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Abstract: Dialkyl malonates are important organic intermediates that are widely used as building
blocks in organic synthesis. Herein, palladium nanoparticles supported on a triphenylphosphine-
functionalized porous polymer were successfully developed as an efficient and recyclable catalyst for
the synthesis of dialkyl malonates via the catalytic carbonylation of chloroacetates. The influence
of reaction parameters such as solvent, base, and promoter on activity was carefully investigated.
With a 1 mol% of palladium usage, excellent yields of dialkyl malonates were obtained. Importantly,
the catalyst can be easily separated and reused at least four times, without a significant loss in
reactivity. Furthermore, the developed catalyst was also highly active for the alkoxycarbonylation of
α-chloro ketones.

Keywords: carbonylation; malonate; palladium; porous organic polymer; triphenylphosphine;
organic chloride

1. Introduction

Carbonylative transformation of organic halides using palladium catalysts represents a versatile
method for the synthesis of carboxylic acid and its derivatives [1–4]. Carbon monoxide, an inexpensive
and readily available C1 building block, is widely used as a carbonyl source for the palladium-catalyzed
carbonylation of aryl halides [5–12]. However, except as a cheap carbonyl source, CO could also
act as a strong π-acidic ligand for the palladium metal, thus resulting in a decrease of electron
density for the palladium center and making the oxidative addition of aryl halide difficult [13,14].
As such, the carbonylation reaction of organic halides is usually more difficult than corresponding
non-carbonylative reactions, especially for those reactions where the oxidative addition of the
carbon-halide bond is the rate-determining step. Meanwhile, under a CO atmosphere, the palladium
atom is easily aggregated, forming the catalytically inactive species [15,16]. To increase the catalytic
activity and stability of palladium catalysts in carbonylation reactions, electron-rich ligands are usually
needed [17,18].

Homogeneous palladium complexes usually show high catalytic activity and selectivity [1–4,19–22];
however, they still suffer from some drawbacks, such as problems of catalyst separation and
reuse [23]. Heterogeneous switching of a homogeneous palladium complex by immobilizing the
complex or nanoparticle onto the solid support has been expected to address these problems [14–25],
where traditional polymers and silicas are the most widely used support materials [26]. However,
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these traditional supports “anchored” palladium catalysts often suffer from poor stability and
inhomogeneously distributed active sites [27]. Moreover, under a CO atmosphere, palladium
supported on these traditional supports is easily aggregated, forming catalytically inactive species
during the reactions and thus lowering their stability and catalytic activities [16]. Therefore, developing
a heterogeneous catalytic system, which has high catalytic activity and an excellent stability, is worthy
of further study.

Porous organic polymers (POPs), which feature a high surface area, excellent stabilities,
a designable chemical structure, and a flexible synthetic strategy, have attracted tremendous interest
recently because of their potential applications in catalysis, adsorption, separation, gas storage,
and other fields [28,29]. In recent years, a series of POPs containing a PPh3 ligand and its
derivatives, have been successfully prepared and applied as catalysis supports for immobilizing
transition metals [30–34]. Due to the strong interaction between transition metals and phosphine
ligands, these catalysts usually exhibit high catalytic activities, long-term reusability, and excellent
leaching resistant ability [30–37]. Some of them have even outperformed the activities of their
homogeneous analogues [30,35–37]. Although the applications of phosphine functionalized POPs in
non-carbonylative cross-coupling reactions of organic halides have been widely investigated in recent
years [30,34,36,37], studies of their catalytic applications in the carbonylation of organic halides are
relatively unexplored [38].

Dialkyl malonates are important organic intermediates that are widely used as building
blocks for the synthesis of vitamins, pharmaceuticals, agrochemicals, and so on [39]. To continue
our ongoing efforts for exploring efficient catalysts for the synthesis of dialkyl malonate [40],
herein, we reported palladium nanoparticles supported on a triphenylphosphine-functionalized
porous polymer (PdNPs@POP-Ph3P) as an active and recyclable catalyst for the carbonylation
of chloroacetates.

2. Results and Discussion

2.1. Characterization of the Catalyst

Nitrogen adsorption-desorption analysis of POP-PPh3 showed that the prepared POP-PPh3 has
a 1146 m2·g−1 BET surface area with a high pore volume (Table 1, entry 1). After immobilization
of the palladium metal, the obtained PdNPs@POP-Ph3P still preserved a high BET surface area
of 987 m2·g−1 and a high pore volume of 1.92 cm3/g. The sorption isotherms of the samples
(Figure 1) exhibited combined type I and type IV sorption behaviour. The steep increase at a low
relative pressure (P/P0 < 0.01) indicates the filling of micropores, the hysteresis loop at the relative
pressure of 0.7–1.0 implies the presence of mesopores, and the sharp rise at the relative pressure of
0.8–1.0 indicates the presence of macropores. Correspondingly, the pore size distribution curve (inset)
of PdNPs@POP-Ph3P also indicates its hierarchical pore structure.

Table 1. Textural properties of the prepared samples.

Entry Catalysts SBET (m2·g−1) Pore Volume (cm3/g) 1 Average Pore Radius (nm) 2

1 POP-PPh3 1146 2.41 8.42
2 PdNPs@POP-PPh3 987 1.92 6.50

1 Single point adsorption total pore volume of pores at P/Po = 0.99. 2 Adsorption average pore diameter (4V/A by BET).
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Figure 1. Nitrogen adsorption-desorption isotherms of POP-Ph3P (square) and PdNPs@ POP-Ph3P 
(circle), and pore size distribution curves (insert) of PdNPs@POP-Ph3P. 

The morphology of POP-Ph3P and PdNPs@POP-Ph3P was further characterized by SEM and 
TEM. The SEM images in Figure 2a,b suggested that POP-Ph3P and PdNPs@POP-Ph3P were 
comprised of loosely packed and irregular-shape nanoparticles. A representative TEM image (Figure 
2c) of POP-Ph3P further confirmed the presence of mesopores in the polymer. The TEM image (Figure 
2d) of PdNPs@POP-Ph3P showed the formation of well-dispersed Pd nanoparticles with a relatively 
narrow size distribution. As depicted in Figure 3, the average diameter of Pd clusters was about 2.9 
nm. 

 
Figure 2. SEM images of POP-Ph3P (a) and PdNPs@ POP-Ph3P (b); TEM images of POP-Ph3P (c) and 
PdNPs@ POP-Ph3P (d). 

Figure 1. Nitrogen adsorption-desorption isotherms of POP-Ph3P (square) and PdNPs@ POP-Ph3P
(circle), and pore size distribution curves (insert) of PdNPs@POP-Ph3P.

The morphology of POP-Ph3P and PdNPs@POP-Ph3P was further characterized by SEM and TEM.
The SEM images in Figure 2a,b suggested that POP-Ph3P and PdNPs@POP-Ph3P were comprised
of loosely packed and irregular-shape nanoparticles. A representative TEM image (Figure 2c) of
POP-Ph3P further confirmed the presence of mesopores in the polymer. The TEM image (Figure 2d) of
PdNPs@POP-Ph3P showed the formation of well-dispersed Pd nanoparticles with a relatively narrow
size distribution. As depicted in Figure 3, the average diameter of Pd clusters was about 2.9 nm.
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Figure 3. Particle size distribution of palladium nanoparticles on PdNPs@ POP-Ph3P. 

FT-IR spectra of 3V-PPh3 and POP-Ph3P are shown in Figure 4. The results revealed that the 
stretching band of C=C (1627 cm−1) disappeared after the polymerization reaction. It indicated that 
the polymerization of vinyl groups had finished. The characteristic P-Ar stretching vibration (1442 
cm−1) also suggested the successful incorporation of the phosphine ligand in the polymer [41,42]. 

 
Figure 4. FTIR spectra of 3V-Ph3P (a) and POP-Ph3P (b). 

XPS analysis was used to study the composition of POP-Ph3P and PdNPs@POP-Ph3P. As shown 
in Figure 5, P and C elements are present in the two samples. Compared with the POP-Ph3P polymer, 
an additional Pd band was observed in the XPS full spectrum of PdNPs@POP-Ph3P. The XPS 
spectrum of Pd 3d revealed that Pd was present in a zero state. As shown in Figure 6a, the binding 
energy of Pd 3d5/2 was about 334.9 eV, which was about 0.5 eV lower than that of free Pd0 (335.4 eV) 
[42]. Simultaneously, the P 2p binding energy of PdNPs@POP-Ph3P was about 0.3 eV higher than that 
(131.7 eV) of POP-Ph3P (Figure 6b). These results indicated that there was a strong coordination effect 
between P and Pd nanoparticles [30,36,37]. 

Figure 3. Particle size distribution of palladium nanoparticles on PdNPs@ POP-Ph3P.

FT-IR spectra of 3V-PPh3 and POP-Ph3P are shown in Figure 4. The results revealed that the
stretching band of C=C (1627 cm−1) disappeared after the polymerization reaction. It indicated that the
polymerization of vinyl groups had finished. The characteristic P-Ar stretching vibration (1442 cm−1)
also suggested the successful incorporation of the phosphine ligand in the polymer [41,42].
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XPS analysis was used to study the composition of POP-Ph3P and PdNPs@POP-Ph3P. As shown
in Figure 5, P and C elements are present in the two samples. Compared with the POP-Ph3P polymer,
an additional Pd band was observed in the XPS full spectrum of PdNPs@POP-Ph3P. The XPS spectrum
of Pd 3d revealed that Pd was present in a zero state. As shown in Figure 6a, the binding energy
of Pd 3d5/2 was about 334.9 eV, which was about 0.5 eV lower than that of free Pd0 (335.4 eV) [42].
Simultaneously, the P 2p binding energy of PdNPs@POP-Ph3P was about 0.3 eV higher than that
(131.7 eV) of POP-Ph3P (Figure 6b). These results indicated that there was a strong coordination effect
between P and Pd nanoparticles [30,36,37].
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2.2. Alkoxycarbonylation Reactions

With the catalyst in hand, we started our investigation with the carbonylation of ethyl
chloroacetate (ECA) as a model reaction. Previous results [39,40] showed that the solvent and base
have great impacts on the activity and selectivity of this carbonylation reaction. Hence, the effect of
solvent and base was first investigated. As shown in Table 2, the reaction was carried out with various
solvents (entries 1–9), such as ethanol, anisole, 1,4-dioxane, toluene, and 1,2-diethoxyethane (1,2-DEE).
Among them, 1,2-DEE afforded the highest selectivity of diethyl malonate (97.0%), with a high
conversion (83.9%) of ethyl chloroacetate (entry 6). Notably, ethanol and THF gave the higher
conversions; however, the inferior selectivity of diethyl malonate (DEM) was observed (entries 1
and 9). With 1,2-DEE as the solvent, several bases were screened (entries 10–13). For base screening,
Na2HPO4 displayed the best performance (entry 6). For comparison, the commercial Pd/C was also
tested under identical reaction conditions. However, Pd/C only provided a 21.3% conversion of
ethyl chloroacetate.

Previous research [39,40] suggested that the iodide promoter could extensively enhance the
catalytic activity of this reaction. Therefore, the effect of a promoter was investigated (Table 3).
Without any promoter, a 16.5% yield of diethyl malonate was gained (entry 1). Replacing Bu4NI
with an equal amount of Bu4NBr or Bu4NCl, a low or non-promotion effect was observed (entries 3
and 4). Notably, with the replacement of Bu4NI with Et4NI and Me4NI, much higher conversions were
achieved (entries 5 and 6). In contrast to this, the inorganic KI and NaI afforded relatively low yields,
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probably due to the low solubility of the reaction solvent (entries 7 and 8). With an optimal promotion
in hand, the influence of the amount of Me4NI was further studied (entries 9–11). The results showed
that a 93.8% conversion of ethyl chloroacetate could be obtained when the molar ratio of Me4NI was
increased to 15% (entry 10). However, the presence of excess Me4NI afforded a little lower yield of
diethyl malonate (entry 11). When the reaction time was further prolonged to 9 h, a high yield (94.9%)
of diethyl malonate was obtained (entry 12), which was a little bit higher than that of a previously
reported homogeneous and colloid catalyst [39,40]. Under the optimal conditions, we tried to lower
the CO pressure, while a slight decrease in yield was observed (entry 13).

Table 2. Ethoxycarbonylation of ethyl chloroacetate: effect of solvent and base 1.
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Entry Catalyst Solvent Base Conv. (mol%) 2 Sel. (mol%) Yield (mol%) 3

1 PdNPs@POP-Ph3P ethanol Na2HPO4 99.8 40.7 40.6
2 PdNPs@POP-Ph3P anisole Na2HPO4 67.5 95.2 64.3
3 PdNPs@POP-Ph3P 1,4-dioxane Na2HPO4 82.6 85.6 70.7
4 PdNPs@POP-Ph3P. toluene Na2HPO4 37.9 92.4 35.0
5 PdNPs@POP-Ph3P DGDE Na2HPO4 75.1 95.7 71.9
6 PdNPs@POP-Ph3P 1,2-DEE Na2HPO4 83.9 97.0 81.4
7 PdNPs@POP-Ph3P 1,2-DME Na2HPO4 81.0 95.4 77.3
8 PdNPs@POP-Ph3P TEOF Na2HPO4 82.4 96.5 79.5
9 PdNPs@POP-Ph3P THF Na2HPO4 94.1 85.0 80.0
10 PdNPs@POP-Ph3P 1,2-DEE K2CO3 95.6 88.2 84.3
11 PdNPs@POP-Ph3P 1,2-DEE K3PO4 99.9 90.5 90.4
12 PdNPs@POP-Ph3P 1,2-DEE K2HPO4 64.7 94.8 61.3
13 PdNPs@POP-Ph3P 1,2-DEE NaHCO3 51.4 79.1 40.7

14 4 Pd/C 1,2-DEE Na2HPO4 21.3 96.1 20.5
15 5 Pd(PPh3)2Cl2 1,2-DEE Na2HPO4 91.6 96.7 88.6

1 Reaction condition: PdNPs@POP-Ph3P (125 mg, 0.02 mmol Pd), Bu4NI (0.2 mmol), base (4 mmol),
ethyl chloroacetate (2 mmol), EtOH (4 mmol), solvent (3 mL), CO (2 MPa), 80 ◦C, 8 h, stirring speed (800 rpm).
2 Conv. = n0−n1

n0
× 100% (n0 and n1 represent the molar number of the added and remanent ECA before and after

the reaction). 3 Yield = nDEM
n0

× 100%. 4 Pd/C (42 mg, 0.02 mmol Pd). 5 Pd(PPh3)2Cl2 (14 mg, 0.02 mmol).

Table 3. Carbonylation of ethyl chloroacetate: effect of promoters 1.
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Entry Promoter 
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(mol%) 2 Conv. (mol%) 3 Sel. (mol%) 

Yield 
(mol%) 4 

1 - - 17.5 94.4 16.5 
2 Bu4NI 10 83.9 97.0 81.4 
3 Bu4NBr  10 29.7 95.9 28.5 
4 Bu4NCl  10 14.8 96.1 14.2 
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Entry Promoter Amount (mol%) 2 Conv. (mol%) 3 Sel. (mol%) Yield (mol%) 4

1 - - 17.5 94.4 16.5
2 Bu4NI 10 83.9 97.0 81.4
3 Bu4NBr 10 29.7 95.9 28.5
4 Bu4NCl 10 14.8 96.1 14.2
5 Et4NI 10 87.5 97.1 85.0
6 Me4NI 10 89.6 97.2 87.1
7 NaI 10 47.1 96.9 45.6
8 KI 10 50.3 96.9 48.7
9 Me4NI 5 59.2 96.8 57.3
10 Me4NI 15 93.8 97.2 91.2
11 Me4NI 20 94.0 96.4 90.6

12 5 Me4NI 15 97.7 97.1 94.9
13 5,6 Me4NI 15 93.2 96.6 90.0

1 Reaction condition: PdNPs@POP-Ph3P (125 mg, 0.02 mmol Pd), promoter, Na2HPO4 (4 mmol), ethyl chloroacetate
(2 mmol), EtOH (4 mmol), 1,2-DEE (3 mL), CO (2 MPa), 80 ◦C, 8 h, stirring speed (800 rpm). 2 Mole ratio
(promoter/ethyl chloroacetate). 3 Conv. = n0−n1

n0
× 100% (n0 and n1 represent the molar number of the added and
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In addition to catalytic activity, the recovery and reusability of the catalyst are also crucial in
the evaluation of the economic feasibility of a catalytic process. The reusability and stability of
PdNPs@POP-Ph3P were evaluated under the optimal conditions. After each run, the catalyst was
recovered by centrifugation and washed with 1,2-DEE. The obtained liquid was quantitatively analysed
using GC. As shown in Figure 7, the catalyst could be effectively reused at least four times, with only
slight loss in its activity. Moreover, ICP analysis suggested that the palladium loading of the recycled
PdNPs@POP-Ph3P after being reused four times was 1.61 wt%, indicating that 95% of palladium on
PdNPs@POP-Ph3P was preserved during the recycling.
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Figure 7. Reuse of PdNPs@POP-Ph3P. Reaction condition: PdNPs@POP-Ph3P (125 mg, 0.02 mmol Pd),
Me4NI (0.3 mmol), Na2HPO4 (4 mmol), ethyl chloroacetate (2 mmol), EtOH (4 mmol), 1,2-DEE (3 mL),
CO (2 MPa), 80 ◦C, 9 h, stirring speed (800 rpm).

Then, we turned our focus to the general applicability of this catalytic system (Table 4).
The carbonylation of methyl chloroacetate with methanol could proceed smoothly under the optimized
conditions, and an excellent yield (95.8%) of dimethyl malonate was achieved (entry 1). Interestingly,
some mixed-alkyl malonates were also prepared in excellent yields under the reaction conditions
(entries 2–4), although a competing transesterification reaction with the chloroacetate substrate or with
the malonate product was possible. Alkoxycarbonylation of α-chloro ketones represents a valuable
alternative for the synthesis of the useful β-keto esters [43]. Considering the similar structure of
α-chloro ketones and chloroacetates, the alkoxycarbonylation of α-chloro ketones was also tested
under the optimal catalytic system. To our delight, both α-chloroacetone and α-chlorobenzophenone
reacted readily, affording corresponding β-keto esters in high yields within 4 h (entries 5–8).

Table 4. Alkoxycarbonylation of chloroacetates and α-chloro ketones 1.
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× 100% (n0 and n1 represent the molar number of the added and remanent ECA

before and after the reaction). 3 Yield = nt
n0

× 100%. n0 = mole number of added chloride, n1 = mole number of
target product.

3. Materials and Methods

3.1. Materials

4-Bromostyrene, phosphorus trichloride, 2,2’-azobis(2-methylpropionitrile) (AIBN), and palladium
acetate (99%) were obtained from Energy Chemical Co. Ltd. (Shanghai, China). Chloroacetates,
chloroacetones, methanol, ethanol, 1,2-dimethoxyethane (1,2-DME), 1,2-diethoxyethane (1,2-DEE),
diethylene glycol dimethyl ether (DGDE), triethyl orthoformate (TEOF), isopropanol, and bases
were of analytical grade and used as received. CO and Ar with the purity of 99.99% were obtained
from a local manufacturer. Pd/C (palladium content, 5 wt%) was supplied by Shaanxi Rock New
Materials Co. Ltd. (China). Tris(4-vinylphenyl)phosphane (3V-PPh3) was prepared according to
the procedures reported in the literature [35]. Tris(4-vinylphenyl)phosphane, 1H NMR (400 MHz,
DMSO-d6): δ = 7.59–7.41 (6 H, m), 7.31–7.14 (6 H, m), 6.74 (3 H, dd, J = 17.8, 11.0 Hz), 5.87 (3 H, dd,
J = 17.7, 1.0 Hz), 5.31 (3 H, dd, J = 10.9, 1.0 Hz) ppm; 13C NMR (100 MHz, DMSO-d6) δ = 137.7, 136.2,
136.0, 133.4, 133.4, 126.5, 126.4, 115.4 ppm.

3.2. Preparation of the Porous Polymer (POP-Ph3P)

POP-Ph3P was obtained according to the synthetic procedures reported by the literature [31],
with slight modifications. The polymerization reaction was carried out in a stainless-steel autoclave
(Teflon-lined). Generally, tris(4-vinylphenyl)phosphane (3V-PPh3, 2.0 g) and AIBN (50 mg) were
dissolved in THF (20 mL) in a 100 mL Teflon lining. After replacing air in the Teflon lining with Ar
for 5 min (1 L/min), the Teflon lining was transferred into an autoclave, and heated in an oven at
100 ◦C for 24 h. After the polymerization reaction, the obtained white solid monolith was washed with
ethanol five times, and then dried under vacuum (60 ◦C).
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3.3. Preparation of Catalysts

In a typical synthesis, POP-Ph3P (1.0 g) was added to 30 mL methanol containing 43 mg of
palladium acetate (99%). After stirring at room temperature for 12 h, 10 mL of methanol solution
containing 290 mg of NaBH4 was added into the above solution. The resulting mixture was vigorously
stirred for 6 h. PdNPs@POP-Ph3P was obtained after filtration and washed with methanol. ICP analysis
suggested that the prepared PdNPs@POP-Ph3P has a 1.70 wt% palladium loading.

3.4. Alkoxycarbonylation of Chloroacetates and Chloracetone

In a 50 mL Teflon-lined stainless-steel autoclave, PdNPs@POP-Ph3P (0.02 mmol Pd), Bu4NI
(0.3 mmol), Na2HPO4 (4 mmol), 1,2-DEE (3 mL), organic chloride (2 mmol), and alcohol (4.0 mmol)
were added into the reactor. After purging four times with CO, the autoclave was pressurized with CO
to 2.0 MPa. Then, the reaction was reacted at 80 ◦C for a definite time. After that, the autoclave was
cooled to room temperature and carefully depressurized. The catalyst was separated by centrifugation
at 8000 rpm for 10 min and washed with 1,2-DEE. The liquid mixture was collected and analyzed
qualitatively by GC and GC-MS as reported in the literature [39,40]. All the prepared esters are known
products, which we have reported previously [40].

3.5. Characterization

Nitrogen physisorption measurements were carried out at 77 K on a Micrometrics ASAP
2020 system (Norcross, USA), and the samples were treated under vacuum at 90 ◦C for
10 h before the measurements. The surface area and pore size distribution were calculated by
the Brunauer-Emmett-Teller (BET) and nonlocal density functional theory (NLDFT) methods,
respectively. Fourier transform infrared (FTIR) spectra were recorded on a Bruker Equinox 55
FTIR spectrophotometer (Karlsruhe, Germany). The morphology of the sample was observed
with a TESCAN MIRA3 field emission scanning electron microscope (FE-SEM, Brno, Czech) and
a FEI Tecnai G2 F30 transmission electron microscope (TEM, Hillsboro, USA). X-ray photoelectron
spectroscopy (XPS) experiments were carried out over a VG multilab 2000 spectrometer (Massachusetts,
USA) fitted with a Mg-AlKa X-ray source. The amount of palladium loading and leaching was
determined by inductively coupled plasma atomic emission spectroscopy (ICP, PerkinElmer Optima
8000, Massachusetts, USA). Gas chromatography (GC) was performed on a Scientific™ TRACE™ 1310
(Massachusetts, USA) equipped with a TRACE TR-WAX capillary column (Massachusetts, USA) and
an FID.

4. Conclusions

In conclusion, we have developed an active and recyclable catalyst for the synthesis of malonates
via the carbonylation of chloroacetates. Under the optimal condition, the solid catalyst displayed
high catalytic activity, affording corresponding dialkyl malonates and mixed-alkyl malonates in
high yields. Importantly, the catalyst was quite robust, and could be reused four times with only
an appreciable leaching of palladium species. Furthermore, the developed catalyst also showed
high catalytic activities for the alkoxycarbonylation of α-chloro ketones. Thus, this protocol not
only provides an active heterogeneous catalyst for the alkoxycarbonylation of chloroacetates and
α-chloro ketones, but also provides some clues to develop efficient heterogeneous catalysts for other
carbonylation reactions.
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