Supplementary information

Catalyst	Molar ratio H2:CO2:N2*	Temp. °C	GHSV	ХСО2 %	Sсн4 %	Ref.
5%Ni/SiO2	4:1:1.1	350	11,000 h-1	38	90.0	
5%Ni/CZ imp	4:1:1.1	350	43,000 h-1	60	97.3	[2]
5%Ni/CZ sol-gel	4:1:1.1	350	43,000 h ⁻¹	80	90.0	
5%NiUSYImp	4:1:1.1	400	43,000 h ⁻¹	24.7	61.4	
4%Ni3%CeUSY _{Imp}	4:1:1.1	400	43,000 h-1	37.7	72.1	
4%Ni7%CeUSY _{Imp}	4:1:1.1	400	43,000 h ⁻¹	44.3	75.5	
5%Ni15%CeUSYImp	4:1:1.1	400	43,000 h-1	55.0	86.2	[2]
10%NiUSY _{Imp}	4:1:1.1	400	43,000 h ⁻¹	47.9	78.8	[3]
8%Ni7%CeUSY _{Imp}	4:1:1.1	400	43,000 h-1	51.7	85.6	
14%NiUSY _{Imp}	4:1:1.1	400	43,000 h ⁻¹	65.5	94.2	
14%Ni7%CeUSYImp	4:1:1.1	400	43,000 h-1	68.3	95.1	
5%Ni/80Ce20Zr	4:1:1.1	350	43.000 h-1	71.5	98.5	
5%Ni/60Ce40Zr	4:1:1.1	350	43.000 h ⁻¹	79.7	99.3	[5]
5%Ni/20Ce80Zr	4:1:1.1	350	43,000 h-1	73.0	99.0	
(5%Ni-0.5%Rh)/ 80Ce20Zr	4:1:1.1	350	43,000 h ⁻¹	77.8	99.2	
15%Ni/Al2O3	4:1:0	350	15,000 ml g ⁻¹ h ⁻¹	45.0	100.0	
15%Ni-0.3%CeO ₂ /Al ₂ O ₃	4:1:0	350	15,000 ml g ⁻¹ h ⁻¹	55.0	98.0	
15%Ni-0.5%CeO ₂ /Al ₂ O ₃	4:1:0	350	15,000 ml g ⁻¹ h ⁻¹	65.0	99.0	[6]
15%Ni-2%CeO ₂ /Al ₂ O ₃	4:1:0	350	15,000 ml g ⁻¹ h ⁻¹	71.0	100.0	[0]
15%Ni-4%CeO2/Al2O3	4:1:0	350	15,000 ml g ⁻¹ h ⁻¹	73.0	98.0	
15%Ni-6%CeO2/Al2O3	4:1:0	350	15,000 ml g ⁻¹ h ⁻¹	67.0	97.0	
15%Ni/SiC	4:1:0	360	12,000 h ⁻¹	79	99.6	[7]
15%Ni–5%La/SiC	4:1:0	360	12,000 h ⁻¹	85	99.6	[,]
5%Ni/MOF-5	4:1:0	280	2, 000 h ⁻¹	16.5		
7.5%Ni/MOF-5	4:1:0	280	2, 000 h ⁻¹	20.0		[8]
10%Ni/MOF-5	4:1:0	280	2, 000 h ⁻¹	47.2		[-]
12.5%Ni/MOF-5	4:1:0	280	2, 000 h ⁻¹	45.1		
10%Ni/MOF-5	4:1:0	360	2, 000 h ⁻¹	75.1	100	
5%Ni/ Ce0.72Zr0.28O2	4:1:1.1	350	43,000 h ⁻¹	71.5	98.5	[9]
10%Ni/ Ce0.72Zr0.28O2	4:1:1.1	350	43,000 h ⁻¹	83.4	99.7	[,]
15%Ni/ Ce0.72Zr0.28O2	4:1:1.1	350	43,000 h ⁻¹	80.3	99.5	

Table S1. Nickel catalysts reported for CO₂ hydrogenation at atmospheric pressure.

Catalyst	Molar ratio H2:CO2:N2 [*]	Temp. °C	GHSV	ХСО2 %	Sсн4 %	Ref.
		200		/	00 -	
LaNiO ₃ (Act 400° C)	4:1:0	300	$7,500 \text{ ml g}^{-1} \text{ h}^{-1}$	55.4	98.7	
LaNiO ₃ (Act 500° C)	4:1:0	300	$7,500 \text{ ml g}^{-1} \text{ h}^{-1}$	77.7	99.4	[40]
LaNiO ₃ (Act 600° C)	4:1:0	300	$7,500 \text{ ml g}^{-1} \text{ h}^{-1}$	71.7	99.3	[10]
LaNiO ₃ (Act 700°C)	4:1:0	300	7,500 ml g ⁻¹ h ⁻¹	59.7	99.2	
5%Ni/La ₂ O ₂ CO ₃	4:1:0	300	7,500 ml g ⁻¹ h ⁻¹	40.3	88.9	
23%Ni/CaO-Al2O3	4:1:3.3	400	15,000 h-1	81	98	[11]
10%Ni/CeO2	4:1:0	350	10,000 h-1	92	100	
10%Ni/MgO	4:1:0	450	10,000 h ⁻¹	69	97	[10]
10%Ni/TiO ₂	4:1:0	450	10,000 h ⁻¹	78	98	[12]
10%Ni/Al2O3	4:1:0	450	10,000 h-1	81	99	
(10%Ni-0.1%Ru)/SiC	4.1.1 1	400	10 000 h-1	76.2	98.4	
$(10\% Ni - 0.1\% R_{11})/Ce_2 Zr_2 O_{\circ}$	4.1.1.1	400	10,000 h 10,000 h-1	82.2	99 3	
$(10\% Ni 0.1\% R_{11})/SiC_{corr}$	4.1.1.1	400	10,000 h	69.9	93.9	
$(2.5\% \text{Ni}, 0.025\% \text{Ru})/\text{SiC}_{com}$	4.1.1.1	400	10,000 h 10,000 h-1	37.5	76.6	
(2.5% Ni - 0.025% Rm)/51 Croam	4.1.1.1	400	10,000 11	57.5	70.0	
(15%CNF-SiC _{foam})	4.1.1.1	400	10,000 h ⁻¹	48.6	86.5	[10]
(2.5%Ni-0.025%Ru)/	4:1:1.1	100	10,000 1, 1			[13]
(1%Ce ₂ Zr ₂ O ₈ -SiC _{foam})		400	10,000 h-1	46.4	92.3	
(2.5%Ni-0.025%Ru)/	4:1:1.1	100				
$(27\%Ce_2Zr_2O_8-SiC_{foam})$		400	10,000 h ⁻¹	59.8	96.4	
(2.5%Ni-0.025%Ru)/	4:1:1.1	100				
(1%Ce2Zr2O8-15%CNF-SiCfoam)		400	10,000 h-1	65.1	96.2	
Ni(100)/Al ₂ O ₃	4:1:0	400	$500 \text{ mL } \text{g}^{-1} \text{h}^{-1}$	17.8		
Mn/Ni(40:60)/ Al ₂ O ₃	4:1:0	400	500 mL g ⁻¹ h ⁻¹	20.1		
Mn/Ni(20:80)/ Al ₂ O ₃	4:1:0	400	500 mLg ⁻¹ h ⁻¹	21.3		
Pd/Mn/Ni(5:35:60)/Al ₂ O ₃	4:1:0	400	500 mL g ⁻¹ h ⁻¹	21.0		[14]
Ru/Mn/Ni(5:35:60)/Al ₂ O ₃	4:1:0	400	500 mL g ⁻¹ h ⁻¹	99.7	72.36	[]
Pd/Mn/Ni(5:15:80)/ Al ₂ O ₃	4:1:0	400	500 mL g ⁻¹ h ⁻¹	13.0		
Ru/Mn/Ni(5:15:80)/ Al ₂ O ₃	4:1:0	400	500 mL $g^{-1}h^{-1}$	51.0		
5%Ni/Zr/CNT-SEQ	5:1:94	400	75,000 mL g ⁻¹ h ⁻¹	55	98	
5%Ni/CNT	5:1:94	450	75,000 mL g ⁻¹ h ⁻¹	48	30	[17]
5%Ni/Zr/CNT-COI	5:1:94	500	75,000 mL g ⁻¹ h ⁻¹	47	12	
15%Ni/ZrO2	4:1:0.55	300	48,000 mL g ⁻¹ h ⁻¹	60	98	[18]
40Ni Coss Zr ecO	4.1.0	275	$2000\mathrm{mJ}$ $\sim 1\mathrm{h}^{-1}$	00	100	[10]
401NI-CE0.9Z10.1C	4.1.0	213	3,000 IIIL g · II ·	70	100	[19]
15%Ni/ZrO2-O	4:1:0.55	400	50,000 mL g ⁻¹ h ⁻¹	80	100	[20]
15%Ni/ZrO ₂	4:1:0.55	400	50,000 mL g ⁻¹ h ⁻¹	75	100	[20]

Catalyst	Molar ratio H2:CO2:N2 [*]	Temp. °C	GHSV	ХСО2 %	Sсн4 %	Ref.
20%Ni/ZrO2-cop 20%Ni/ZrO2-cop	4:1:5 4:1:5	400 400	126, 000 mL g ⁻¹ h ⁻¹ 43, 500 mL g ⁻¹ h ⁻¹	55 50	100 100	This work This work

* Molar ratio for H2 and N2 are calculated on CO2 mole basis.

References

- 1. Goodman, Daniel Jacob. "Methanation of Carbon Dioxide". UCLA Electronic Theses and Dissertations, 2013.
- P.A. Ussa Aldana , F. Ocampo , K. Kobl , B. Louis , F. Thibault-Starzyka , M. Daturi, P. Bazin, S. Thomas , A.C. Roger b. Catalytic CO₂ valorization into CH₄ on Ni-based ceria-zirconia. *"Reaction mechanism by operando IR spectroscopy"*. Catalysis Today 215 (2013) 201–207.
- 3. I. Graca, L.V. González, M.C. Bacariza, A. Fernandes, C. Henriques, J.M. Lopes, M.F. Ribeiro. "CO₂ hydrogenation into CH₄ on NiHNaUSY zeolites". Applied Catalysis B: Environmental 147 (2014) 101–110.
- 4. Jinghua XU, Qingquan LIN, Xiong SU, Hongmin DUAN, Haoran GENG, Yanqiang HUANG. "CO₂ Methanation over TiO₂ Al₂O₃ Binary Oxides Supported Ru Catalysts". Chinese Journal of Chemical Engineering Volume 24, Issue 1, January 2016, Pages 140–145.
- Fabien Ocampo, Benoit Louis, Lioubov Kiwi-Minsker, Anne-Cécile Roger. "Effect of Ce/Zr composition and noble metal promotion on nickel based Ce_xZr_{1-x} O₂ catalysts for carbon dioxide methanation". Applied Catalysis A: General 392 (2011) 36–44.
- 6. Hezhi Liu, Xiujing Zou, Xueguang Wang, Xionggang Lu, Weizhong Ding. "Effect of CeO₂ addition on Ni/Al₂O₃ catalysts for methanation of carbon dioxide with hydrogen". Journal of Natural Gas Chemistry 21(2012)703–707.
- 7. Guojuan Zhi, Xiaoning Guo, Yingyong Wang, Guoqiang Jin, Xiangyun Guo. "Effect of La₂ O₃ modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide". Catalysis Communications 16 (2011) 56–59.
- 8. Wenlong Zhen, Bo Li, Gongxuan Lu and Jiantai Ma. "Enhancing catalytic activity and stability for CO₂ methanation on Ni@MOF-5 via control of active species dispersion". Chem. Commun., 2015, 51, 1728-1731.
- 9. Fabien Ocampo, Benoit Louis, Anne-Cécile Roger. "Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method". Applied Catalysis A: General 369 (2009) 90–96.
- 10. GAO Jing, JIA Li-shan, FANG Wei-ping, LI Qing-biao, SONG Hao. "Methanation of carbon dioxide over the LaNiO₃ perovskite catalysts activated under the reactant stream". J Fuel Chem Technol, 2009, 37(5), 573-577.
- Benjamin Mutz, Hudson W.P. Carvalho, Stefan Mangold, Wolfgang Kleist, Jan-Dierk Grunwaldt.K. "Methanation of CO2: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy". Journal of Catalysis 327 (2015) 48–53.
- 12. Shohei Tada, Teruyuki Shimizu, Hiromichi Kameyama, Takahide Haneda, Ryuji Kikuchi. "Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures". International Journal of Hydrogen Energy 37 (2012) 5527-5531.
- 13. Myriam Frey, David Édouard, Anne-Cécile Roger. "Optimization of structured cellular foam-based catalysts for lowtemperature carbon dioxide methanation in a platelet milli-reactor". C. R. Chimie 18 (2015) 283–292.
- 14. Shohei Tada, Ochieng James Ochieng, Ryuji Kikuchi, Takahide Haneda, Hiromichi Kameyama. "Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2 /Al2O3 catalysts". International Journal of Hydrogen Energy 39 (2014) 10090-10100.
- 15. Wan Azelee Wan Abu Bakar, Rusmidah Ali, Nurul Shafeeqa Mohammad. "The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts". Arabian Journal of Chemistry (2015) 8, 632–643.
- 16. Jiajian Gao, Yingli Wang, Yuan Ping, Dacheng Hu, Guangwen Xu, Fangna Gu and Fabing Su. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv., 2012, 2, 2358– 2368.
- 17. M. Romero-Sáez, A.B. Dongil, N. Benito, R. Espinoza-González, N. Escalona, F. Gracia. CO2 methanation over nickel-ZrO₂ catalyst supported on carbon nanotubes: A comparison between two impregnation strategies. Applied Catalysis B: Environmental 237 (2018) 817–825.
- 18. Kechao Zhao, Weihan Wang, Zhenhua Li. *Highly efficient Ni/ZrO2 catalysts prepared Via combustion method for CO2 methanation*. Journal of CO2 Utilization, 16 (2016), 236–244.
- 19. Wangxin Nie, Xiujing Zou, Chenju Chen, Xueguang Wang, Weizhong Ding, Xionggang Lu. Methanation of Carbon Dioxide over Ni–Ce–Zr Oxides Prepared by One-Pot Hydrolysis of Metal Nitrates with Ammonium Carbonate. Catalysts 2017, 7, 104.
- 20. Zhenhua Li, Lijuan Zhang, Kechao Zhao, Li Bian. *Ni/ZrO*² *Catalysts Synthesized via Urea Combustion Method for CO*². Transactions of Tianjin University (2018) 24:471–479.

Figure S1. Rietveld simulation for the sol-gel ZrO₂ support.

Figure S2. Rietveld simulation for the co-precipitation ZrO₂ support.

Figure S4. SEM images of 20%Ni/ZrO_{2-COP} catalysts.

 +0/	Catalyst			
WL/0	20%Ni/ZrO _{2-COP-F}	20%Ni/ZrO2-COP-S		
0	28.6	28.1		
Ni	18.4	20.2		
Zr	53.0	51.6		

Table S2. SEM microanalysis.

Catalyst dispersion calculations

Table 55. Feak areas of the hydrogen	chemisorption analysis.
	D 1 4

	Peak Area	Peak Area
Injection	20%Ni/ZrO2-COP	20%Ni/ZrO2-COP
#	Fresh catalyst	Spent catalyst
	<i>m</i> =0.052 g	<i>m</i> =0.012 g
1	7.34	144.62
2	17.74	154.02
3	28.40	154.15
4	41.00	157.43
5	59.08	158.50
6	80.74	160.49
7	112.86	162.19
8	114.92	166.47
9	113.47	161.75
10	121.85	161.90
11	121.40	163.67
12	125.05	165.25
13	129.51	165.54
14	131.09	164.49
15	132.01	167.61

$$\%D = \left[n\left(\frac{V_{ads}}{V_g}\right)\left(\frac{MW}{M}\right)100\right]100$$

%D = metal dispersion, %.

n =stoichiometry factor = 2

 V_{ads} = volume of the active gas adsorbed, cm³/g V_g = molar volume gas at STP = 22414 cm³/mol MW = molecular weight of nickel=58.693 g/mol M = % of metal loading = 20%

$$V_{ads}(STP) = \frac{V_{inj}}{m} \sum_{i=1}^{n} \left(1 - \frac{Ai}{Af} \right)$$

m = mas of the sample, g A_i = Area of the peak i A_f = area of the last peak

$$V_{inj}(STP) = V_{loop} \left(\frac{T_{std}}{T_{room}}\right) \left(\frac{P_{room}}{T_{std}}\right) \left(\frac{A}{100}\right)$$

- V_{inj} = Volume of the active gas injected, cm³
- V_{loop} =Volume of the loop, cm³
- T_{room} = room temperature, K
- *P*_{room} = room pressure, mmHg
- T_{std} = standar temperature= 273.15 K
- P_{std} = standard pressure= 760 mmHg
- A = % of active gas in the gas-mixture