shown in Figure 6. The bottom of the
SFR acted as a liquid reservoir for dissolved oxygen and dissolved methane measurements. The liquid
distributor, which was made of hydrophilic natural pulp material, was placed on the metal plate.

4.2. Experimental Procedure for Gas–Liquid Contact Using the SFR System

The mass transfer performance of the SFR was determined in the absence of microorganism cells.
The experimental setup employed for measuring the mass transfer performance of the SFR is shown in
Figure 7. The experiments were performed at 30 ◦C and atmospheric pressure, which is the process
condition typically used in the aerobic bioconversion of methane. Double-distilled water from a water
holding tank, which was initially purged using nitrogen to obtain a DO value close to 0%, was fed to
the SFR using a peristaltic pump (BT301L, Lead Fluid, Baoding, China) at a desired flow rate. The air
or air–methane from the gas tank was fed directly to the SFR by adjusting the flow rate using a mass
flow controller. The SFR was operated in counter current mode. Various gas (0.03–0.5 L/min) and
liquid (100–500 mL/min) flow rates were tested.

In the case of air, a DO probe (Oxyprobe D500, Broadly James, Irvine, CA, USA) was placed in the
liquid reservoir and connected to a fermentor control unit (CNS, South Korea) for data acquisition.
The DO values were observed and recorded every 30 s until the system reached steady state, which
was determined when the DO value did not change within a 3 min period. In the case of methane,
its dissolved concentration was measured using a collection tube (BD vacutainer®, Becton Dickinson,
Franklin Lakes, NJ, USA) and a gas chromatograph (6890N, Agilent, Santa Clara, CA, USA). When
the system reached a steady state, a specific amount of the liquid in the reservoir was drawn by
a BD vacutainer, which is a plastic test tube with a rubber stopper creating a vacuum seal inside
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of the tube. The amount of dissolved methane concentration was calculated by comparing using
Gas Chromatography (GC) the gas composition before and after sampling. Runs were performed in
triplicate for each test condition.
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(3) Nitrogen gas rotameter; (4) Water holding tank; (5) Peristaltic pump; (6) Mass flow controller; (7)
SFR; (8) DO electrode; and (9) Data acquisition unit.

4.3. Determination of Volumetric Mass Transfer Performance

The mass transfer performance was determined by calculating the value of the volumetric
liquid-side mass transfer coefficient kLa. The formula used to calculate the volumetric liquid-side
mass transfer coefficient kLa was obtained by deriving the oxygen mass balance in the liquid,
as described below.

dC
dt

= kLa(C∗ − C) (2)

Integrating each side of Equation (1), Equation (2) could be obtained as follows:

ln
C∗ − C0

C∗ − C f
= kLa

(
t f − t0

)
(3)

where C0 and Cf are the dissolved gas concentrations at the starting point and end point in the system,
respectively. In the SFR, Cf does not change with time when it is in steady state, and t f denotes the
residence time of liquid in the system; kLa can be derived using the liquid volume, the liquid flow rate,
and the variation in the dissolved gas concentrations:

∴ kLa =
QL
V

ln
C∗ − C0

C∗ − Cs
(4)

where QL is the liquid flow rate and Cs is the dissolved concentration of the gases in the steady state.

5. Conclusions

The SFR was able to perform gas transfer to the liquid with a simple configuration and achieved
a large volumetric liquid-side mass transfer coefficient kLa. When comparing the mass transfer
performance for the cases with air, methane, and air–methane mixed gas, the mass transfer coefficient
did not change significantly, showing the independent transfer behavior of oxygen and methane.

The mass transfer of the SFR was determined using three main parameters:

1. The liquid flow rate, which had a significant effect on the mass transfer performance;
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2. The gas flow rate, where the mass transfer performance increased with gas flow rate values below
the critical gas flow rate, while it was almost constant above the critical rate. The value of the
critical gas flow rate depends on the liquid flow rate;

3. The hydrophilicity of the string material, where a more hydrophilic material could significantly
improve the mass transfer performance.

Therefore, for either the operation or further development of the SFR, the above three parameters
should be considered. Furthermore, the SFR exhibited good potential as an alternative to the existing
types of bioreactor owing to its high mass transfer performance and simplicity.
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