Synthesis of New C2-Symmetric Six-Membered NHCs and Their Application for the Asymmetric Diethylzinc Addition of Arylaldehydes
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General
3.2. Preparation of Benzimidazolium Salt (2)
3.3. Representative Procedure for the Asymmetric Addition of Diethylzinc to Aldehyde
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Arduengo, A.J.; Harlow, R.L.; Kline, M.J. A stable crystalline carbene. J. Am. Chem. Soc. 1991, 113, 361–363. [Google Scholar] [CrossRef]
- Herrmann, W.A.; Köcher, C. N-heterocyclic carbenes. Angew. Chem. Int. Ed. 1997, 36, 2162–2187. [Google Scholar] [CrossRef]
- Bourissou, D.; Guerret, O.; Gabbaï, F.P.; Bertrand, G. Stable carbenes. Chem. Rev. 2000, 100, 39–92. [Google Scholar] [CrossRef] [PubMed]
- Zinn, F.K.; Viciu, M.S.; Nolan, S.P. Carbenes: Reactivity and catalysis. Annu. Rep. Prog. Chem. Sect. B Org. Chem. 2004, 100, 231–249. [Google Scholar] [CrossRef]
- Cavell, K.J.; McGuinness, D.S. Redox processes involving hydrocarbylmetal (N-heterocyclic carbene) complexes and associated imidazolium salts: Ramifications for catalysis. Coord. Chem. Rev. 2004, 248, 671–681. [Google Scholar] [CrossRef]
- Peris, E.; Crabtree, R.H. Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes. Coord. Chem. Rev. 2004, 248, 2239–2246. [Google Scholar] [CrossRef]
- Crudden, C.M.; Allen, D.P. Stability and reactivity of N-heterocyclic carbene complexes. Coord. Chem. Rev. 2004, 248, 2247–2273. [Google Scholar] [CrossRef]
- Pugh, D.; Danopoulos, A.A. Metal complexes with ‘pincer’-type ligands incorporating N-heterocyclic carbene functionalities. Coord. Chem. Rev. 2007, 251, 610–641. [Google Scholar] [CrossRef]
- Mata, J.A.; Poyatos, M.; Peris, E. Structural and catalytic properties of chelating bis- and tris-N-heterocyclic carbenes. Coord. Chem. Rev. 2007, 251, 841–859. [Google Scholar] [CrossRef]
- Sommer, W.J.; Weck, M. Supported N-heterocyclic carbene complexes in catalysis. Coord. Chem. Rev. 2007, 251, 860–873. [Google Scholar] [CrossRef]
- Hahn, F.E.; Jahnke, M.C. Heterocyclic carbenes: Synthesis and coordination chemistry. Angew. Chem. Int. Ed. 2008, 47, 3122–3172. [Google Scholar] [CrossRef] [PubMed]
- Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Green, J.C.; Scur, R.G.; Arnold, P.L.; Cloke, G.N. An experimental and theoretical investigation of the electronic structure of Pd and Pt bis(carbene) complexes. Chem. Commun. 1997, 1963–1964. [Google Scholar] [CrossRef]
- Peris, E.; Loch, J.A.; Mata, J.; Crabtree, R.H. A Pd complex of a tridentate pincer CNC bis-carbene ligand as a robust homogenous Heck catalyst. Chem. Commun. 2001, 201–202. [Google Scholar] [CrossRef]
- Briot, A.; Bujard, M.; Gouverneur, V.; Nolan, S.P.; Mioskowski, C. Improvement in olefin metathesis using a new generation of ruthenium catalyst bearing an imidazolylidene ligand: Synthesis of heterocycles. Org. Lett. 2000, 2, 1517–1519. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.C.; Burgess, K. Chiral N-heterocyclic carbene-transition metal complexes in asymmetric catalysis. Tetrahedron Asymmetry 2003, 14, 951–961. [Google Scholar] [CrossRef]
- César, V.; Bellemin-Laponnaz, S.; Gade, L.H. Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis. Chem. Soc. Rev. 2004, 33, 619–636. [Google Scholar] [CrossRef] [PubMed]
- Douthwaite, R.E. Metal-mediated asymmetric alkylation using chiral N-heterocyclic carbenes derived from chiral amines. Coord. Chem. Rev. 2007, 251, 702–717. [Google Scholar] [CrossRef]
- Gade, L.H.; Bellemin-Laponnaz, S. Mixed oxazoline-carbenes as stereodirecting ligands for asymmetric catalysis. Coord. Chem. Rev. 2007, 251, 718–725. [Google Scholar] [CrossRef]
- Snead, D.R.; Seo, H.; Hong, S. Recent developments of chiral diaminocarbene-metal complexes for asymmetric catalysis. Curr. Org. Chem. 2008, 12, 1370–1387. [Google Scholar] [CrossRef]
- Wang, F.J.; Liu, L.J.; Wang, W.F.; Li, S.K.; Shi, M. Chiral NHC–metal-based asymmetric catalysis. Coord. Chem. Rev. 2012, 256, 804–853. [Google Scholar] [CrossRef]
- Alder, R.W.; Blake, M.E.; Bortolotti, C.; Bufali, S.; Butts, C.P.; Linehan, E.; Oliva, J.M.; Orpen, A.G.; Quayle, M.J. Complexation of stable carbenes with alkali metals. Chem. Commun. 1999, 241–242. [Google Scholar] [CrossRef]
- Guillen, F.; Winn, C.L.; Alexakis, A. Enantioselective copper-catalyzed conjugate addition using chiral diaminocarbene ligands. Tetrahedron Asymmetry 2001, 12, 2083–2086. [Google Scholar] [CrossRef]
- Bazinet, P.; Yap, G.P.A.; Richeson, D.S. Constructing a stable carbene with a novel topology and electronic framework. J. Am. Chem. Soc. 2003, 125, 13314–13315. [Google Scholar] [CrossRef] [PubMed]
- Mayr, M.; Wurst, K.; Ongania, K.H.; Buchmeiser, M.R. 1,3-dialkyl- and 1,3-diaryl-3,4,5,6-tetrahydropyrimidin-2-ylidene rhodium(I) and palladium(II) complexes: Synthesis, structure, and reactivity. Chem. Eur. J. 2004, 10, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, W.A.; Schneider, S.K.; Öfele, K.; Sakamoto, M.; Herdtweck, E. First silver complexes of tetrahydropyrimid-2-ylidenes. J. Organomet. Chem. 2004, 689, 2441–2449. [Google Scholar] [CrossRef]
- Imlinger, N.; Mayr, M.; Wang, D.R.; Wurst, K.; Buchmeiser, M.R. Arylation of carbonyl compounds catalyzed by rhodium and iridium 1,3-R2-tetrahydropyrimidin-2-ylidenes: Structure-reactivity correlations. Adv. Synth. Catal. 2004, 346, 1836–1843. [Google Scholar] [CrossRef]
- Yun, J.; Marinez, E.R.; Grubbs, R.H. A new ruthenium-based olefin metathesis catalyst coordinated with 1,3-dimesityl-1,4,5,6-tetrahydropyrimidin-2-ylidene: Synthesis, X-ray structure, and reactivity. Organometallics 2004, 23, 4172–4173. [Google Scholar] [CrossRef]
- Yang, L.R.; Mayr, M.; Wurst, K.; Buchmeiser, M.R. Novel metathesis catalysts based on ruthenium 1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidenes: Synthesis, structure, immobilization, and catalytic activity. Chem. Eur. J. 2004, 10, 5761–5770. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, P.; Ong, T.G.; O’Brien, J.S.; Lavoie, N.; Bell, E.; Yap, G.P.A.; Korobkov, I.; Richeson, D.S. Design of sterically demanding, electron-rich carbene ligands with the perimidine scaffold. Organometallics 2007, 26, 2885–2895. [Google Scholar] [CrossRef]
- Binobaid, A.; Iglesias, M.; Beetstra, D.J.; Kariuki, B.; Dervisi, A.; Fallis, I.A.; Cavell, K.J. Expanded ring and functionalised expanded ring N-heterocyclic carbenes as ligands in catalysis. Dalton Trans. 2009, 35, 7099–7112. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.F.; McQueen, C.M.A. Dihydroperimidine-derived N-heterocyclic pincer carbene complexes via double C–H activation. Organometallics 2012, 31, 8051–8054. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, X.K.; Fu, J.; Wang, X.; Su, X.L.; Hu, F.L.; Jiao, J.J.; Shi, M. Fine-tunable 3,4-dihydroquinazol-2-ylidene carbenes: Synthesis, rhodium(I) complexes, and reactivity. Organometallics 2012, 31, 8257–8282. [Google Scholar] [CrossRef]
- Armstrong, R.; Ecott, C.; Ma Dunsford, J.J.; Tromp, D.S.; Cavell, K.J.; Elsevier, C.J.; Kariuki, B.M. N-alkyl functionalised expanded ring N-heterocyclic carbene complexes of rhodium(I) and iridium(I): Structural investigations and preliminary catalytic evaluation. Dalton Trans. 2013, 42, 7318–7329. [Google Scholar]
- Yang, B.M.; Xiang, K.; Tu, Y.Q.; Zhang, S.H.; Yang, D.T.; Wang, S.H.; Zhang, M. Spiro-fused six-membered N-heterocyclic carbene: A new scaffold toward unique properties and activities. Chem. Commun. 2014, 50, 7163–7165. [Google Scholar] [CrossRef] [PubMed]
- Verlinden, K.; Ganter, C. Converting a perimidine derivative to a cationic N-heterocyclic carbene. J. Organomet. Chem. 2014, 750, 23–29. [Google Scholar] [CrossRef]
- Hill, A.F.; McQueen, C.M.A. Dihydroperimidine-derived PNP pincer complexes as intermediates en route to N-heterocyclic carbene pincer complexes. Organometallics 2014, 33, 1909–1912. [Google Scholar] [CrossRef]
- Scarborough, C.C.; Grady, M.J.W.; Guzei, I.A.; Gandhi, B.A.; Bunel, E.E.; Stahl, S.S. PdII complexes possessing a seven-membered N-heterocyclic carbene ligand. Angew. Chem. Int. Ed. 2005, 44, 5269–5272. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, C.C.; Popp, B.V.; Guzei, I.A.; Stahl, S.S. Development of 7-membered N-heterocyclic carbene ligands for transition metals. J. Organomet. Chem. 2005, 690, 6143–6155. [Google Scholar] [CrossRef]
- Rogers, M.M.; Wendlandt, J.E.; Guzei, I.A.; Stahl, S.S. Aerobic intramolecular oxidative amination of alkenes catalyzed by NHC-coordinated palladium complexes. Org. Lett. 2006, 8, 2257–2260. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, M.; Beetstra, D.J.; Stasch, A.; Horton, P.N.; Hursthouse, M.B.; Coles, S.J.; Cavell, K.J.; Dervisi, A.; Fallis, I.A. First examples of diazepanylidene carbenes and their late-transition-metal complexes. Organometallics 2007, 26, 4800–4809. [Google Scholar] [CrossRef]
- Iglesias, M.; Beetstra, D.J.; Knight, J.C.; Ooi, L.L.; Stasch, A.; Coles, S.; Male, L.; Hursthouse, M.B.; Cavell, K.J.; Dervisi, A.; et al. Novel expanded ring N-heterocyclic carbenes: Free carbenes, silver complexes, and structures. Organometallics 2008, 27, 3279–3289. [Google Scholar] [CrossRef]
- Scarborough, C.C.; Guzei, I.A.; Stahl, S.S. Synthesis and isolation of a stable, axially-chiral seven-membered N-heterocyclic carbene. Dalton Trans. 2009, 13, 2284–2286. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, M.; Beetstra, D.J.; Kariuki, B.; Cavell, K.J.; Dervisi, A.; Fallis, I.A. Synthesis and structural features of rhodium complexes of expanded ring N-heterocyclic carbenes. Eur. J. Inorg. Chem. 2009, 1913–1919. [Google Scholar] [CrossRef]
- Newman, P.D.; Cavell, K.J.; Kariuki, B. Metal complexes of chiral NHCs containing a fused six- and seven-membered central ring. Organometallics 2010, 29, 2724–2734. [Google Scholar] [CrossRef]
- Hudnall, T.W.; Tennyson, A.G.; Bielawski, C.W. A seven-membered N, N’-diamidocarbene. Organometallics 2010, 29, 4569–4578. [Google Scholar] [CrossRef]
- Dunsford, J.J.; Cavell, K.J.; Kariuki, B.M. Gold(I) complexes bearing sterically imposing, saturated six- and seven-membered expanded ring Nheterocyclic carbene ligands. Organometallics 2012, 31, 4118–4121. [Google Scholar] [CrossRef]
- Hauwert, P.; Dunford, J.J.; Tromp, D.S.; Weigand, J.J.; Lutz, M.; Cavell, K.J.; Elsevier, C.J. Zerovalent [Pd(NHC)(Alkene)1,2] complexes bearing expanded-ring N-heterocyclic carbene ligands in transfer hydrogenation of alkynes. Organometallics 2013, 32, 131–140. [Google Scholar] [CrossRef]
- Dunsford, J.J.; Cavell, K.J. Pd–PEPPSI-type expanded ring N-heterocyclic carbene complexes: Synthesis, characterization, and catalytic activity in Suzuki–Miyaura cross coupling. Organometallics 2014, 33, 2902–2905. [Google Scholar] [CrossRef]
- Li, J.; Shen, W.X.; Li, X.R. Recent developments of expanded ring N-heterocyclic carbenes. Curr. Org. Chem. 2012, 16, 2879–2891. [Google Scholar] [CrossRef]
- Li, J.; Xu, L. Novel C2-symmetric six-membered NHCs for asymmetric copper-catalysed conjugate addition of Grignard reagents to 3-methylhexenone. Tetrahedron 2015, 71, 2858–2862. [Google Scholar] [CrossRef]
- Zhou, B.H.; Wu, C.; Chen, X.X.; Huang, H.X.; Li, L.L.; Fan, L.M.; Li, J. New C2-symmetric six-membered carbine ligands incorporating two hydroxyl groups for palladium-catalyzed deprotonative-cross-coupling processes (DCCP) of sp3 C–H bonds in diarylmethanes. Tetrahedron Lett. 2017, 58, 4157–4161. [Google Scholar] [CrossRef]
- Zhou, B.H.; He, W.P.; Li, L.L.; Fan, L.M.; Li, X.R.; Li, J. Synthesis of novel chiral pyrimidone salts and their application in asymmetric diethylzinc addition of arylaldehydes. Curr. Org. Synth. 2017, 14. [Google Scholar] [CrossRef]
- Nitti, A.; Bianchi, G.; Po, R.; Swager, T.M.; Pasini, D. Domino direct arylation and cross-aldol for rapid construction of extended polycyclic π-scaffolds. J. Am. Chem. Soc. 2017, 139, 8788–8791. [Google Scholar] [CrossRef] [PubMed]
- Nitti, A.; Signorile, M.; Boiocchi, M.; Bianchi, G.; Po, R.; Pasini, D. Conjugated thiophene-fused isatin dyes through intramolecular direct arylation. J. Org. Chem. 2016, 81, 11035–11042. [Google Scholar] [CrossRef] [PubMed]
Entry a | Salts | Yield (%) b | ee (%) c |
---|---|---|---|
1 | 1a | 97 | 4 |
2 | 1b | 86 | 13 |
3 | 1c | 95 | 21 |
4 | 1d | 90 | 5 |
5 | 1e | 91 | 9 |
6 | 1f | 77 | 1 |
7 | 2a | 95 | 2 |
8 | 2b | 92 | 45 |
9 | 2c | 96 | 0 |
10 | 2d | 95 | 1 |
11 | 2e | 70 | 24 |
12 | 2f | 89 | 11 |
13 | 2g | 95 | 0 |
14 | 2h | 97 | 6 |
15 | 2i | 78 | 16 |
Entry a | Ar | Product | Yield (%) b | ee (%) c | |
---|---|---|---|---|---|
1 | 2-Naphthyl | 3b | 4b | 82 | 40 |
2 | Ph | 3c | 4c | 74 | 33 |
3 | 2-MePh | 3d | 4d | 89 | 26 |
4 | 3,4-diMePh | 3e | 4e | 78 | 40 |
5 | 2,4,6-triMePh | 3f | 4f | 69 | 28 |
6 | 4-EtPh | 3g | 4g | 86 | 37 |
7 | 2-MeOPh | 3h | 4h | 92 | 35 |
8 | 3-MeOPh | 3i | 4i | 81 | 38 |
9 | 4-MeOPh | 3j | 4j | 73 | 28 |
10 | 2-FPh | 3k | 4k | 88 | 14 |
11 | 4-FPh | 3l | 4l | 79 | 28 |
12 | 4-CF3Ph | 3m | 4m | 95 | 48 |
13 | 3,5-diFPh | 3n | 4n | 84 | 44 |
14 | Cinnamyl | 3o | 4o | 81 | 36 |
15 | 3-Pyridine | 3p | 4p | 67 | 54 |
16 | 2-Thienyl | 3q | 4q | 75 | 33 |
17 | 2-Quinolyl | 3r | 4r | 87 | 29 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhou, B.; Jiang, Y.; Liu, X. Synthesis of New C2-Symmetric Six-Membered NHCs and Their Application for the Asymmetric Diethylzinc Addition of Arylaldehydes. Catalysts 2018, 8, 46. https://doi.org/10.3390/catal8020046
Li J, Zhou B, Jiang Y, Liu X. Synthesis of New C2-Symmetric Six-Membered NHCs and Their Application for the Asymmetric Diethylzinc Addition of Arylaldehydes. Catalysts. 2018; 8(2):46. https://doi.org/10.3390/catal8020046
Chicago/Turabian StyleLi, Jie, Bihui Zhou, Yajie Jiang, and Xiaoming Liu. 2018. "Synthesis of New C2-Symmetric Six-Membered NHCs and Their Application for the Asymmetric Diethylzinc Addition of Arylaldehydes" Catalysts 8, no. 2: 46. https://doi.org/10.3390/catal8020046
APA StyleLi, J., Zhou, B., Jiang, Y., & Liu, X. (2018). Synthesis of New C2-Symmetric Six-Membered NHCs and Their Application for the Asymmetric Diethylzinc Addition of Arylaldehydes. Catalysts, 8(2), 46. https://doi.org/10.3390/catal8020046