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Abstract: Ammonia (NH3) is one of the key agricultural fertilizers and to date, industries are using
the conventional Haber-Bosh process for the synthesis of NH3 which requires high temperature
and energy. To overcome such challenges and to find a sustainable alternative process, researchers
are focusing on the photocatalytic nitrogen fixation process. Recently, the effective utilization of
sunlight has been proposed via photocatalytic water splitting for producing green energy resource,
hydrogen. Inspired by this phenomenon, the production of ammonia via nitrogen, water and
sunlight has been attracted many efforts. Photocatalytic N2 fixation presents a green and sustainable
ammonia synthesis pathway. Currently, the strategies for development of efficient photocatalyst
for nitrogen fixation is primarily concentrated on creating active sites or loading transition metal to
facilitate the charge separation and weaken the N–N triple bond. In this investigation, we review
the literature knowledge about the photocatalysis phenomena and the most recent developments on
the semiconductor nanocomposites for nitrogen fixation, following by a detailed discussion of each
type of mechanism.
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1. Introduction

In this current century, the climate changes and energy production are some of the most significant
and important challenges that are being faced by the people in the world. In this direction, ammonia
(NH3) and the associated chemicals could provide an alternative energy resource. Similar to molecular
hydrogen (H2), NH3 is also a carbon-free energy-source for the end-users. Ammonia has a worldwide
annual production of around 150 million tons, due to the increasing demand from an increasing world
population. However, the depletion of fossil fuels makes the industrial-scale ammonia synthesis
processes urges to replace the usages of fossil fuels by a renewable energy source. Currently, NH3 is
being manufactured by the traditional Haber-Bosch (HB) process using pure H2 and N2, which requires
energy-intensive high temperature (>500 ◦C) and extremely high pressure (200–300 bar). Nevertheless,
the utilization of natural gas as a source of H2 obtained by steam/gas reforming into the production of
ammonia takes up about 1–2% world energy every year and belches out hundreds of millions of tons
of CO2 annually [1,2].

Specifically, in Canada, there are 11 plants manufacturing NH3 across the country, where they
use this HB process to produce ~5 million tons of NH3 every year. Canada provides approximately
12% of the world’s fertilizer-materials and ~25% of the ammonia produced in Canada is being sent to
North America for its direct use the agricultural purposes. The fertilizer industry creates ~$12 billion
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in annual economic activity in Canada. Therefore, it is of a considerable significance to develop the
low-energy consumption, sustainable and eco-friendly process to manufacture NH3 through nitrogen
fixation in large scale.

This review sheds lights into the recent progress in the development of a variety of routes for
the synthesis of advanced materials and emphasizes their application for nitrogen photofixation.
This review also concludes with a concise overview of the present status, analyzes potential and
future development of photocatalysts with a view towards enhanced performance in different
photocatalytic materials.

2. A Brief Insight into the Haber-Bosch Process

The most industrial and practical process for ammonia production is the Haber-Bosch process,
where ammonia (NH3) is produced directly from its constituent elements, such as hydrogen (H2) and
nitrogen (N2). Conventionally, this synthesis is conducted at 150–250 atm and 400–500 ◦C, as the gas
passes over the reactor with two or four beds of catalyst (Figure 1). Eventually, each time conversion
to ammonia is only 15%, by multiple times recycle unreacted gases, an overall conversion of 97%
is obtained. The primary source of molecular H2 is methane from the natural gas. In addition, it is
estimated that around 3–5% of the world’s natural-gas production is utilized in the Haber-Bosch
(HB) process.
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Figure 1. A flow scheme for the Haber-Bosch process.

2.1. Equilibrium Considerations and Reaction Rate

In the Haber-Bosch process, the formation reaction of NH3 is reversible and the forward reaction
of NH3 production is an exothermic: N2(g) + 3H2(g) → 2NH3(g) (H = −92 kJmol−1). According to
Le Chatelier’s principle, this reaction will be supported at the lower temperatures. In this process,
the temperature must be as low as possible towards getting as much as ammonia as possible in the
equilibrium condition. However, under this condition, the reaction does not proceed at an efficient rate.
Therefore, two contrasting considerations are occurring in this synthesis. The viable temperature
for this process is 400–450 ◦C, which bound to produce a reasonably high amount of NH3 in the
equilibrium mixture (15%) in a very short time.
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2.2. Catalyst and Mechanism

The most common catalyst of the Haber-Bosch process based on K2O or Al2O3-promoted
iron catalyst. The mechanism that involves the heterogeneous-catalyst is proposed to have the
following steps:

N2(g) → N2(adsorbed) (1)

N2(adsorbed) → 2N(adsorbed) (2)

H2(g) → H2(adsorbed) (3)

H2(adsorbed) → 2H(adsorbed) (4)

N(adsorbed) + 3H(adsorbed) → NH3(adsorbed) (5)

NH3(adsorbed) → NH3(g) (6)

Reaction (5) occurs in three steps, forming the NH, NH2 and finally NH3. The experimental
evidence to Reaction (2) as being the slow, rate-determining step. This is expected since the nitrogen
triple bond is the strongest of the bonds that must be broken.

2.3. Separation of the Ammonia

When the produced NH3 gases depart from the reactor, they are essentially hot and under a very
high pressure. However, ammonia will be easily liquefied under such pressure as long as it is not too
hot and therefore the temperature of the mixture will be sufficiently lowered for the ammonia gas
to turn into a liquid. Notably, the molecular N2 and H2 remain as gaseous states under these high
pressures and they can be recycled.

3. Overview: Fundamental of Photocatalytic Nitrogen Fixation

3.1. The Principle of Photocatalysis on Semiconductors

Semiconductors (SCs) are used as photocatalytic materials, thanks to their suitable amalgamation
of electronic properties, structure, light-absorption characteristics, charge transport dynamics and
favorable lifetime of their excited-state charge carriers. Basically, an SC possesses an energy gap
between the top of the filled-valence band (VB) and the bottom of the vacant-conduction band (CB),
which is known as the band gap energy of the SC [3–6]. Thus, the separation of charge carrier between
these bands only occurs with sufficient energy supply. In semiconductors, the photocatalytic process
involves three main steps: Light absorption, charge separation and catalytic reaction. Under light
illumination, the electron absorbs a photon with energy higher than or equal to the band gap energy of
the semiconductor, excites from VB to CB and releases hole in the VB (Figure 2). This light-induced
promoting electron-hole separation is a prerequisite step in all semiconductor photocatalysis. Finally,
the photo-generated species transfer to the semiconductor surface and initiate redox reaction of
absorbed reagents. However, electrons and holes are to recombine and dissipate the energy in the bulk
(volume) or on the surface of the semiconductor, because of the kinetic-barrier for the electron-hole
recombination process is relatively low, resulting in a decrease of reaction efficiency [7]. Therefore,
prevention of charge recombination is a significant challenge in the photocatalytic field. In the last
decades, there has been a considerable amount of effort to increase the lifetime of photogenerated
carriers, such as developing photocatalyst with the nanostructure, co-catalyst, surface engineering
and junction [8,9].

Moreover, a wide variety of semiconductors, mainly metal oxide and chalcogenides, have been
examined with capability for photocatalyst, but only a few of them are considered to be effective
photocatalyst, because of the appreciable band gap. In general, wide-band gap semiconductors prove
to be better photocatalytic activity compared with low-band gap catalysts. For example, titanium
dioxide showed better photocatalysis than cadmium sulfide for hydrogen production, due to the
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increased free energy of photo-induced charge species of the TiO2 and the intrinsic low chemical- and
photo-chemical stability of the CdS. However, the narrow-band gap materials (such as metal sulfides)
absorb solar light better that pave the way to potentially use the effective natural light source, which is
the sunlight. Accordingly, a promising strategy with this concern has been attained with the utilization
of several methods aiming to improve the electronic state and optical characteristics of semiconductors,
including metal deposition, doping, and dye-sensitization. On the other hand, to obtain the effective
photocatalytic procedure, the bottom of the CB must be located at a more negative potential than the
reduction potential of electron acceptor (A) while the top of CB must beyond the oxidation-potential
of electron-donor (D).
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3.2. Quantum Yield (QY)

The efficiency of the photocatalytic process is measured by quantum yield (QY), which has been
considered to describe the number of molecules converted relative to the total number of incident-photons
on the reactor walls for an unknown reactor-geometry and for a polychromatic radiation.

QY(Φ) =
# molecule decomposed

# photon absorbed

Additionally, quantum yield could be calculated based on the rate of reaction dividing to the
absorbed light intensity (Ia),

Φ=
Rate

Ia
.

The measurement of the absorbed light intensity is easy in homogeneous systems; however, it is
difficult for heterogeneous reactions, such as thin films or semiconductor suspensions. In this stage,
the suspended particle also reflected and scattered incident light instead of total absorption. Thus, it is
very exhausted to correct this loss, including 13–76% of the total incident photon flux [10]. Otherwise,
light is also absorbed by products or educts of reaction, suggesting QY should be determined at
very early reaction time. To conquer such problems in heterogeneous photoreaction, it was proposed
replacing the absorbed light intensity by the incident intensity (I0). Therefore, apparent quantum yield
(AQY, ς) [11,12] has been termed to measure the efficiency of the photocatalytic process:

ς=
Rate

I0
.



Catalysts 2018, 8, 621 5 of 25

3.3. Materials for Photocatalysis

Based on fundamental chemical composition system, all of the semiconducting materials
can be divided into three important categories, mainly metal oxides, metal sulfides and metal
free semiconductors.

Usually, metal oxides are the most common material, which can be utilized for photocatalysis
in various reactions, such as H2 production, CO2 reduction and N2 fixation. This type of materials
have a wide range of applications according to their band structure and activities. However, most of
them only activate under UV light irradiation due to their large band gap energy. To overcome this
difficulty, the substitutions of cations or anions in the lattice of a wide band gap semiconductor has
been employed to narrow band gap energy, enhancing the visible light respond. This substitution of
cations and anions in the crystal lattice may form intermediate energy levels (due to the energy levels
of impurities) within the band gap of photocatalyst that facilitates their absorption in the visible range.
For example, titanium dioxide with the properties of stability, non-toxicity and high photocatalytic
activity is potentially a suitable catalyst for water splitting reaction. Nevertheless, it only absorbs UV
light due to a wide band gap (Eg = 3.2 eV). To deal with this disadvantage, Khan et al. modified n-type
TiO2 chemically by doping C on this material. Carbon replaces some of the lattice oxygen atoms,
resulting in a decrease in band gap energy to 2.32 eV [13].

Contrary to metal oxides, the metal sulfides normally possess a narrow band gap. Thus, they can
absorb visible light to generate electron-hole. Moreover, the conduction reduction potential of water is
less negative than their CB and so they can reduce water into molecular hydrogen. Otherwise,
these materials also have several disadvantages, such as instability and fast recombination of
photoexcited charges. The most common example is cadmium sulfide, one of the best semiconductors
with high activity for hydrogen production under visible light illumination. With narrow band
gap materials, the recombination process of electron and hole is very easy. Reducing particle
size of CdS can provide more active sites, decrease the travel path of migration of photoexcited
electron to the semiconductor surface and prevent charge recombination [14]. In addition, combining
CdS nanoparticles with other semiconductors can also enhance their stability and photocatalytic
activity [15–18].

Beside these semiconductors, some nitride-based systems also exhibit photocatalytic activities
towards water reduction in the visible range of solar light. Recently, graphitic carbon nitride
(g-C3N4) has drawn a lot of attention, because of its intrinsic properties, such as narrow band
gap and non-toxicity. This metal-free polymeric material shows hydrogen evolution under visible
light illumination with high chemical stability. Nevertheless, its photo-conversion efficiency is
considerably limited than that of TiO2 or CdS and therefore it requires further efforts to improve
its photocatalytic activities.

3.4. Co-Catalyst Loading

A Cocatalyst is an integrated compound to the semiconducting material to promote their
photocatalytic activity. In a water decomposition reaction, the cocatalyst can avail enhancing
either water reduction or oxidation half reaction. In photocatalysis, cocatalysts are typically tiny
metal nanoparticles (NPs), which create a Schottky junction with semiconductor and support for
charge-separation in a photocatalyst of a photochemical cell [19,20]. In principle, the interfacial-contact
between the semiconductor and metal induces an electric field, which effectively separates the excited
electrons and holes more easily [21–23]. Additionally, the metal supplies active sites for H2 generation
due to its comparatively low over the water reduction potential.

The most common cocatalysts for photocatalysis are Pt, Rh, Au, NiO, and RuO2.
Maeda et al. report that loading both Rh/Cr2O3 and Mn2O3 supported on GaN:ZnO can effectively
promote overall water splitting under visible light although the quantum yield of this system was
relatively low [24]. Maeda proved that Rh/Cr2O3 acted as electron collectors to host hydrogen
evolution while the main function of is the active sites for water oxidation reaction. However,
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almost of cocatalyst are noble metals which are rare and expensive, thus prohibiting their wide
scale application. Therefore, the development of non-noble and low-cost cocatalyst is extremely
important. The physical and chemical characteristics of the co-catalyst, such as particle size and
valence states directly affect their activity and are strongly dependent on their loading method onto
the surface of host SCs. Although depositing more co-catalyst (concentration) provides more active
sites for photocatalytic reactions, it considerably reduces the absorption ability of the semiconductor
photocatalyst. Thus, the concentration or the loading amount of co-catalyst should be controlled and
optimized to achieve the maximum activity.

3.5. Localized Surface Plasmon Resonance in Photocatalysis

Localized surface plasmon resonance (LSPR) labels the collective charge carrier oscillations
in metal nanoparticle created by an incident field that resonant with the periodic movement of the
negative charge against the positive nuclei background [25]. In general, the LSPR appears when the size
of the metal nanoparticle is considerably smaller than the wavelength of incident light. Upon resonance
irradiation, the charge oscillations induce a large electric dipole at the same frequency as that of the
incident electric field. Consequently, the electric field intensity in the vicinity of plasmonic metal
nanoparticles strengthens up to 1000 times as high as that of the incident field and greatly increases
far-field scattering. In a plasmonic-heterostructure, the stored energy in the LSPR can be (i) transferred
to the semiconductor or (ii) re-emitted as scattered photons (Figure 3A).

LSPR effect can be effectively applied in photocatalysis by the non-radiative transfer process.
Under visible light excitation, LSPR generates hot electrons in the plasmonic nanostructured metal.
It should be noted that these electrons possess higher energies than the level of thermal
excitation. The injection of the hot electrons into a semiconductor improves the solar photo-voltaic
energy conversion. Additionally, the existence of a Schottky barrier at the junction between the
metal/semiconductor systems can block electron migration. If the hot electrons absorb sufficient
photon energy, they can overcome the barrier and transfer into the conduction band of semiconductor
(Figure 3B). Interestingly, the charge carrier injections can occur either from semiconductor or
plasmonic metal. It is likely that the excitation state of the semiconductor and plasmonic metal
decide where the charge carriers are injected.

The solar energy conversion efficiency can be improved by plasmonic nanocomposites via the two
possible following mechanisms: (1) Direct electron transfer (DET) or by (2) plasmon induced resonant
energy transfer (PIRET) [26]. The enhancement of the light absorption in semiconductors by photonic
enhancement via (i) increasing the length of the optical path and (ii) concentrating the incident field
than that of directly transferring the plasmonic energy from the metal to the semiconductor to induce
the charge separation in the semiconductor. The plasmonic charge (hot electron) transfer process is
referred to as direct electron transfer, which requires the semiconductor and the plasmonic metal be
in direct contact with each other (Figure 3C). However, DET differs in that the plasmonic metal does
not have a band gap to determines the charge-transfer kinetics [27]. Rather, the plasmonic carriers
have the energy that proportional to the incident photon’s energy besides the Fermi level, therefore
they can easily overcome the barriers that are energetically unfavorable at the interface, leading to
more choices in the selection of materials. As another mode of non-radiative process, the PIRET is an
attractive phenomenon for plasmonic enhancement (Figure 3D).

PIRET describes the non-radiative transfer of energy from the metal LSPR dipole to the
semiconductor transition dipole. PIRET depends on the spectral overlap and it does not require any
electronic-alignment or even physical-contact to transfer energy as like in DET [29], which essentially
provides flexibility in the design of solar energy materials and structures. PIRET can produce
electron-hole pairs in the semiconductors, suggesting a strong coupling to the weak band edge states.
The plasmon resonance can easily be tuned, which allows for an enhanced solar energy harvesting
in the entire visible spectrum. PIRET is also favorable when the charge transfer process creates
undesirable effects, such as the degradation of materials or issues in the carrier equilibration.
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3.6. Fundamentals of Photocatalytic Nitrogen Fixation Principle

Since the first work reported by Fujishima and Honda, in the early 1970s, the use of photocatalysts,
based on semiconductors, has emerged as the most promising and practical solution to address the
challenges of energy and environmental issues [30]. In the last few decades, a renewed interest has
been devoted in photocatalytic NH3 production, and several papers have illustrated ammonia [31]
and nitrate formation [32] using various kinds of semiconducting photocatalysts, plasmon-enhanced
systems, and biomimetic systems.

Basically, the photocatalytic process of N2 fixation is divided into several steps as follows:
First, under the sunlight irradiation, photo-generated electrons are excited to the CB, leaving
holes in the VB. Afterwards, some of the electrons and holes recombine together, meanwhile,
other photo-formed holes (h+) oxidize the water into H+, and O2 (Equation (7)) and N2 reduction
by hot-electrons lead to the production of NH3 (Equation (8)). As a result, NH3 is synthesized
from water and N2 under ambient conditions using the sunlight as an energy source (Equation (9)).
Figure 4 demonstrates the scheme process of photocatalyst materials using for the reduction of
nitrogen to ammonia.

2H2O + 4h+ → O2 + 4H+ (7)

N2 + 6H+ + 6e− → 2NH3 (8)

1
2

N2 + 3/2H2O→ NH3 +
3
4

O2 (9)

Although the proposed photocatalytic fixing nitrogen pathway is acceptable, many pending
questions regarding the mechanisms, rates, and thermodynamics still remain. The protonation
reactions versus standard potential are summarized by Lyndley et al. (Table 1). Thermodynamically,
ammonia formation is favored, with an energy difference of 0.43 V between NH3 and N2H4 and a
1.26 V between NH3 and N2H2. In a thermodynamic aspect, the half-reaction generated NH3 is capable
of any photocatalyst semiconductor possessing a bandgap energy larger than 1.2 eV with proper
conduction and valence band position. However, this half reaction involves multiple-electron transfer
(6 electrons) and thus may be more kinetically challenging. Another limitation is the absorption of N2

molecules over semiconductor photocatalysts and cleavage of highly stable N-N triple bond in order
to activate dinitrogen. To overcome these challenges, it is necessary to create appropriate active sites
that can effectively absorb nitrogen. This active site also serves as a trapping cage to capture electrons
then transfer to absorbed nitrogen as well as suppress charge carrier recombination.
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Table 1. Reduction potentials (vs. Standard Hydrogen Electrode (SHE)) of typical hydrogenation
reactions relate to the reduction of N2 to NH3.

Reaction E◦ (V) vs. SHE

N2 + 2H+ + 2e− 
 N2H2 +0.035
N2 + 4H+ + 4e− 
 N2H4 −0.4
N2 + 6H+ + 6e− 
 2NH3 −1.22

4. Classification of Photocatalysts for N2 Fixation Based on Active Sites

4.1. Metal Active Sites

4.1.1. Iron Active Sites

It should be noted that the catalyst of iron is the common catalyst in the Haber-Bosch process due
to its good interaction with dinitrogen and weakening N–N bond [33]. In fact, recent studies indicate
that ferric photocatalyst is capable of nitrogen reduction to ammonia. However, it is well-known that
pure iron oxide had no activity in N2 photofixation. To overcome this bottleneck, several researchers
have employed a various method in the synthesis of defect iron catalyst. Tennakone [34] and his
co-worker reported the first system of N2 reduction using amorphous Fe2O3·nH2O under visible light
irradiation. Fe2O3 was prepared by gradual addition of KOH to FeCl3 solution and purged with N2.
After irradiated visible light for 40 min, a maximum ammonia concentration of ca. 4 µmol·L−1 was
obtained and continuously decreased due to the decomposition of NH3 to nitrate in the solution,
which poisoned the catalyst. Therefore, NH3 must be removed immediately from the reaction site
to maintain catalytic efficiency. Khader et al. successfully prepared a mixture of α-Fe2O3 and Fe3O4,
which was effective in photo-reduction of nitrogen for about 580 h [35]. Interestingly, in the existence
of 5 at% iron in the form of Fe2+ in the partially reduced Fe2O3, NH3 was detected in an aqueous slurry
of the catalyst under UV illumination.

On the other hands, doping Fe into metal oxide, such as TiO2, Al2O3, ZnO, is a practical strategy
for utilization of iron active site catalysts. Most of the studies have been focused on metallic Fe modified
titanium dioxide photocatalyst. In addition, there has been considerable debate over the role of cation
Fe on iron titania photocatalyst. The earlier work suggested that the introduction of Fe3+ as an impurity
in titania can play an indirect role in decreasing bandgap energy of semiconductor as well as hinders
the recombination of photo-generated electron-hole pairs, consequently enhance the absorption ability
and the photoactivity. Zhao et al. investigated the photocatalytic activity of Fe-doped TiO2 with highly
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exposed (101) facets [36]. The quantum yield of nitrogen photo-reduction using ethanol as scavenger
can be reached to 18.27 × 10−2 m−2. The transmission electron microscopy (TEM) images confirmed
that Fe3+ ions are successfully incorporated into the anatase crystal and substituted for Ti4+ in the TiO2

lattice (Figure 5). Zhao and Soria [37] reported that even doping Fe3+ can improve catalytic activity
higher than pristine TiO2, but an excess amount of Fe3+ doping can limit the continuous growth of TiO2

particles and poisoning the catalyst. In a continuous work of previous studies, further investigations of
mechanism on iron titanate photocatalyst were conducted by Rusina [38] and Krich [39] The electron
transfer system of photo(electro)catalytic N2 reduction on the Fe2Ti2O7 thin film includes a series
of processes of nitrogen-diazene-hydrazine-ammonia-nitrate. Moreover, Lashgari proposed a N2

photofixation mechanism based on H-atom production [40]. In addition to Fe doped metal oxide
materials, non-metal oxide semiconductors were modified with iron. Hu et al. adapted graphitic
carbon nitride doping with Fe3+ for conversion of nitrogen to ammonia [41]. It was found that the
N≡N bond is prolonged when N2 molecules interact with Fe3+ sites. The delocalization of electron in
σg2p orbital (HOMO) of nitrogen when N2 adsorbed on Fe3+ doping sites leads to its orbital energy
almost overlaps to that of πg*2p orbital (LUMO), indicating the direct role of iron in activating the
N2 molecule. The highest NH4

+ production rate of 5.4 mgL−1h−1g−1 was achieved with 0.05 wt%
Fe doping, which is 13.5 folds compared to pristine g-C3N4. For the comparison of photocatalytic
activities of ammonia production based on iron active site photocatalyst, the selected literature report
is summarized in Table 2.

Catalysts 2018, 8, x FOR PEER REVIEW  9 of 25 

 

Lashgari proposed a N2 photofixation mechanism based on H-atom production [40]. In addition to 
Fe doped metal oxide materials, non-metal oxide semiconductors were modified with iron. Hu et al. 
adapted graphitic carbon nitride doping with Fe3+ for conversion of nitrogen to ammonia [41]. It was 
found that the N≡N bond is prolonged when N2 molecules interact with Fe3+ sites. The delocalization 
of electron in σg2p orbital (HOMO) of nitrogen when N2 adsorbed on Fe3+ doping sites leads to its 
orbital energy almost overlaps to that of πg*2p orbital (LUMO), indicating the direct role of iron in 
activating the N2 molecule. The highest NH4+ production rate of 5.4 mgL−1h−1g−1 was achieved with 
0.05 wt% Fe doping, which is 13.5 folds compared to pristine g-C3N4. For the comparison of 
photocatalytic activities of ammonia production based on iron active site photocatalyst, the selected 
literature report is summarized in Table 2. 

 
Figure 5. (a,b) TEM images of titanate nanotubes prepared by hydrothermal reaction. © transmission 
electron microscopy (TEM) images and (d) high resolution transmission electron microscopy 
(HRTEM) image of 100 × 10−6 Fe3+ doped TiO2. (Reproduced with permission from Elsevier [36]). 

 

Table 2. Summary of iron active site photocatalysts for the reduction of N2 to NH3. 

Catalyst Light Source Sacrificial Reagent NH3 Rate Ref 
0.2% Fe-doped TiO2 390–420 nm - 10 µmolg−1h−1 [42] 
0.5% Fe-doped TiO2 UV - 6 µmolg−1h−1 [37] 

Fe-doped TiO2 254 nm Ethanol 400 µM·h−1 [36] 

Figure 5. (a,b) TEM images of titanate nanotubes prepared by hydrothermal reaction. © transmission
electron microscopy (TEM) images and (d) high resolution transmission electron microscopy (HRTEM)
image of 100 × 10−6 Fe3+ doped TiO2. (Reproduced with permission from Elsevier [36]).



Catalysts 2018, 8, 621 10 of 25

Table 2. Summary of iron active site photocatalysts for the reduction of N2 to NH3.

Catalyst Light Source Sacrificial Reagent NH3 Rate Ref.

0.2% Fe-doped TiO2 390–420 nm - 10 µmolg−1h−1 [42]
0.5% Fe-doped TiO2 UV - 6 µmolg−1h−1 [37]

Fe-doped TiO2 254 nm Ethanol 400 µM·h−1 [36]
Partially reduce Fe2O3 UV-vis - 10 µmolg−1h−1 [34]

Fe2O3 UV-vis Ethanol 1362.5 µM·h−1 [40]
Fe2O3·nH2O Visible - 6 µM·h−1 [34]

Fe(O)OH Vis - 9.25 µM·h−1 [43]
Fe doped C3N4 Vis Ethanol 120 µM·h−1 [41]

Fe-load 3D Graphene UV - 24 µmolg−1h−1 [44]
Hydrous oxide of Fe and Ti Vis - 22 µM·h−1 [45]

Iron loaded bentonite UV - 1.33 µM·h−1 [46]
Iron titanate thin film >320 nm Ethanol 0.57 µM·h−1cm−2 [38]

4.1.2. Titanium Active Sites

Among all the well-known photocatalysts, TiO2 is the most prominent material and has applied
in a variety of photocatalytic applications, because of its abundance, efficient charge separation,
and stability. In earlier publications, the metal doped titanium dioxide or titanate was used for
photocatalytic fixing nitrogen. In later studies, trivalent titanium complex has been employed to
promote the N≡N cleavage [47,48]. Figure 6a illustrates a typical role of Ti3+ reacted with N2

via electron donation. These reduction reactions create Ti4+-amine complexes which finally release
NH3 with regenerated trivalent Ti3+ complexed. Inspired by this suggestion, Hirakawa et al. have
successfully synthesized reduced titania with Ti3+ defects, which served as the adsorption sites for
N2 and trapping sites for the photogenerated electron [49]. The proposed mechanism is shown
in Figure 6b. The solar-to-conversion efficiency is 0.02%. However, it is still lower than that of natural-
and artificial-photosynthesis, therefore, an improvement of that material in photocatalytic activity
is necessary.
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4.1.3. Molybdenum Active Sites

Owing to excellent electrical, optical, and photovoltaic properties, ultrathin transition
metal dichalcogenides (TMDs) have been considered as promising materials. Among them,
MoS2 semiconductor is known as an efficient photocatalyst for hydrogen evolution and CO2 conversion
reaction. Recently, its application in N2 reduction has been unveiled since the first report of Sun’s
group [50]. In this research, the photocatalytic activity of MoS2 photocatalysts under different
preparation conditions was investigated. The results show that the sonicated ultrathin MoS2 induced
charged excitons (trions) when applying visible light (Figure 7a). These trions carried multiple
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electrons in one bound state, which located around Mo sites. Naturally, three Mo atoms surround
adsorbed dinitrogen on the S vacancy and facilitate the six-electron transfer process. Consequently,
the rate of ammonia production of 325 µmol.g-1h-1 was achieved, which is much higher than
the rate of hydrothermal MoS2 and bulk MoS2 samples. Particularly, it can be concluded that a
multiple electrons reduction process was responsible for the enhancement of photocatalytic dinitrogen
reduction to ammonia.
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Figure 7. (a) Schematic illustration of the trion induced multi-electron N2 reduction process [50];
(b) Schematic representation of Mo2Fe6S8—Sn2S6 biomimetic chalcogel (FeMoS chalcogel), building
block scheme (Mo, blue; Fe, red; S, yellow; Sn, black), and a complete chalcogel shown at right [51];
and (c) Nitrogenase-inspired biomimetic chalcogels [52]. (All the figures are reproduced with
permission from the respective publishers).

In addition, enzyme nitrogenase has also been widely studied for application of catalytic nitrogen
fixation [53]. A nitrogenase is a two-component system comprising a MoFe protein and an associated
Fe protein. Based on this inspiration, in 2015, Banergee and Kanatzidis supposed that solid chalcogels
consisiting of FeMoS inorganic clusters is able to reduce dinitrogen to amonia by utilizing white
light [51]. The double-cubane Fe2Mo6S8 units were associated by Sn2S6 ligands (Figure 7b) to form
a stable amorphous complex in aqueous solution. The FeMoS cluster (FeMoS cofactor, a synthetic
clusters bearing Mo−Fe linkages) of the biomimetic chalcogel system is a structural and functional
analogue of the MoFe active site in the enzyme nitrogenase. This work showed that the high density of
FeMoS active sites can boost multi-electron transformation as well as mimic the function of biological
nitrigenases in N2 fixation. In order to gain insights into the performance of the FeMo cofactor in
nitrogenases. Brown and coworkers fabricated a biohybrid system of nitrogenase coupled with CdS
semiconductor. The MoFe protein coated CdS nano rods produced 315 nmol of NH3 per min over one
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mg MoFe-protetin, which is estimated for 3.3% of Quantum Yield. In MoFe Protein, FeMo cofactor
plays a role as an active site, receiving photogenetated electrons from CdS nanocrystals. By changing
condition reactions, Liu found that lack of FeMo cofactor did not produce amonia. Furthermore,
the role of Mo and Fe in the MoFe protein are revealed in another study. Liu et al. discussed the
photocatalytic activity of nitrogen reduction by the nitrogenase-inspired biometic chalcogel [52]. In this
system, Mo2Fe6S8(SPh)3, Fe4S4 and redox-inert ions are assembled with Sn2S6 (Figure 7c). However,
iron was expected to be more active than molybdenum for the solar reduction of N2, due to the fact that
a weak bonding orbital between nitrogen and iron emerged via the localized orbital analysis. Moreover,
their conclusion that the Fe is a better active site for N2 binding than Mo has been demonstrated by
recent biochemical and spectroscopic data.

4.1.4. Nickel Active Sites

The study of Schrauzer and Guth examined the effect of various metal dopant over titania
for photocatalytic NH3 formation. In addition to doping Mo and Fe, only Co and Ni dopant
performed the contribution to the enhancement of NH3 production efficiency [42]. The other metal
doped, such as Pd, V, Cu, showed no improvement in catalytic activity. It can be explained by the
influence of Ni, Co accelerates the phase transformation while this phenomenon is unobtainable
for other dopants. This explaination is consistent with the conclution of Ranjit. In his work,
Ranjit also compared 12 elements doped TiO2 photocatalyst and found the order of photoactivity was
Fe > Co > Mo > Ni. Ye et al. loaded Ni2P on a binary metal sulfide solid solution for photocatalytic
N2 fixation under visible light [54]. The deposited transition metal phosphide affects both the VB
and CB of metal sulfide, resulting in higher photocatalytic reduction ability. Moreover, the transition
metal phosphide of Ni2P supports the photo-induced charge carrier separation process, which is
confirmed by photoluminescence spectra (PL) and electrochemical impedance spectroscopy (EIS)For
Ni2P/Cd0.5Zn0.5S, the NH3 production rate achieved 101.5 µmol L−1 h−1 (35.7 times than that
of unloaded metal phosphine cocatalyst), corresponding to 4.23% of apparent quantum efficiency
at 420 nm.

4.2. Non-Metal Vacancies

4.2.1. Oxygen Vacancies

In the earlier studies, the synthesis of ammonia by N2 photoreduction has been far from acceptable,
because of the impoverished binding of N2 to catalytic active sites and the high energy of the
intermediates required in the reactions. It has been concerned a significant challenge of activation
and cleavage of the highly stable N≡N triple bond relying only on light-induced electrons from
semiconductor materials in solar-driven N2 fixation. To conquer this challenge, the electron-transfer
supportive centers should be introduced as the primary-step active sites to absorb the molecular N2

and weaken the N≡N bond, which could allow the photo-induced electrons to inject for the subsequent
reduction reactions. Oxygen vacancies (OVs), with their rich localized-electrons, have been proved to
serve as electron trapping centers that can effectively capture and activate the inert gases, such as O2,
CO2, and N2 in particular. Table 3 summarizes the most recent advanced oxide materials containing
Ovs for nitrogen photo-fixation.

Table 3. Summary of oxide catalysts for the photoreduction of N2 to NH3.

Catalyst Light Source Sacrificial Reagent NH3 Rate Ref.

BiOBr nanosheets UV-Vis/Vis - 104.2 µmolg−1h−1 [31]
Bi5O7Br nanotubes Vis - 1.38 mmol·g1h−1 [55]
TiO2/Au/a-TiO2 Vis - 13.4 nmol cm−2h−1 [56]

BiO quantum dots UV-Vis - 1226 µmolg−1h−1 [57]
Reduced TiO2 Infrared light - 3.33 µmolg−1h−1 [58]
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Table 3. Cont.

Catalyst Light Source Sacrificial Reagent NH3 Rate Ref.

Rutile TiO2 λ > 280 nm 2-Propanol 16.67µM·g1h−1 [49]
BiOCl nanosheets Solar Light Ethanol 45 µM·h−1 [59]
Bi5O7I nanosheets 280–800 nm Ethanol 120 µM·h−1 [60]

CuCr–LDH Vis - 57.1 µmolg−1h−1 [61]
Hydrogenated

Bi2MoO6
Solar light - 1.3 mmol·g−1h−1 [62]

Oxygen Vacancies Based on Titanium Dioxide

Recently, Zhang et al. created solid-state sources of solvated electron based on reduced titanium
dioxide for nitrogen photofixation [55] (Figure 8). Since oxygen vacancies were introduced in TiO2,
electrons are trapped at the vacancy sites and released by infrared (IR)-light excitation, consequently
reducing N2 to NH3. The number of trapped electrons can be enriched by tuning the concentration
of oxygen defects. However, the amount of generated ammonia nearly ceased after 24 h, due to the
consumption of releasable trapped electron. For recharging of electrons, the reacted TiO2 could be
treated with chemical reduction method.

Catalysts 2018, 8, x FOR PEER REVIEW  13 of 25 

 

Recently, Zhang et al. created solid-state sources of solvated electron based on reduced titanium 
dioxide for nitrogen photofixation [55] (Figure 8). Since oxygen vacancies were introduced in TiO2, 
electrons are trapped at the vacancy sites and released by infrared (IR)-light excitation, consequently 
reducing N2 to NH3. The number of trapped electrons can be enriched by tuning the concentration of 
oxygen defects. However, the amount of generated ammonia nearly ceased after 24 h, due to the 
consumption of releasable trapped electron. For recharging of electrons, the reacted TiO2 could be 
treated with chemical reduction method. 

 
Figure 8. Schematic illustration of the main defects existing in reduced TiO2 upon boron hydride 
reduction. (VO: Oxygen vacancy; H−: Hydride anion in lattice oxygen site; H+: Proton bonding with 
lattice oxygen.) The trapped electrons are also illustrated. (Reproduced with permission from RSC 
[58]). 

Another group, Li, and his partner conducted the photo-electrochemical reduction of N2 to NH3 
on the surface oxygen vacancies of plasmon-induced TiO2 [56] (Figure 9). Li suggested that only 
superficial oxygen vacancies can act as active sites, the other internal vacancies in crystal structure 
play a role as undesired defects. By using the atomic layer deposition method, oxygen vacancies are 
successfully introduced onto the surface of TiO2 without creating bulk defects (introduction of oxygen 
vacancies to bulk structure to form defects). It is worthy to note that surface oxygen vacancies not 
only serve as N2 absorption sites, but also promote charge-carrier transportation to the adsorbed 
nitrogen while bulk-vacancies act as recombination centers to trap the photo-excited electrons and 
holes. The optimized ammonia production rate of 13.4 nmol cm−2h−1 was obtained by the sample of 
surface oxygen vacancies modified TiO2/Au/amorphous TiO2 electrode, which is 2.6-folds higher 
than pristine TiO2. Moreover, Hirai and his group have studied systematically the role of oxygen 
vacancy and Ti3+ active site [49]. He concluded that oxygen vacancy can facilitate the dissociation of 
the N≡N triple bond. This conclusion is consistent with Zhang and Li’s group. 

In contrast with the above research, Medford and Comer employed density functional theory 
(DFT) analysis to discuss the role of oxygen vacancy [63]. The defected surface (110) titania possessing 
an oxygen vacancy was compared to pristine TiO2 by examining nitrogen reduction. The DFT 
calculations rejected the traditional mechanism of nitrogen photofixation that the breaking of N-N 
bond is conducted directly by oxygen vacancy. Otherwise, his hypothesis is that a considerable 
stabilization of the unstable NHx intermediates by the oxygen vacancy makes NHx binding close to 
exo-thermic, indicating that it can enhance nitrogen reduction and ammonia generation after the N–
N bond has been dissociated. 

Figure 8. Schematic illustration of the main defects existing in reduced TiO2 upon boron hydride
reduction. (VO: Oxygen vacancy; H−: Hydride anion in lattice oxygen site; H+: Proton bonding with
lattice oxygen.) The trapped electrons are also illustrated. (Reproduced with permission from RSC [58]).

Another group, Li, and his partner conducted the photo-electrochemical reduction of N2 to NH3

on the surface oxygen vacancies of plasmon-induced TiO2 [56] (Figure 9). Li suggested that only
superficial oxygen vacancies can act as active sites, the other internal vacancies in crystal structure
play a role as undesired defects. By using the atomic layer deposition method, oxygen vacancies
are successfully introduced onto the surface of TiO2 without creating bulk defects (introduction
of oxygen vacancies to bulk structure to form defects). It is worthy to note that surface oxygen
vacancies not only serve as N2 absorption sites, but also promote charge-carrier transportation to
the adsorbed nitrogen while bulk-vacancies act as recombination centers to trap the photo-excited
electrons and holes. The optimized ammonia production rate of 13.4 nmol cm−2h−1 was obtained
by the sample of surface oxygen vacancies modified TiO2/Au/amorphous TiO2 electrode, which is
2.6-folds higher than pristine TiO2. Moreover, Hirai and his group have studied systematically the
role of oxygen vacancy and Ti3+ active site [49]. He concluded that oxygen vacancy can facilitate the
dissociation of the N≡N triple bond. This conclusion is consistent with Zhang and Li’s group.
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In contrast with the above research, Medford and Comer employed density functional theory
(DFT) analysis to discuss the role of oxygen vacancy [63]. The defected surface (110) titania possessing
an oxygen vacancy was compared to pristine TiO2 by examining nitrogen reduction. The DFT
calculations rejected the traditional mechanism of nitrogen photofixation that the breaking of N-N bond
is conducted directly by oxygen vacancy. Otherwise, his hypothesis is that a considerable stabilization
of the unstable NHx intermediates by the oxygen vacancy makes NHx binding close to exo-thermic,
indicating that it can enhance nitrogen reduction and ammonia generation after the N–N bond has
been dissociated.Catalysts 2018, 8, x FOR PEER REVIEW  14 of 25 
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Oxygen Vacancies Based on Bismuth Oxyhalide

Bismuth oxyhalides, BiOX (X = Cl, Br, and I), have recently gained considerable interests for
their intrinsic optical properties; they are also practical for industrial applications, such as the
photodecomposition of organic pollutants and CO2 reduction. The structural layer of BiOX provides
sufficient space for the polarization of atoms and the as-formed internal electric field will play an
effective role in their efficient charge separation and transfer process.

Due to containing interior oxygen vacancy, bismuth oxyhalides has been considered as a promising
catalyst for nitrogen fixation, particularly in photofixation [64,65]. Most recently, Bi5O7Br nanotubes
were investigated its photoactivity of ammonia evolution by Wang et al. [55]. Owing to the excessive
number of oxygen vacancies as active centers, the highest NH3 production rate is obtained at
1.38 mmol·g−1h−1, corresponding to an apparent quantum yield of 2.3% at 420 nm. However,
bismuth oxybromide photocatalysts are susceptible to photocorrosion. During the reduction reaction,
the oxygen vacancies is filled by O atoms form the water, reducing the number of active sites and lose
its activity. Interestingly, the reacted oxygen vacancies can be regenerated by applying visible light
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illumination, which continuously provides the reversible light-switchable surface oxygen vacancies
for N2 fixation. Figure 10A demonstrates repeated circulation of oxygen vacancies over TiO2 for
ammonia photo-production.Catalysts 2018, 8, x FOR PEER REVIEW  15 of 25 
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Figure 10. (A) Schematic illustration of the photocatalytic N2 fixation model in which water serves as
both the solvent and proton source, as well as the reversible creation of light-induced oxygen vacancies;
(B) Theoretical prediction of N2 activation on the OV of BiOBr (001) surface. (a) Side and (b) top view
of (001) surface of BiOBr with an OV. (c) The adsorption geometry of N2 on the OV of BiOBr (001)
surface. (d) The charge density difference of the N2-adsorbed (001) surface; (C) Adsorption of N2 on
the (001) and (010) facets of BiOCl. (a) Crystal structure of BiOCl and the corresponding cleaved (001)
and (010) surface. (b) The terminal end-on adsorption structure of N2 on (001) surface of BiOCl and
(c) the side-on bridging adsorption structure of N2 on (010) surface of BiOCl; (D) Schematic illustration
of the photocatalytic N2 fixation over Bi5O7I (001) and (100) facers. (Reproduced with permission from
the respective publishers; Figures 10–10 from the References [55], [31], [59], and [60], respectively).

In 2015, Zhang and Li studied the effect of oxygen vacancies on the exposed (001) facets BiOBr
nanosheets to fix nitrogen under ambient condition [31]. The theoretical analysis calculated the
extension of the N–N triple bond increased by 0.055 Å as absorbed N2 molecules are activated by
oxygen vacancies (Figure 10B). Also, the oxygen vacancies as the initial electron acceptor can avoid
the electron-hole recombination and considerably promote the interfacial charge transfer. In this
paper, the UV-Visible light driven N2 fixation rate was measured to be 223.3 µmolg−1h−1 without
using sacrificial agent and a noble-metal cocatalyst. As a succession of the previous study, Zhang’s
group clarified that two distinct structure of surface oxygen vacancy on different facets of BiOCl
nanosheets completely determine the N2 fixation mechanisms [59]. For instance, the N2 reduction
reaction on the oxygen vacancies of BiOCl (010) facets followed a symmetric alternating pathway which
generates N2H2-level and N2H4-level species. Whereas, an asymmetric distal mechanism selectively
produces ammonia (001) facets without involving the generation of N2H2 or N2H4. By DFT calculation,
the accepted adsorption possibility of N2 on BiOCl surfaces was investigated. On the (001) facets,
absorbed N2 combines with two nearest Bi atoms in the sublayer to form a terminal end-on bridging,
consequently, the activation exhibited the increasing N–N bond length to 1.137 Å (Figure 10(Ca)).
Separately, different absorbed N2 performs a larger extent of N2 activation and elongates bond length
to 1.198 Å (Figure 10(Cb)) through a side on bridging mode (dinitrogen interacts with two nearest
Bi atoms in the outer layer and the one next nearest Bi atom in the sub-layer on the (010) facet).
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Respectively, the quantum yields under UV irradiation were 1.8% h−1 and 4.3% h−1 on the (001) and
(010) surface of BiOCl. Inspired by Zhang’s group, Bai et al. examined the photocatalytic activity
of different Bi5O7I facets over solar-driven N2 fixation reaction [60]. At 356 nm UV-light irradiation,
the apparent quantum efficiency of (001) surface Bi5O7I was 5.1%, which is 2.2 times higher than that
of (100) planes (Figure 10D). After exposure to (001) facets, the charge carrier separation and mobility
were dramatically boosted, elucidating the enhancement of photoactivity on (001) Bi5O7I facets.

Although most publications highlight noteworthy attention on the exposure of different facets,
it is more possible that the combined effects facet-dependent studies and oxygen vacancies-dependent
studies will open a new and interesting perspective and provide inspiration for the development of
advanced photocatalysts for N2 photoreduction. In addition, the combination of experimental data
and theoretical simulations is highly necessary to fully interpret the N–N triple bond activation
and pathway the NH3 formation mechanism. Thus, further study on the facet controlled and
vacancy-mediated bismuth oxyhalides should be dedicated in the future to emphasize the scientific
aspects and reveal the appropriate reaction steps for the N2 photofixation.

4.2.2. Nitrogen Vacancies

The introduction of defects in photocatalyst materials is completely considered as an effective
method to enhance the photocatalytic nitrogen fixation. Instead of oxygen vacancy, another alternative
strategy for using non-metal vacancy to fix nitrogen has been to utilize nitrogen vacancies in order to
absorb and weaken N2 molecules. Because nitrogen vacancies have the same size and shape as the
nitrogen atoms in di-nitrogen, nitrogen vacancies (NVs) are favorable in the selective chemisorption
and activation of N2 [66]. This interprets why the N2 fixation rate remained unchanged when N2 was
replaced by air as the N2 source. In addition, nitrogen vacancies significantly improved the separation
of charge carriers by trapping photo-excited electrons and facilitating the interfacial charge transfer to
the adsorbed N2.

From the time when the first report on graphitic carbon nitride (g-C3N4) in 2009, this metal-free
polymeric photocatalyst has received tremendous interest, due to its specific properties such as
excellent stability, cost-effectiveness, and environmental benignity. Recently, graphitic carbon nitride
composing of nitrogen vacancies has been employed as a photocatalyst for reduction of nitrogen
to ammonia. In 2015, the first introduction of nitrogen vacancies induced g-C3N4 for visible light
driven NH3 production was reported by Dong [66]. After 15 h of light illumination, nitrogen vacancies
incorporated g-C3N4 generated 1.24 mmolh−1g−1 of photofixation rate while bare g-C3N4 show no
catalytic activity, suggesting the indispensable role of nitrogen vacancies in promoting photoactivity.
However, lacking nitrogen in defects modified carbon nitride structure slightly enlarged bandgap
energy than that of pristine samples, resulting in a reduction of visible light absorption ability.
In contrast to Dong’s research, Li suggests that even the influence of nitrogen vacancies on the
band structure decrease the bandgap energy, it is not the main factor that affects the photocatalytic
nitrogen reduction. Li et al. have fabricated nitrogen vacancies assisted g-C3N4 by infrared ray assisted
microwave (IM-CN(x), where x denots the time) [67]. Under microwave treatment, abundant nitrogen
vacancies were formed and served as chemical absorption centers. By DFT calculation, it was found
that chemisorbed N–N triple bond is elongated from 1.107 Å to 1.242 Å due to the formation of σ bond
between N2 molecule and the nearest C atom. Consequently, the NH4

+ evolution rate obtained by
IM-CN(30) sample was 5.1 mg L−1 h−1 gcat−1, which is 5-fold and 2.5-fold higher than those of bulk
CN520 and microwave treated CN(20). Similarly, Ma and Li have prepared high specific surface area
carbon nitride by a dissolve-regrowth method, which is capable of N2 photoreduction [68]. Based on
experimental results and theoretical simulation, Ma demonstrated the possible nitrogen photofixation
over large surface area g-C3N4 containing N-vacancies (Figure 11). First, absorbed N2 molecule in
N-vacancy is activated by four-electron which occupies the anti-bonding orbitals of N atoms, then H+

reacts with the activated N2 molecule to produce NH3 and finally form NH4
+.
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Besides using nitrogen vacancy active sites, nitrogen defects is also applied for producing NH3

under solar simulation. Li et al. introduced cyano-deficient onto bulk g-C3N4 by cleavage C=N bond
via KOH etching treatment [69]. The as-prepared g-C3N4 (ACN) possesses a porous structure with
ladder-like thin layers. Li concluded that the presence of cyano groups not only reduce conduction band
of bulk g-C3N4, but also act as an electron acceptor, capturing electrons and inhibiting electron-hole
recombination. Moreover, the existent of cyano defects conduct more adsorption site for the N2

activation. Therefore, the formation of cyano groups by etching bulk g-C3N4 with KOH is the main
reason for the enhanced photocatalytic N2 fixation activity. After 4 h testing catalytic activity, the NH4

+

concentration of ACN-10% increase to 51.65 mg/L, which is 7.6 times higher than bulk samples.
Figure 12 shows the formation of cyano deficient g-C3N4 and N2 photofixation mechanism.
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Figure 12. The cyano defects were successfully introduced into the g-C3N4 framework by KOH etching
and could contribute to improving the nitrogen photofixation ability of g-C3N4. (Reproduced with
permission from Elsevier [69]).

4.2.3. Sulfur Vacancies

Due to similar chemical properties with oxygen, Hu hypothesized that sulfur vacancies have
N2 absorption ability as oxygen vacancies [70]. In his study, a tri-component metal sulfide
of Zn0.1Sn0.1Cd0.8S was prepared by the hydrothermal process. Under visible light irradiation,
the photocatalyst performs an outstanding activity in nitrogen fixation, because of containing a
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high concentration of sulfur vacancies. This research implied that the photocatalytic nitrogen fixation
activity is linearly depended on the sulfur vacancy concentration. The NH4

+ production rates over
the various vacancy concentrations were compared and illustrated in Figure 13a, confirming that the
concentration of sulfur vacancies plays a significantly pivotal role in the N2 photofixation ability.
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Figure 13. (a) Nitrogen photofixation performance of the as-prepared catalysts as a function of the
sulfur vacancies concentration [70]; (b) The schematic of electron–hole separation and transport
at the g-C3N4/ZnMoCdS heterojunction interface [71]. (Reproduced with permission from the
respective publishers).

Hu also discussed the role of Zn, Sn metal doping in the creation of sulfur vacancies rather than
act as active sites to promote catalytic ability. The proof of elongated N–N triple bond from 1.164 Å
to 1.213 Å over sulfur vacancies proves that sulfur vacancies can aid the activation of N2 instead of
doped metal. In this regard, Hu’s group continues to investigate the effect of different metal doping on
ternary metal sulfide. Mo and Ni doped CdS can distort the crystal structure, leading to the formation
of sulfur vacancies in obtained tri-component metal sulfide [72]. In order to compare the influence of
sulfur vacancies, the as-prepared samples were calcined in O2 gas to remove sulfur vacancies. In results,
the photocatalytic NH4

+ generation rates of Mo0.1Ni0.1Cd0.8S photocatalyst is 3.2 mg L−1 h−1 gcat−1,
which is 10-folds higher in comparison with the oxidized sulfur vacancies sample of Mo0.1Ni0.1Cd0.8SO.
Hu concluded that the sulfur vacancies not only act as chemical absorption sites, but also capture
photo-generated electrons, suppress charge recombination and encourage interfacial charge transfer.

A strategy of coupling carbon nitride with sulfur vacancies doped metal sulfide was applied
for the reduction of N2 under visible light. At the same time, two similar heterojunction system
of g-C3N4/ZnSnCdS and g-C3N4/ZnMoCdS were assembled by Cao et al. [71,73]. In general,
the photo-induced electrons will be excited and migrated from g-C3N4 to the quaternary metal
sulfide whereas the photo-generated holes are transferred in the reversed direction and consumed
by hole scavenger. Additionally, the sulfur vacancies could trap immigrated electrons form g-C3N4

and intrinsic electrons in metal sulfide then transport immediately to activated N2. The schematic of
electron-hole separation and transportation is depicted in Figure 13b. As the photoinduced electrons
and holes are spatially separated, the charge recombination will be drastically inhibited, which is of
highly beneficial for enhancing the photocatalytic activity. Under visible light irradiation, the highest
NH4

+ evolution rates of g-C3N4/ZnSnCdS and g-C3N4/ZnMoCdS are 7.5 and 3.5 mg L−1 h−1 gcat−1,
respectively, which is 33.3 and 13.5 times higher compared to those of individual g-C3N4.
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4.3. Metal Cocatalyst and Plasmon Enhancement

4.3.1. Metal Cocatalyst

In addition to the introduction of interior active sites, transition metals can be employed as exterior
active sites by loaded on the semiconductor photocatalysts, namely cocatalyst. Cocatalysts play a
critical role in photocatalysis. As electron acceptor, cocatalysts promote electron-hole separation and
impede photogenerated charge carrier recombination. Among a variety of cocatalyst, platinum and
ruthenium have been considered as the most effective cocatalyst, particularly in hydrogen evolution
and CO2 conversion. Inspired by prior research, Miyama engaged Pt loading TiO2 and CdS for the
improvement of N2 photoreduction [74]. For both TiO2 and CdS, the yield of ammonia was increased
approximately 1.5 times after introducing noble metal cocatalyst. Several years later, Mirza group
applied both Pt and RuO2 as a reduction and oxidation cocatalyst in CdS [75]. The Pt particles
in this system act as electron trapping centers which capture photoexcited electrons and perform
reduction reaction. Whereas, the RuO2 serves as a hole scavenger to consume generated hole, balancing
electric charge. Figure 14a demonstrates the mechanism of photocatalytic ammonia evolution based
on CdS/Pt/RuO2 photocatalyst.
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Figure 14. (a) the mechanism of photocatalytic N2 fixation over CdS/Pt/RuO2 [75]; (b) M–H bond
Strength vs. yield ammonia [76]. (Reproduced with permission from the respective publishers).

In 1996, Ranjit et al. systematically investigated the impact on photocatalytic NH3 evolution by
the nature and amount of four noble metals decorated TiO2 [76]. It is worth noting that ammonia
was not produced by using pure TiO2 photocatalyst. However, the metallization of titania results
in the increasing of ammonia generation rate. It was found that the production rate is depended
on several factors. First, the noble metals form the ohmic contact with semiconductor and serve as
electron sinks where can easily accommodate the flow of electron transfer, suppressing electron-hole
recombination. Secondly, the report supposed that the key role of the installed metal is to stabilize Hads
formed on the metal, thus enhancing the ammonia yield. Figure 14b illustrates the linear dependent
between the Metal-Hads bond strength and the yield of ammonia. This proposal is consistent with
another work investigating Ru, Fe, and Os cocatalysts [77], where it was found that metal cocatalysts
for NH3 production needed to have a high over-potential for H2 evolution; where the metals with
high over-potentials for the hydrogen evolution reaction (Ru and Fe) having higher NH3 activity
than the metals with low hydrogen evolution reaction over-potential. Based on experimental data,
Ranjit deduced that the catalytic activity of the nanocomposite photocatalyst is observed in the trend
Ru > Rh > Pd > Pt. It is clearly seen that the trend is reversed in the hydrogen evolution reaction.
Medford suggested that the role of the metal site is to minimize hydrogen evolution rather than being
a cocatalyst for NH3 synthesis [78].
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4.3.2. Plasmon Enhancement

A fundamentally different approach for loading transition metal supported fixing nitrogen has
been demonstrated to enhance light absorption through the surface plasmonic enhancement [79–83].
In order to increase the NH3 production rate by harnessing the localized surface plasmon resonance,
most recent studies have focused on using gold nanoparticles as a plasmonic structure. Owing to high
light-harvesting properties, gold in a nanoparticle can absorb visible light and induce surface plasmon
effect, which can inject hot electrons into the semiconductor conduction band. Oshikiri and his partner
assembled a photoelectrode, with Au nanoparticles and Ru cocatalyst co-loaded Nb-SrTiO3 [80].
The hypothesized mechanism was proposed that the excited hot electron is transferred to SrTiO3

semiconductor and continuously injected into Ru cocatalyst. At the Ru surface, nitrogen and proton are
reduced to ammonia. In contrast, the generated holes localize near the Au/Nb-SrTiO3/water interface
and immediately oxidize hydroxyl ions and ethanol (Figure 15a). The ammonia production was
observed at long wavelengths up to 800 nm, implying plasmon-induced charge separation promoted
nitrogen reduction in the cathode and oxidation in the anodic side. However, Ru cocatalyst not only
accelerates N2 reduction, but also for H2 evolution because of stable absorption of H2 onto a Ru surface.
Later, a replacement of Ru cocatalyst with Zr/ZrOx cocatalyst was reported by the initial group
in 2016 [81]. In the Au/Nb-SrTiO3/Zr/ZrOx system, the NH3 generation rate is prominently higher
than that of Ru system, due to Zr prefers binding N* adatoms rather than H* adatoms. DFT calculation
proved that the Zr is effective at limiting the hydrogen evolution reaction. An energy diagram of this
system is provided in Figure 15b.
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Furthermore, Zheng, Terazono, and Tanuma attempted to synthesize ammonia at room
temperature using Os-Au nanocomposite catalyst which was prepared by directly sputtered Os
onto Au layer [79]. The generation of ammonia was observed under visible light irradiation between
550 and 650 nm, corresponding to the conversion rate of 0.003% at 550 nm. Originally, neither pure Au
nor Os nanoparticle showed photoactivity in ammonia synthesis. Although pure Au nanoparticles
exhibit LSPR effect of photon energy absorption to generate electron, but are unable to encourage the
N2 reduction reaction. Whereas, Os nanoparticle is active for N2 fixation, but inactive in the visible
light region. Therefore, the assembly of Au–Os nanocomposite motivates the photon energy resonance
transfer from Au nanoparticles to Os layer (Figure 16a), enhancing NH3 yield. By contrast, for the first
time, Ali and his colleagues hypothesized that gold nanoparticles can serve as reduction cocatalyst [82].
In his work, solar-driven nanostructured plasmon enhanced black silicon photoelectrode produces
ammonia yield of 320 mg m−2 in a day. The variety of controlled experiment confirm the roles of
individual layers, which is described in Figure 16b. Gold nanoparticles (GNP) loaded black silicon
(bSi) provide reduction active sites, receiving transferred electron form photon absorber bSi. While Cr
layer acts as sacrificial hole sink where scavenge photogenerated holes by the oxidation of sulfite
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ions. In results, the NH3 production of the GNP/bSi/Cr cell increases to around two-folds that of the
GNP/bSi and eight-folds that of pure bSi.
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5. Conclusions

Utilization of solar light for energy production and environmental protection is one of the
most critical challenges in the near future for researchers and scientists. Photocatalyst based on
semiconductors is an effective route to employ the plentiful energy from the sun. Unfortunately,
industrial application of this strategy is still limited by ineffective light absorption and fast
electrons-holes recombination process of photocatalyst semiconductor. Thus, the development of
the active photocatalyst system is required. A variety of methods have been introduced to improve
the photocatalytic efficiency, such as combining multicomponent semiconductor together, metal or
non-metal doping, usage of cocatalyst, and plasmon-enhancement. The main purposes of these
methods are to enhance the visible light absorption ability, to narrow band gap energy of semiconductor,
to increase the charge separation, to decrease charge-recombination and to supply more active sites on
the surface of the nanocomposite semiconductor.

Over the last decade, nitrogen photofixation has been attracted many interests for the synthesis of
ammonia by nitrogen and water under solar irradiation. There are two main strategies for developing
efficient photocatalyst of nitrogen reduction. Introduction of metal active sites or non-metal vacancies
not only provide more active centers to absorb nitrogen, but also weaken and activate N-N triple bond.
Whereas, noble metals, such as Pt, Ru, Pd, Rh loaded photocatalysts can act as electron acceptors,
promoting charge carrier separation and suppressing electron hole recombination. In addition, loading
gold nanoparticle induces LSPS effect, which can enhance visible light absorption effectively. In this
review report, we have demonstrated the advantages and disadvantage of each group of active
centers-based semiconductors. Understanding the strong points and drawbacks of these materials is a
very important step to develop new effective photocatalyst for NH3 evolution based on solar-driven
nitrogen fixation.
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